Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.297
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(22): e2316924121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38768350

RESUMO

Dynamic ecosystems, such as the Amazon forest, are expected to show critical slowing down behavior, or slower recovery from recurrent small perturbations, as they approach an ecological threshold to a different ecosystem state. Drought occurrences are becoming more prevalent across the Amazon, with known negative effects on forest health and functioning, but their actual role in the critical slowing down patterns still remains elusive. In this study, we evaluate the effect of trends in extreme drought occurrences on temporal autocorrelation (TAC) patterns of satellite-derived indices of vegetation activity, an indicator of slowing down, between 2001 and 2019. Differentiating between extreme drought frequency, intensity, and duration, we investigate their respective effects on the slowing down response. Our results indicate that the intensity of extreme droughts is a more important driver of slowing down than their duration, although their impacts vary across the different Amazon regions. In addition, areas with more variable precipitation are already less ecologically stable and need fewer droughts to induce slowing down. We present findings indicating that most of the Amazon region does not show an increasing trend in TAC. However, the predicted increase in extreme drought intensity and frequency could potentially transition significant portions of this ecosystem into a state with altered functionality.


Assuntos
Secas , Florestas , Ecossistema , Brasil , Árvores/fisiologia , Árvores/crescimento & desenvolvimento , Mudança Climática
2.
Physiol Plant ; 176(3): e14326, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38708565

RESUMO

Plants face a trade-off between hydraulic safety and growth, leading to a range of water-use strategies in different species. However, little is known about such strategies in tropical trees and whether different water-use traits can acclimate to warming. We studied five water-use traits in 20 tropical tree species grown at three different altitudes in Rwanda (RwandaTREE): stomatal conductance (gs), leaf minimum conductance (gmin), plant hydraulic conductance (Kplant), leaf osmotic potential (ψo) and net defoliation during drought. We also explored the links between these traits and growth and mortality data. Late successional (LS) species had low Kplant, gs and gmin and, thus, low water loss, while low ψo helped improve leaf water status during drought. Early successional (ES) species, on the contrary, used more water during both moist and dry conditions and exhibited pronounced drought defoliation. The ES strategy was associated with lower mortality and more pronounced growth enhancement at the warmer sites compared to LS species. While Kplant and gmin showed downward acclimation in warmer climates, ψo did not acclimate and gs measured at prevailing temperature did not change. Due to distinctly different water use strategies between successional groups, ES species may be better equipped for a warmer climate as long as defoliation can bridge drought periods.


Assuntos
Mudança Climática , Secas , Folhas de Planta , Árvores , Clima Tropical , Água , Água/metabolismo , Água/fisiologia , Árvores/fisiologia , Árvores/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Estômatos de Plantas/fisiologia , Aclimatação/fisiologia , Transpiração Vegetal/fisiologia , Temperatura
3.
Glob Chang Biol ; 30(5): e17307, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38709196

RESUMO

Climate change effects on tree reproduction are poorly understood, even though the resilience of populations relies on sufficient regeneration to balance increasing rates of mortality. Forest-forming tree species often mast, i.e. reproduce through synchronised year-to-year variation in seed production, which improves pollination and reduces seed predation. Recent observations in European beech show, however, that current climate change can dampen interannual variation and synchrony of seed production and that this masting breakdown drastically reduces the viability of seed crops. Importantly, it is unclear under which conditions masting breakdown occurs and how widespread breakdown is in this pan-European species. Here, we analysed 50 long-term datasets of population-level seed production, sampled across the distribution of European beech, and identified increasing summer temperatures as the general driver of masting breakdown. Specifically, increases in site-specific mean maximum temperatures during June and July were observed across most of the species range, while the interannual variability of population-level seed production (CVp) decreased. The declines in CVp were greatest, where temperatures increased most rapidly. Additionally, the occurrence of crop failures and low seed years has decreased during the last four decades, signalling altered starvation effects of masting on seed predators. Notably, CVp did not vary among sites according to site mean summer temperature. Instead, masting breakdown occurs in response to warming local temperatures (i.e. increasing relative temperatures), such that the risk is not restricted to populations growing in warm average conditions. As lowered CVp can reduce viable seed production despite the overall increase in seed count, our results warn that a covert mechanism is underway that may hinder the regeneration potential of European beech under climate change, with great potential to alter forest functioning and community dynamics.


Assuntos
Mudança Climática , Fagus , Estações do Ano , Temperatura , Fagus/crescimento & desenvolvimento , Fagus/fisiologia , Europa (Continente) , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Reprodução , Árvores/crescimento & desenvolvimento , Árvores/fisiologia , Polinização
4.
Glob Chang Biol ; 30(5): e17304, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38711381

RESUMO

Subtropical forests, recognized for their intricate vertical canopy stratification, exhibit high resistance to extreme drought. However, the response of leaf phenology to drought in the species-rich understory remains poorly understood. In this study, we constructed a digital camera system, amassing over 360,000 images through a 70% throughfall exclusion experiment, to explore the drought response of understory leaf phenology. The results revealed a significant advancement in understory leaf senescence phenology under drought, with 11.75 and 15.76 days for the start and end of the leaf-falling event, respectively. Pre-season temperature primarily regulated leaf development phenology, whereas soil water dominated the variability in leaf senescence phenology. Under drought conditions, temperature sensitivities for the end of leaf emergence decreased from -13.72 to -11.06 days °C-1, with insignificance observed for the start of leaf emergence. Consequently, drought treatment shortened both the length of the growing season (15.69 days) and the peak growth season (9.80 days) for understory plants. Moreover, this study identified diverse responses among intraspecies and interspecies to drought, particularly during the leaf development phase. These findings underscore the pivotal role of water availability in shaping understory phenology patterns, especially in subtropical forests.


Assuntos
Secas , Folhas de Planta , Estações do Ano , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Temperatura , Florestas , Água/metabolismo , Árvores/crescimento & desenvolvimento , Árvores/fisiologia , Solo , Clima Tropical , China
5.
Glob Chang Biol ; 30(4): e17260, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38563236

RESUMO

The impact of anthropogenic global warming has induced significant upward dispersal of trees to higher elevations at alpine treelines. Assessing vertical deviation from current uppermost tree distributions to potential treeline positions is crucial for understanding ecosystem responses to evolving global climate. However, due to data resolution constraints and research scale limitation, comprehending the global pattern of alpine treeline elevations and driving factors remains challenging. This study constructed a comprehensive quasi-observational dataset of uppermost tree distribution across global mountains using Google Earth imagery. Validating the isotherm of mean growing-season air temperature at 6.6 ± 0.3°C as the global indicator of thermal treeline, we found that around two-thirds of uppermost tree distribution records significantly deviated from it. Drought conditions constitute the primary driver in 51% of cases, followed by mountain elevation effect which indicates surface heat (27%). Our analyses underscore the multifaceted determinants of global patterns of alpine treeline, explaining divergent treeline responses to climate warming. Moisture, along with temperature and disturbance, plays the most fundamental roles in understanding global variation of alpine treeline elevation and forecasting alpine treeline response to ongoing global warming.


Assuntos
Ecossistema , Árvores , Árvores/fisiologia , Temperatura , Temperatura Baixa , Clima , Altitude
6.
Sci Total Environ ; 927: 172163, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38569958

RESUMO

The early growth stage of plants is vital to community diversity and community regeneration. The Janzen-Connell hypothesis predicts that conspecific density dependence lowers the survival of conspecific seedlings by attracting specialist natural enemies, promoting the recruitment and performance of heterospecific neighbors. Recent work has underscored how this conspecific negative density dependence may be mediated by mutualists - such as how mycorrhizal fungi may mediate the accrual of host-specific pathogens beneath the crown of conspecific adult trees. Aboveground mutualist and enemy interactions exist as well, however, and may provide useful insight into density dependence that are as of yet unexplored. Using a long-term seedling demographic dataset in a subtropical forest plot in central China, we confirmed that conspecific neighborhoods had a significant negative effect on seedling survival in this subtropical forest. Furthermore, although we detected more leaf damage in species that were closely related to ants, we found that the presence of ants had significant positive effects on seedling survival. Beside this, we also found a negative effect of ant appearance on seedling growth which may reflect a trade-off between survival and growth. Overall, our findings suggested that ants and conspecific neighborhoods played important but inverse roles on seedling survival and growth. Our results suggest ants may mediate the influence of conspecific negative density dependence on seedling survival at community level.


Assuntos
Formigas , Florestas , Herbivoria , Plântula , China , Animais , Plântula/fisiologia , Formigas/fisiologia , Árvores/fisiologia , Densidade Demográfica , Simbiose
7.
Sci Total Environ ; 927: 172166, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38575023

RESUMO

Previous favorable climate conditions stimulate tree growth making some forests more vulnerable to hotter droughts. This so-called structural overshoot may contribute to forest dieback, but there is little evidence on its relative importance depending on site conditions and tree species because of limited field data. Here, we analyzed remote sensing (NDVI) and tree-ring width data to evaluate the impacts of the 2017 drought on canopy cover and growth in mixed Mediterranean forests (Fraxinus ornus, Quercus pubescens, Acer monspessulanum, Pinus pinaster) located in southern Italy. Legacy effects were assessed by calculating differences between observed and predicted basal area increment (BAI). Overall, the growth response of the study stands to the 2017 drought was contingent on site conditions and species characteristics. Most sites presented BAI and canopy cover reductions during the drought. Growth decline was followed by a quick recovery and positive legacy effects, particularly in the case of F. ornus. However, we found negative drought legacies in some species (e.g., Q. pubescens, A. monspessulanum) and sites. In those sites showing negative legacies, high growth rates prior to drought in response to previous wet winter-spring conditions may have predisposed trees to drought damage. Vice versa, the positive drought legacy found in some F. ornus site was linked to post-drought growth release due to Q. pubescens dieback and mortality. Therefore, we found evidences of structural drought overshoot, but it was restricted to specific sites and species. Our findings highlight the importance of considering site settings such as stand composition, pre-drought conditions and different tree species when studying structural overshoot. Droughts contribute to modify the composition and dynamics in mixed forests.


Assuntos
Secas , Florestas , Árvores , Árvores/fisiologia , Itália , Quercus/crescimento & desenvolvimento , Quercus/fisiologia , Mudança Climática , Pinus/fisiologia , Pinus/crescimento & desenvolvimento , Monitoramento Ambiental , Fraxinus/fisiologia , Fraxinus/crescimento & desenvolvimento , Acer/crescimento & desenvolvimento , Acer/fisiologia
8.
Proc Biol Sci ; 291(2020): 20232338, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38593851

RESUMO

Transcriptomics provides a versatile tool for ecological monitoring. Here, through genome-guided profiling of transcripts mapping to 33 042 gene models, expression differences can be discerned among multi-year and seasonal leaf samples collected from American beech trees at two latitudinally separated sites. Despite a bottleneck due to post-Columbian deforestation, the single nucleotide polymorphism-based population genetic background analysis has yielded sufficient variation to account for differences between populations and among individuals. Our expression analyses during spring-summer and summer-autumn transitions for two consecutive years involved 4197 differentially expressed protein coding genes. Using Populus orthologues we reconstructed a protein-protein interactome representing leaf physiological states of trees during the seasonal transitions. Gene set enrichment analysis revealed gene ontology terms that highlight molecular functions and biological processes possibly influenced by abiotic forcings such as recovery from drought and response to excess precipitation. Further, based on 324 co-regulated transcripts, we focused on a subset of GO terms that could be putatively attributed to late spring phenological shifts. Our conservative results indicate that extended transcriptome-based monitoring of forests can capture diverse ranges of responses including air quality, chronic disease, as well as herbivore outbreaks that require activation and/or downregulation of genes collectively tuning reaction norms maintaining the survival of long living trees such as the American beech.


Assuntos
Fagus , Humanos , Estações do Ano , Fagus/genética , Folhas de Planta/fisiologia , Florestas , Árvores/fisiologia , Transcriptoma
9.
Tree Physiol ; 44(5)2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38618738

RESUMO

The oxygen and hydrogen isotopic composition (δ18O, δ2H) of plant tissues are key tools for the reconstruction of hydrological and plant physiological processes and may therefore be used to disentangle the reasons for tree mortality. However, how both elements respond to soil drought conditions before death has rarely been investigated. To test this, we performed a greenhouse study and determined predisposing fertilization and lethal soil drought effects on δ18O and δ2H values of organic matter in leaves and tree rings of living and dead saplings of five European tree species. For mechanistic insights, we additionally measured isotopic (i.e. δ18O and δ2H values of leaf and twig water), physiological (i.e. leaf water potential and gas-exchange) and metabolic traits (i.e. leaf and stem non-structural carbohydrate concentration, carbon-to-nitrogen ratios). Across all species, lethal soil drought generally caused a homogenous 2H-enrichment in leaf and tree-ring organic matter, but a low and heterogenous δ18O response in the same tissues. Unlike δ18O values, δ2H values of tree-ring organic matter were correlated with those of leaf and twig water and with plant physiological traits across treatments and species. The 2H-enrichment in plant organic matter also went along with a decrease in stem starch concentrations under soil drought compared with well-watered conditions. In contrast, the predisposing fertilization had generally no significant effect on any tested isotopic, physiological and metabolic traits. We propose that the 2H-enrichment in the dead trees is related to (i) the plant water isotopic composition, (ii) metabolic processes shaping leaf non-structural carbohydrates, (iii) the use of carbon reserves for growth and (iv) species-specific physiological adjustments. The homogenous stress imprint on δ2H but not on δ18O suggests that the former could be used as a proxy to reconstruct soil droughts and underlying processes of tree mortality.


Assuntos
Secas , Isótopos de Oxigênio , Folhas de Planta , Solo , Árvores , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Árvores/metabolismo , Árvores/fisiologia , Solo/química , Isótopos de Oxigênio/análise , Água/metabolismo , Deutério/metabolismo , Deutério/análise , Caules de Planta/metabolismo
12.
Ecol Lett ; 27(4): e14403, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38577961

RESUMO

Species interactions such as facilitation and competition play a crucial role in driving species range shifts. However, density dependence as a key feature of these processes has received little attention in both empirical and modelling studies. Herein, we used a novel, individual-based treeline model informed by rich in situ observations to quantify the contribution of density-dependent species interactions to alpine treeline dynamics, an iconic biome boundary recognized as an indicator of global warming. We found that competition and facilitation dominate in dense versus sparse vegetation scenarios respectively. The optimal balance between these two effects was identified at an intermediate vegetation thickness where the treeline elevation was the highest. Furthermore, treeline shift rates decreased sharply with vegetation thickness and the associated transition from positive to negative species interactions. We thus postulate that vegetation density must be considered when modelling species range dynamics to avoid inadequate predictions of its responses to climate warming.


Assuntos
Ecossistema , Árvores , Árvores/fisiologia , Aquecimento Global , Mudança Climática , Clima
13.
Tree Physiol ; 44(5)2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38606678

RESUMO

Worldwide, forests are increasingly exposed to extreme droughts causing tree mortality. Because of the complex nature of the mechanisms involved, various traits have been linked to tree drought responses with contrasting results. This may be due to species-specific strategies in regulating water potential, a process that unfolds in two distinct phases: a first phase until stomatal closure, and a second phase until reaching lethal xylem hydraulic thresholds. We conducted dry-down experiments with five broadleaved temperate tree species differing in their degree of isohydry to estimate the time to stomatal closure (tsc) and subsequent time to critical hydraulic failure (tcrit). We measured various traits linked to tree drought responses, such as the water potentials at turgor loss point (Ptlp), stomatal closure (Pgs90), and 12%, 50% and 88% loss of xylem hydraulic conductance (P12, P50, P88), hydraulic capacitance (C), minimum leaf conductance (gmin), hydroscape area (HSA) and hydraulic safety margins (HSM). We found that Pgs90 followed previously recorded patterns of isohydry and was associated with HSA. Species ranked from more to less isohydric in the sequence Acer pseudoplatanus < Betula pendula < Tilia cordata < Sorbus aucuparia < Fagus sylvatica. Their degree of isohydry was associated with leaf safety (Ptlp and gmin), drought avoidance (C) and tsc, but decoupled from xylem safety (HSM and P88) and tcrit. Regardless of their stomatal stringency, species with wider HSM and lower P88 reached critical hydraulic failure later. We conclude that the duration of the first phase is determined by stomatal regulation, while the duration of the second phase is associated with xylem safety. Isohydry is thus linked to water use rather than to drought survival strategies, confirming the proposed use of HSA as a complement to HSM for describing plant drought responses before and after stomatal closure.


Assuntos
Estômatos de Plantas , Árvores , Água , Xilema , Estômatos de Plantas/fisiologia , Árvores/fisiologia , Xilema/fisiologia , Água/metabolismo , Água/fisiologia , Secas , Especificidade da Espécie , Transpiração Vegetal/fisiologia
14.
Am J Bot ; 111(4): e16312, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38576091

RESUMO

Forests are facing unprecedented levels of stress from pest and disease outbreaks, disturbance, fragmentation, development, and a changing climate. These selective agents act to alter forest composition from regional to cellular levels. Thus, a central challenge for understanding how forests will be impacted by future change is how to integrate across scales of biology. Phenotype, or an observable trait, is the product of an individual's genes (G) and the environment in which an organism lives (E). To date, researchers have detailed how environment drives variation in tree phenotypes over long time periods (e.g., long-term ecological research sites [LTERs]) and across large spatial scales (e.g., flux network). In parallel, researchers have discovered the genes and pathways that govern phenotypes, finding high degrees of genetic control and signatures of local adaptation in many plant traits. However, the research in these two areas remain largely independent of each other, hindering our ability to generate accurate predictions of plant response to environment, an increasingly urgent need given threats to forest systems. I present the importance of both genes and environment in determining tree responses to climate stress. I highlight why the difference between G versus E in driving variation is critical for our understanding of climate responses, then propose means of accelerating research that examines G and E simultaneously by leveraging existing long-term, large-scale phenotypic data sets from ecological networks and adding newly affordable sequence (-omics) data to both drill down to find the genes and alleles influencing phenotypes and scale up to find how patterns of demography and local adaptation may influence future response to change.


Assuntos
Mudança Climática , Fenótipo , Árvores , Árvores/genética , Árvores/fisiologia , Florestas , Variação Genética
15.
Am J Bot ; 111(4): e16320, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38629307

RESUMO

Marantaceae forests are tropical rainforests characterized by a continuous understory layer of perennial giant herbs and a near absence of tree regeneration. Although widespread in West-Central Africa, Marantaceae forests have rarely been considered in the international literature. Yet, they pose key challenges and opportunities for theoretical ecology that transcend the borders of the continent. Specifically, we ask in this review whether open Marantaceae forests and dense closed-canopy forests can be considered as one of the few documented examples of alternative stable states in tropical forests. First, we introduce the different ecological factors that have been posited to drive Marantaceae forests (climate, soil, historical and recent anthropogenic pressures, herbivores) and develop the different hypotheses that have been suggested to explain how Marantaceae forests establish in relation with other vegetation types (understory invasion, early succession after disturbance, and intermediate successional stage). Then, we review the underlying ecological mechanisms that can explain the stability of Marantaceae forests in the long term (tree recruitment inhibition, promotion of and resilience to fire, adaptive reproduction, maintenance by megaherbivores). Although some uncertainties remain and call for further empirical and theoretical research, we found converging evidence that Marantaceae forests are associated with an ecological succession that has been deflected or arrested. If verified, Marantaceae forests may provide a useful model to understand critical transitions in forest ecosystems, which is of particular relevance to achieve sustainable forest management and mitigate global climate change.


Assuntos
Florestas , Floresta Úmida , Árvores/fisiologia , África
16.
New Phytol ; 242(5): 1932-1943, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38641865

RESUMO

Large trees in plantations generally produce more wood per unit of resource use than small trees. Two processes may account for this pattern: greater photosynthetic resource use efficiency or greater partitioning of carbon to wood production. We estimated gross primary production (GPP) at the individual scale by combining transpiration with photosynthetic water-use efficiency of Eucalyptus trees. Aboveground production fluxes were estimated using allometric equations and modeled respiration; total belowground carbon fluxes (TBCF) were estimated by subtracting aboveground fluxes from GPP. Partitioning was estimated by dividing component fluxes by GPP. Dominant trees produced almost three times as much wood as suppressed trees. They used 25 ± 10% (mean ± SD) of their photosynthates for wood production, whereas suppressed trees only used 12 ± 2%. By contrast, dominant trees used 27 ± 19% of their photosynthate belowground, whereas suppressed trees used 58 ± 5%. Intermediate trees lay between these extremes. Photosynthetic water-use efficiency of dominant trees was c. 13% greater than the efficiency of suppressed trees. Suppressed trees used more than twice as much of their photosynthate belowground and less than half as much aboveground compared with dominant trees. Differences in carbon partitioning were much greater than differences in GPP or photosynthetic water-use efficiency.


Assuntos
Carbono , Eucalyptus , Fotossíntese , Árvores , Água , Madeira , Eucalyptus/fisiologia , Eucalyptus/metabolismo , Carbono/metabolismo , Árvores/fisiologia , Árvores/metabolismo , Água/metabolismo , Madeira/fisiologia , Transpiração Vegetal/fisiologia , Modelos Biológicos
17.
New Phytol ; 242(5): 1891-1910, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38649790

RESUMO

Plant water uptake from the soil is a crucial element of the global hydrological cycle and essential for vegetation drought resilience. Yet, knowledge of how the distribution of water uptake depth (WUD) varies across species, climates, and seasons is scarce relative to our knowledge of aboveground plant functions. With a global literature review, we found that average WUD varied more among biomes than plant functional types (i.e. deciduous/evergreen broadleaves and conifers), illustrating the importance of the hydroclimate, especially precipitation seasonality, on WUD. By combining records of rooting depth with WUD, we observed a consistently deeper maximum rooting depth than WUD with the largest differences in arid regions - indicating that deep taproots act as lifelines while not contributing to the majority of water uptake. The most ubiquitous observation across the literature was that woody plants switch water sources to soil layers with the highest water availability within short timescales. Hence, seasonal shifts to deep soil layers occur across the globe when shallow soils are drying out, allowing continued transpiration and hydraulic safety. While there are still significant gaps in our understanding of WUD, the consistency across global ecosystems allows integration of existing knowledge into the next generation of vegetation process models.


Assuntos
Árvores , Água , Água/metabolismo , Árvores/fisiologia , Solo/química , Estações do Ano , Raízes de Plantas/fisiologia , Raízes de Plantas/metabolismo , Ecossistema , Geografia
18.
Physiol Plant ; 176(3): e14304, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38686664

RESUMO

Source-sink balance in plants determines carbon distribution, and altering it can impact carbon fixation, transport, and allocation. We aimed to investigate the effect of altered source-sink ratios on carbon fixation, transport, and distribution in 'Valencia' sweet orange (Citrus x sinensis) by various defoliation treatments (0%, 33%, 66%, and 83% leaf removal). Gas exchange parameters were measured on 0 and 10 days after defoliation using A/Ci response curves, and leaf export was measured two days after defoliation using radioisotope tracer techniques. Greater defoliation increased the maximum rate of carboxylation (Vcmax), electron transport rate (J1200), and triose-phosphate utilization rate (TPU). Leaf export was unaffected by defoliation but increased in leaves closer to the shoot apex. Basipetal translocation velocity in the trunk remained unaltered, indicating that more photosynthates remained in the shoot rather than being transported directly to the root sink. Defoliated plants initiated more new flush shoots but accumulated less shoot biomass per plant after 8 weeks. Carbon allocation to fine roots was smaller in defoliated plants, suggesting defoliation led to retention of carbohydrates in aboveground organs such as the trunk and other shoots from previous growing cycles. In conclusion, the low source-sink ratio increased carbon fixation without impacting individual leaf export in citrus. The results suggest that intermediate sinks such as the aboveground perennial organs play a role in mediating the translocation velocity. Further research is necessary to better understand the dynamics of source-sink regulation in citrus trees.


Assuntos
Carbono , Citrus , Fotossíntese , Folhas de Planta , Folhas de Planta/metabolismo , Carbono/metabolismo , Fotossíntese/fisiologia , Citrus/metabolismo , Citrus/fisiologia , Citrus/crescimento & desenvolvimento , Ciclo do Carbono , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Biomassa , Árvores/metabolismo , Árvores/fisiologia , Citrus sinensis/metabolismo , Citrus sinensis/crescimento & desenvolvimento , Citrus sinensis/fisiologia
19.
Ecology ; 105(5): e4280, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38566463

RESUMO

The effects of biodiversity on ecological processes have been experimentally evaluated mainly at the local scale under homogeneous conditions. To scale up experimentally based biodiversity-functioning relationships, there is an urgent need to understand how such relationships are affected by the environmental heterogeneity that characterizes larger spatial scales. Here, we tested the effects of an 800-m elevation gradient (a large-scale environmental factor) and forest habitat (a fine-scale factor) on litter diversity-decomposition relationships. To better understand local and landscape scale mechanisms, we partitioned net biodiversity effects into complementarity, selection, and insurance effects as applicable at each scale. We assembled different litter mixtures in aquatic microcosms that simulated natural tree holes, replicating mixtures across blocks nested within forest habitats (edge, interior) and elevations (low, mid, high). We found that net biodiversity and complementarity effects increased over the elevation gradient, with their strength modified by forest habitat and the identity of litter in mixtures. Complementarity effects at local and landscape scales were greatest for combinations of nutrient-rich and nutrient-poor litters, consistent with nutrient transfer mechanisms. By contrast, selection effects were consistently weak and negative at both scales. Selection effects at the landscape level were due mainly to nonrandom overyielding rather than spatial insurance effects. Our findings demonstrate that the mechanisms by which litter diversity affects decomposition are sensitive to environmental heterogeneity at multiple scales. This has implications for the scaling of biodiversity-ecosystem function relationships and suggests that future shifts in environmental conditions due to climate change or land use may impact the functioning of aquatic ecosystems.


Assuntos
Biodiversidade , Florestas , Folhas de Planta , Modelos Biológicos , Árvores/fisiologia
20.
Ying Yong Sheng Tai Xue Bao ; 35(1): 195-202, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38511456

RESUMO

In order to understand the response and adaptation mechanisms of photosynthetic characteristics and growth for Cunninghamia lanceolata saplings in the subtropical region to global warming, we conducted the root-box warming experiment (ambient, ambient+4 ℃) at the Sanming Forest Ecosystem National Observation and Research Station in Fujian Province to investigate the effects of soil warming on the photosynthetic characteristics and growth of C. lanceolata saplings in different seasons. The results showed that the net photosynthetic rate (Pn) and stomatal conductance (gs) of C. lanceolata significantly decreased in summer compared with in spring and autumn. Soil warming had no effect on the Pn and gs of C. lanceolata. However, the interaction between warming and season significantly impacted the leaf water use efficiency (WUE). The tree height and ground diameter growth of C. lanceolata significantly increased in spring compared with in summer and autumn. Warming significantly reduced ground diameter growth, and it diminished the net diameter growth by 48.1% in autumn. However, warming had no impact on the tree height growth of C. lanceolata in each season. The specific leaf area, soluble sugar, and non-structural carbohydrates contents of C. lanceolata significantly improved in summer and autumn compared with in spring. Warming had rarely influence on leaf functional traits in each season. In conclusion, the response of photosynthesis for C. lanceolata to soil warming was insignificant. The photosynthesis of C. lanceolata exhibited significant seasonal dynamics, primarily controlled by gs. C. lanceolata adapted to soil warming by adjusting WUE, and it adjusted to high temperatures and drought stress in summer by increasing soluble sugar content and specific leaf area. The effect of warming on ground diameter growth of C. lanceolata was primarily driven by soil moisture. The seasonal difference in the growth of C. lanceolata was influenced by the photosynthesis of C. lanceolata and the trade-off between the utilization and storage of photosynthetic products.


Assuntos
Cunninghamia , Ecossistema , Carboidratos , Fotossíntese , Estações do Ano , Solo/química , Açúcares , Árvores/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA