Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.085
Filtrar
1.
J Agric Food Chem ; 72(20): 11308-11320, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38720452

RESUMO

The dearomatization at the hydrophobic tail of the boscalid was carried out to construct a series of novel pyrazole-4-carboxamide derivatives containing an oxime ether fragment. By using fungicide-likeness analyses and virtual screening, 24 target compounds with theoretical strong inhibitory effects against fungal succinate dehydrogenase (SDH) were designed and synthesized. Antifungal bioassays showed that the target compound E1 could selectively inhibit the in vitro growth of R. solani, with the EC50 value of 1.1 µg/mL that was superior to that of the agricultural fungicide boscalid (2.2 µg/mL). The observations by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) demonstrated that E1 could reduce mycelial density and significantly increase the mitochondrial number in mycelia cytoplasm, which was similar to the phenomenon treated with boscalid. Enzyme activity assay showed that the E1 had the significant inhibitory effect against the SDH from R. solani, with the IC50 value of 3.3 µM that was superior to that of boscalid (7.9 µM). The mode of action of the target compound E1 with SDH was further analyzed by molecular docking and molecular dynamics simulation studies. Among them, the number of hydrogen bonds was significantly more in the SDH-E1 complex than that in the SDH-boscalid complex. This research on the dearomatization strategy of the benzene ring for constructing pyrazole-4-carboxamides containing an oxime ether fragment provides a unique thought to design new antifungal drugs targeting SDH.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos , Fungicidas Industriais , Oximas , Pirazóis , Succinato Desidrogenase , Succinato Desidrogenase/antagonistas & inibidores , Succinato Desidrogenase/química , Succinato Desidrogenase/metabolismo , Pirazóis/química , Pirazóis/farmacologia , Pirazóis/síntese química , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Fungicidas Industriais/síntese química , Relação Estrutura-Atividade , Oximas/química , Oximas/farmacologia , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Proteínas Fúngicas/química , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/metabolismo , Simulação de Acoplamento Molecular , Rhizoctonia/efeitos dos fármacos , Éteres/química , Éteres/farmacologia , Estrutura Molecular
2.
Bioorg Med Chem Lett ; 103: 129700, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38479483

RESUMO

This study investigates cutting-edge synthetic chemistry approaches for designing and producing innovative antimalarial drugs with improved efficacy and fewer adverse effects. Novel amino (-NH2) and hydroxy (-OH) functionalized 11-azaartemisinins 9, 12, and 14 were synthesized along with their derivatives 11a, 13a-e, and 15a-b through ART and were tested for their AMA (antimalarial activity) against Plasmodium yoelii via intramuscular (i.m.) and oral routes in Swiss mice. Ether derivative 13c was the most active compound by i.m. route, it has shown 100 % protection at the dose of 12 mg/kg × 4 days and showed 100 % clearance of parasitaemia on day 4 at dose of 6 mg/kg. Amine 11a, ether derivatives 13d, 13e and ether 15a also showed promising antimalarial activity. ß-Arteether gave 100 % protection at the dose of 48 mg/kg × 4 days and 20 % protection at 24 mg/kg × 4 days dose by oral route, while it showed 100 % protection at 6 mg/kg × 4 days and no protection at 3 mg/kg × 4 days by i.m. route.


Assuntos
Antimaláricos , Plasmodium yoelii , Animais , Camundongos , Antimaláricos/química , Éter/farmacologia , Relação Estrutura-Atividade , Resistência a Múltiplos Medicamentos , Etil-Éteres/farmacologia , Éteres/farmacologia
3.
J Agric Food Chem ; 72(11): 5983-5992, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38456397

RESUMO

Structural modification of natural products is an effective approach for improving antifungal activity and has, therefore, been used extensively in the development of new agrochemical products. In this work, a series of novel coumarin derivatives containing oxime ether structures were designed, synthesized, and evaluated for antifungal activity. Some of the designed compounds exhibited promising antifungal activities against tested fungi, and compounds 4a, 4c, 5a, and 6b had EC50 values equivalent to those of commercial fungicides. Compound 6b was the most promising candidate fungicide against Rhizoctonia solani (EC50 = 0.46 µg/mL). In vivo antifungal bioassays suggested that compounds 5a and 6b could serve as novel agricultural antifungals. Furthermore, microscopy demonstrated that compound 6b induced the sprawling growth of hyphae, distorted the outline of cell walls, and reduced mitochondrial numbers. Additionally, the effects of the substituent steric, electrostatic, hydrophobic, and hydrogen-bond fields were elucidated using an accurate and reliable three-dimensional quantitative structure-activity relationship (3D-QSAR) model. The results presented here will guide the discovery of potential novel fungicides for plant disease control in agriculture.


Assuntos
Antifúngicos , Fungicidas Industriais , Antifúngicos/química , Fungicidas Industriais/química , Éter , Cumarínicos/farmacologia , Oximas/farmacologia , Etil-Éteres , Éteres/farmacologia , Relação Estrutura-Atividade
4.
J Nat Prod ; 87(4): 849-854, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38416027

RESUMO

Microthecaline A (1), the known antiplasmodial quinoline serrulatane alkaloid from the roots of Eremophila microtheca F. Muell. ex Benth. (Scrophulariaceae), was targeted for isolation and subsequent use in the generation of a semisynthetic ether library. A large-scale extraction and isolation yielded the previously undescribed quinoline serrulatane microthecaline B (2), along with crystalline 1 that enabled the first X-ray crystallographic analysis to be undertaken on this rare alkaloid structure class. The X-ray diffraction analysis of 1 supported the absolute configuration assignment of microthecaline A, which was originally assigned by ECD data analysis. Microthecaline A (1) was converted into 10 new semisynthetic ether derivatives (3-12) using a diverse series of commercially available alkyl halides. Chemical structures of the new serrulatane alkaloid and semisynthetic ether analogues were assigned by spectroscopic and spectrometric analyses. Antiplasmodial evaluations of 1-12 showed that the semisynthetic derivative 5 elicited the most potent activity with an IC50 value of 7.2 µM against Plasmodium falciparum 3D7 (drug-sensitive) strain.


Assuntos
Alcaloides , Antimaláricos , Plasmodium falciparum , Antimaláricos/farmacologia , Antimaláricos/química , Antimaláricos/isolamento & purificação , Alcaloides/farmacologia , Alcaloides/química , Alcaloides/isolamento & purificação , Plasmodium falciparum/efeitos dos fármacos , Estrutura Molecular , Eremophila (Planta)/química , Cristalografia por Raios X , Quinolinas/farmacologia , Quinolinas/química , Raízes de Plantas/química , Éteres/farmacologia , Éteres/química
5.
Mar Drugs ; 22(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38248658

RESUMO

The known oxygenated polyhalogenated diphenyl ether, 2-(2',4'-dibromophenoxy)-3,5-dibromophenol (1), with previously reported activity in multiple cytotoxicity assays was isolated from the sponge Lamellodysidea sp. and proved to be an amenable scaffold for semisynthetic library generation. The phenol group of 1 was targeted to generate 12 ether analogues in low-to-excellent yields, and the new library was fully characterized by NMR, UV, and MS analyses. The chemical structures for 2, 8, and 9 were additionally determined via single-crystal X-ray diffraction analysis. All natural and semisynthetic compounds were evaluated for their ability to inhibit the growth of DU145, LNCaP, MCF-7, and MDA-MB-231 cancer cell lines. Compound 3 was shown to have near-equivalent activity compared to scaffold 1 in two in vitro assays, and the activity of the compounds with an additional benzyl ring appeared to be reliant on the presence and position of additional halogens.


Assuntos
Antineoplásicos , Éter , Éteres/farmacologia , Etil-Éteres , Éteres Fenílicos/farmacologia , Antineoplásicos/farmacologia
6.
Nat Prod Res ; 38(4): 589-593, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36855235

RESUMO

Synergistic bioassay-guided isolation of the extracts of Artemisia rupestris L, which belongs to the family Asteraceae, afforded two acetylenic spiroketal enol ethers, namely rupesdiynes A (1) and B (2). Their structures were determined based on spectroscopic analysis and experimental and calculated ECD investigations. The two compounds exhibited synergistic activity and were able to reduce the minimum inhibitory concentration (MIC) of oxacillin four-fold, with a fractional inhibitory concentration index (FICI) of 0.5 in combination with oxacillin against the oxacillin-resistant EMRSA-16. Biofilm formation inhibitory and Ethidium bromide (EtBr) efflux assay were further employed to verify the possible mechanism of the synergistic antibacterial effect. Additionally, molecular docking studies were conducted to investigate the binding affinities of the two compounds with penicillin-binding protein 2a (PBP2a) of EMRSA-16. Taken together, rupesdiynes A (1) and rupesdiyne B (2) showed moderate synergistic activity against EMRSA-16 with oxacillin via inhibiting biofilm formation and efflux pump activity, respectively.


Assuntos
Artemisia , Furanos , Staphylococcus aureus Resistente à Meticilina , Compostos de Espiro , Simulação de Acoplamento Molecular , Acetileno/metabolismo , Acetileno/farmacologia , Alcinos/farmacologia , Éteres/metabolismo , Éteres/farmacologia , Extratos Vegetais/química , Antibacterianos , Oxacilina/farmacologia , Oxacilina/metabolismo , Testes de Sensibilidade Microbiana , Sinergismo Farmacológico
7.
Int J Mol Sci ; 24(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38069175

RESUMO

The present review explores the critical role of oxime and oxime ether moieties in enhancing the physicochemical and anticancer properties of structurally diverse molecular frameworks. Specific examples are carefully selected to illustrate the distinct contributions of these functional groups to general strategies for molecular design, modulation of biological activities, computational modeling, and structure-activity relationship studies. An extensive literature search was conducted across three databases, including PubMed, Google Scholar, and Scifinder, enabling us to create one of the most comprehensive overviews of how oximes and oxime ethers impact antitumor activities within a wide range of structural frameworks. This search focused on various combinations of keywords or their synonyms, related to the anticancer activity of oximes and oxime ethers, structure-activity relationships, mechanism of action, as well as molecular dynamics and docking studies. Each article was evaluated based on its scientific merit and the depth of the study, resulting in 268 cited references and more than 336 illustrative chemical structures carefully selected to support this analysis. As many previous reviews focus on one subclass of this extensive family of compounds, this report represents one of the rare and fully comprehensive assessments of the anticancer potential of this group of molecules across diverse molecular scaffolds.


Assuntos
Éter , Oximas , Oximas/farmacologia , Oximas/química , Éteres/farmacologia , Éteres/química , Relação Estrutura-Atividade , Etil-Éteres
8.
Molecules ; 28(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38067592

RESUMO

Selective oxidative C-O coupling of hydrazones with diacetyliminoxyl is demonstrated, in which diacetyliminoxyl plays a dual role. It is an oxidant (hydrogen atom acceptor) and an O-partner for the oxidative coupling. The reaction is completed within 15-30 min at room temperature, is compatible with a broad scope of hydrazones, provides high yields in most cases, and requires no additives, which makes it robust and practical. The proposed reaction leads to the novel structural family of azo compounds, azo oxime ethers, which were discovered to be highly potent fungicides against a broad spectrum of phytopathogenic fungi (Venturia inaequalis, Rhizoctonia solani, Fusarium oxysporum, Fusarium moniliforme, Bipolaris sorokiniana, Sclerotinia sclerotiorum).


Assuntos
Antifúngicos , Fungicidas Industriais , Antifúngicos/farmacologia , Antifúngicos/química , Hidrazonas/farmacologia , Hidrazonas/química , Éteres/farmacologia , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Relação Estrutura-Atividade
9.
Arch Anim Nutr ; 77(6): 487-496, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38083842

RESUMO

The present study aimed to investigate the effect of emulsifier lysophospholipids (LP), enzymatically modified from soy phospholipids, on the growth performance, nutrient digestibility, lipid metabolism and meat quality of fattening rabbits. The LP was added in control (CON), LP1, LP2 and LP3 at 0, 200, 400 and 600 mg/kg, respectively. A total of 240 rabbits at approximately 52 d of age were divided into 4 groups with 6 replicates of 10 rabbits each. The feeding trial lasted for 42 d. Results showed that compared to CON, LP1, LP2 and LP3 increased (p < 0.05) body weight gain, feed efficiency, the apparent faecal digestibility of gross energy, crude protein and ether extract, the percentages of dissectible fat and ether extract in the longissimus and legs, the serum contents of apolipoprotein B, free fatty acid and total phospholipids in the longissimus, but decreased (p < 0.05) serum total triglyceride and total cholesterol. Meanwhile, LP1, LP2 and LP3 had higher (p < 0.05) carcass weight, longissimus weight and percentages of foreleg and hindleg than the CON; and the three LP diets also increased (p < 0.05) the tenderness, lightness and redness of longissimus. It is concluded that soy LP as an emulsifier can improve the growth, digestibility and meat quality of fattening rabbits.


Assuntos
Dieta , Metabolismo dos Lipídeos , Coelhos , Animais , Dieta/veterinária , Digestão , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Nutrientes , Lisofosfolipídeos/farmacologia , Carne/análise , Éteres/farmacologia
10.
Int J Mol Sci ; 24(22)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38003724

RESUMO

Alzheimer's disease (AD) presents a significant challenge to global healthcare systems, with current treatments offering only modest relief and often bringing unwanted side effects, necessitating the exploration of more effective and safer drugs. In this study, we employed the Caenorhabditis elegans (C. elegans) model, specifically the AD-like CL4176 strain expressing the human Aß(1-42) protein, to investigate the potential of Reineckia carnea extract and its fractions. Our results showed that the Reineckia carnea ether fraction (REF) notably diminished the paralysis rates of CL4176 worms. Additionally, REF also attenuated the neurotoxicity effects prompted by Tau proteins in the BR5270 worms. Moreover, REF was observed to counteract the accumulation of Aß and pTau proteins and their induced oxidative stress in C. elegans AD-like models. Mechanistic studies revealed that REF's benefits were associated with the induction of autophagy in worms; however, these protective effects were nullified when autophagy-related genes were suppressed using RNAi bacteria. Together, these findings highlight Reineckia carnea ether fraction as a promising candidate for AD treatment, warranting further investigation into its autophagy-inducing components and their molecular mechanisms.


Assuntos
Doença de Alzheimer , Proteínas de Caenorhabditis elegans , Animais , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Caenorhabditis elegans/metabolismo , Animais Geneticamente Modificados , Peptídeos beta-Amiloides/metabolismo , Éter/farmacologia , Proteínas de Caenorhabditis elegans/metabolismo , Etil-Éteres/metabolismo , Etil-Éteres/farmacologia , Etil-Éteres/uso terapêutico , Éteres/farmacologia , Modelos Animais de Doenças
11.
Trop Anim Health Prod ; 55(6): 385, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37906370

RESUMO

This study aimed to estimate the magnitude of the effects of dietary inclusion of peanut skins (PS) byproduct (Arachis hypogea L.) on intake, total-tract digestibility, and rumen fermentation of cattle via meta-analysis. Data were collected following the PRISMA methodology. Nine manuscripts and a graduate thesis met the inclusion criteria from 1983 to 2010. The effect size was estimated by calculating the weighted raw mean differences (RMD) between PS vs. control diets. The RMD was compared with a robust variance estimation method followed by a meta-regression and a dose-response analysis fitting the diet characteristics like crude protein content (CP), NDF content, ether extract content (EE), tannin content, and PS level in diet (0 to 40%) as covariates. Dietary PS decreased (P < 0.01) total-tract CP digestibility (52.0 vs. 64.3%), final body weight (371.5 vs. 397.9 kg), and average daily gain (1.14 vs. 1.44 kg/day) among treatment comparisons. Likewise, PS decreased total VFA (92.6 vs. 107.6 mmol/L) and NH3-N (8.22 vs. 12.1 mg/dL), but no effects were observed on rumen pH (6.47 vs. 6.14) and VFA molar proportions. Despite the between-cluster variance, dietary PS increased the ether extract digestibility (77.5 vs. 70.2%) among treatment comparisons. The subset and dose-response analysis revealed that PS should not exceed 8% (DM basis) in the diet to prevent negative effects on CP digestibility and animal performance. In conclusion, the results of this meta-analysis do not support the dietary inclusion of PS in cattle diets beyond 8%.


Assuntos
Arachis , Fabaceae , Bovinos , Animais , Rúmen/metabolismo , Fermentação , Ração Animal/análise , Dieta/veterinária , Suplementos Nutricionais/análise , Extratos Vegetais/farmacologia , Éteres/metabolismo , Éteres/farmacologia , Digestão
12.
ACS Infect Dis ; 9(10): 1981-1992, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37708378

RESUMO

New drugs to treat tuberculosis which target intractable bacterial populations are required to develop shorter and more effective treatment regimens. The benzene amide ether scaffold has activity against intracellular Mycobacterium tuberculosis, but low activity against extracellular, actively replicating M. tuberculosis. We determined that these molecules have bactericidal activity against non-replicating M. tuberculosis but not actively replicating bacteria. Exposure to compounds depleted ATP levels in non-replicating bacteria and increased the oxygen consumption rate; a subset of molecules led to the accumulation of intrabacterial reactive oxygen species. A comprehensive screen of M. tuberculosis strains identified a number of under-expressing strains as more sensitive to compounds under replicating conditions including QcrA and QcrB hypomorphs. We determined the global gene expression profile after compound treatment for both replicating and nutrient-starved M. tuberculosis. We saw compound-dependent changes in the expression of genes involved in energy metabolism under both conditions. Taken together, our data suggest that the scaffold targets respiration in M. tuberculosis.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Antituberculosos/metabolismo , Benzeno/farmacologia , Éter/metabolismo , Éter/farmacologia , Éter/uso terapêutico , Amidas/farmacologia , Testes de Sensibilidade Microbiana , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Etil-Éteres/metabolismo , Etil-Éteres/farmacologia , Etil-Éteres/uso terapêutico , Éteres/metabolismo , Éteres/farmacologia , Éteres/uso terapêutico
13.
Eur J Med Chem ; 259: 115646, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37482022

RESUMO

Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) affects 10 million people each year and the emergence of resistant TB augurs for a growing incidence. In the last 60 years, only three new drugs were approved for TB treatment, for which resistances are already emerging. Therefore, there is a crucial need for new chemotherapeutic agents capable of eradicating TB. Enzymes belonging to the type II fatty acid synthase system (FAS-II) are involved in the biosynthesis of mycolic acids, cell envelope components essential for mycobacterial survival. Among them, InhA is the primary target of isoniazid (INH), one of the most effective compounds to treat TB. INH acts as a prodrug requiring activation by the catalase-peroxidase KatG, whose mutations are the major cause for INH resistance. Herein, a new series of direct InhA inhibitors were designed based on a molecular hybridization approach. They exhibit potent inhibitory activities of InhA and, for some of them, good antitubercular activities. Moreover, they display a low toxicity on human cells. A study of the mechanism of action of the most effective molecules shows that they inhibit the biosynthesis of mycolic acids. The X-ray structures of two InhA/NAD+/inhibitor complexes have been obtained showing a binding mode of a part of the molecule in the minor portal, rarely seen in the InhA structures reported so far.


Assuntos
Antituberculosos , Mycobacterium tuberculosis , Humanos , Antituberculosos/farmacologia , Antituberculosos/química , Proteínas de Bactérias/metabolismo , Éter , Éteres/farmacologia , Etil-Éteres/farmacologia , Isoniazida/farmacologia , Mutação , Ácidos Micólicos
14.
J Agric Food Chem ; 71(47): 18205-18211, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37421343

RESUMO

Pyridalyl, as a novel insecticide with an unknown mode of action, has shown excellent control efficacy against lepidopterous larvae and thrips. Previous modifications of this compound have mostly focused on the pyridine moiety, with limited information available about modifications to other parts of pyridalyl. In this paper, we report the synthesis and insecticidal activity of a series of azidopyridryl-containing dichlorolpropene ether derivatives, based on modifications to the middle alkyl chain of pyridalyl. Screening results for insecticidal activity indicate that our synthesized compounds show moderate to high activities at the tested concentrations against P. xylostella. Particularly, compound III-10 exhibits a LC50 value of 0.831 mg L-1, compared to the LC50 value of pyridalyl at 2.021 mg L-1. Furthermore, compound III-10 also displays a relatively broad insecticidal spectrum against Lepidoptera pests M. separata, C. suppressalis, O. nubilalis, and C. medinalis. Finally, in field trials, III-10 demonstrates better control efficiency against Chilo suppressalis compared to pyridalyl. Overall, our findings suggest that the modification of the middle alkyl chain of pyridalyl may be a promising approach for developing insecticides with improved efficacy.


Assuntos
Inseticidas , Mariposas , Animais , Relação Estrutura-Atividade , Inseticidas/farmacologia , Éter , Éteres/farmacologia , Larva , Estrutura Molecular
15.
J Agric Food Chem ; 71(47): 18171-18187, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37350671

RESUMO

We report on the development of a novel class of diaryl ether herbicides. After the discovery of a phenoxybenzoic acid with modest herbicidal activity, optimization led to several molecules with improved control of broadleaf and grass weeds. To facilitate this process, we first employed a three-step combinatorial approach, then pivoted to a one-step Ullmann-type coupling that provided faster access to new analogs. After determining that the primary target site of our benchmark diaryl ethers was acetolactate synthase (ALS), we further leveraged this copper-catalyzed methodology to conduct a scaffold hopping campaign in the hope of uncovering an additional mode of action with fewer documented cases of resistance. Our comprehensive and systematic investigation revealed that while the herbicidal activity of this area seems to be exclusively linked to ALS inhibition, our molecules represent a structurally distinct class of Group 2 herbicides. The structure-activity relationships that led us to this conclusion are described herein.


Assuntos
Acetolactato Sintase , Herbicidas , Herbicidas/farmacologia , Éter , Relação Estrutura-Atividade , Éteres/farmacologia , Plantas Daninhas/metabolismo , Etil-Éteres , Acetolactato Sintase/metabolismo , Resistência a Herbicidas
16.
ACS Chem Neurosci ; 14(11): 2123-2133, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37167960

RESUMO

Naegleria fowleri is a pathogenic amoeba that causes a fulminant and rapidly progressive disease affecting the central nervous system called primary amoebic meningoencephalitis (PAM). Moreover, the disease is fatal in more than 97% of the reported cases, mostly affecting children and young people after practicing aquatic activities in nontreated fresh and warm water bodies contaminated with these amoebae. Currently, the treatment of primary amoebic meningoencephalitis is based on a combination of different antibiotics and antifungals, which are not entirely effective and lead to numerous side effects. In the recent years, research against PAM is focused on the search of novel, less toxic, and fully effective antiamoebic agents. Previous studies have reported the activity of cyano-substituted molecules in different protozoa. Therefore, the activity of 46 novel synthetic cyanomethyl vinyl ethers (QOET-51 to QOET-96) against two type strains of N. fowleri (ATCC 30808 and ATCC 30215) was determined. The data showed that QOET-51, QOET-59, QOET-64, QOET-67, QOET-72, QOET-77, and QOET-79 were the most active molecules. In fact, the selectivity index (CC50/IC50) was sixfold higher when compared to the activities of the drugs of reference. In addition, the mechanism of action of these compounds was studied, with the aim to demonstrate the induction of a programmed cell death process in N. fowleri.


Assuntos
Amoeba , Infecções Protozoárias do Sistema Nervoso Central , Naegleria fowleri , Criança , Humanos , Adolescente , Infecções Protozoárias do Sistema Nervoso Central/tratamento farmacológico , Infecções Protozoárias do Sistema Nervoso Central/parasitologia , Éteres/farmacologia
17.
Bioorg Med Chem ; 85: 117276, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37037115

RESUMO

Many non-nucleoside human cytomegalovirus (HCMV) inhibitors have been reported in patent and scientific literature, however, none have reached commercialization despite the urgent need for new HCMV treatments. Herein we report select compounds from different templates that all had low micromolar human ether-à-go-go (hERG) ion channel IC50 values. We also describe a series of pyrroloquinoline derivatives that were designed and synthesized to understand the effect of various substitution on human cytomegalovirus (HCMV) polymerase activity, antiviral activity, and hERG inhibition. These results demonstrated that hERG inhibition can be significantly altered based on the substitution on this template. An HCMV inhibitor with low hERG inhibition and reduced cytotoxicity is also described. The results suggest substitution can be fine tuned for the non-nucleoside polymerase inhibitors to reduce hERG inhibition and maintain HCMV antiviral potency.


Assuntos
Antivirais , Citomegalovirus , Humanos , Antivirais/farmacologia , Éter/farmacologia , Canais de Potássio Éter-A-Go-Go , Cardiotoxicidade , Etil-Éteres/farmacologia , Nucleotidiltransferases , Éteres/farmacologia , Canal de Potássio ERG1 , Bloqueadores dos Canais de Potássio/farmacologia
18.
Chem Biol Interact ; 378: 110467, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37004952

RESUMO

Pyruvate dehydrogenase kinase 1 (PDK1) is an important metabolic enzyme which is often overexpressed in many types of cancers, including non-small-cell lung cancers (NSCLC). Targeting PDK1 appears to be an attractive anticancer strategy. Based on a previously reported moderate potent anticancer PDK1 inhibitor, 64, we developed three dichloroacetophenone biphenylsulfone ethers, 30, 31 and 32, which showed strong PDK1 inhibitions of 74%, 83% and 72% at 10 µM, respectively. Then we investigated the anticancer effects of 31 in two NSCLC cell lines, namely, NCI-H1299 and NCI-H1975. It was found that 31 exhibited sub-micromolar cancer cell IC50s, suppressed colony formation, induced mitochondrial membrane potential depolarization, triggered apoptosis, altered cellular glucose metabolism, with concomitant reductions in extracellular lactate levels and enhanced the generation of reactive oxygen species in NSCLC cells. Moreover, 31 significantly suppressed the tumor growth in an NCI-H1975 mouse xenograft model, outperforming the anticancer effects of 64. Taken together our results suggested that inhibition of PDK1 via dichloroacetophenone biphenylsulfone ethers may provide a novel direction leading to an alternative treatment option in NSCLC therapy.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Piruvato Desidrogenase Quinase de Transferência de Acetil , Proteínas Serina-Treonina Quinases/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Éteres/farmacologia , Éteres/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Linhagem Celular Tumoral , Apoptose , Proliferação de Células
19.
Molecules ; 28(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36985490

RESUMO

Paenibacillus larvae is the causative agent of American foulbrood (AFB), the most serious bacterial disease affecting developing honeybee larvae and pupas. In this study, a library of 24 (thio)glycosides, glycosyl sulfones, 6-O-esters, and ethers derived from d-mannose, d-glucose, and d-galactose having C10 or C12 alkyl chain were evaluated for their antibacterial efficacy against two P. larvae strains. The efficacy of the tested compounds determined as minimal inhibitory concentrations (MICs) varied greatly. Generally, dodecyl derivatives were found to be more potent than their decylated analogs. Thioglycosides were more efficient than glycosides and sulfones. The activity of the 6-O-ether derivatives was higher than that of their ester counterparts. Seven derivatives with dodecyl chain linked (thio)glycosidically or etherically at C-6 showed high efficacy against both P. larvae strains (MICs ranged from 12.5 µM to 50 µM). Their efficacies were similar or much higher than those of selected reference compounds known to be active against P. larvae-lauric acid, monolaurin, and honeybee larval food components, 10-hydroxy-2-decenoic acid, and sebacic acid (MICs ranged from 25 µM to 6400 µM). The high efficacies of these seven derivatives suggest that they could increase the anti-P. larvae activity of larval food and improve the resistance of larvae to AFB disease through their application to honeybee colonies.


Assuntos
Paenibacillus larvae , Paenibacillus , Abelhas , Animais , Estados Unidos , Ésteres/farmacologia , Sulfetos/farmacologia , Antibacterianos/farmacologia , Larva , Carboidratos/farmacologia , Sulfonas/farmacologia , Éteres/farmacologia , Glicosídeos/farmacologia
20.
Pest Manag Sci ; 79(8): 2686-2695, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36883547

RESUMO

BACKGROUND: Vegetable viruses are difficult to prevent and control in the field, causing massive economic losses of agricultural production in the world. A new natural product-based antiviral agent would be an effective means to control viral diseases. As a class of natural products, 1-indanones present various pharmacologically actives, while their application in agriculture remains to be found. RESULTS: A series of novel 1-indanone derivatives were designed and synthesized and the antiviral activities were systematically evaluated. Bioassays showed that most compounds exhibited good protective activities against cucumber mosaic virus (CMV), tomato spotted wilt virus (TSWV), and pepper mild mottle virus (PMMoV). Notably, compound 27 exhibited the best protective effects against PMMoV with EC50 values of 140.5 mg L-1 , superior to ninanmycin (245.6 mg L-1 ). Compound 27 induced immunity responses through multilayered regulation on mitogen-activated protein kinase, plant hormone signal transduction and phenylpropanoid biosynthesis pathways. CONCLUSION: These 1-indanone derivatives especially compound 27 can be considered as potential immune activators to resist plant virus. © 2023 Society of Chemical Industry.


Assuntos
Éter , Vírus de Plantas , Éter/farmacologia , Indanos/farmacologia , Éteres/farmacologia , Etil-Éteres/farmacologia , Antivirais/farmacologia , Antivirais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA