Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.481
Filtrar
1.
Chemosphere ; 357: 142127, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663678

RESUMO

Water treatment technologies need to go beyond the current control of organic contaminants and ensure access to potable water. However, existing methods are still costly and often inadequate. In this context, novel catalysts that improve the mineralization degree of a wider range of pharmaceuticals through more benign and less consuming methodologies are highly sought after. ZnO, especially when doped, is a well-known semiconductor that also excels in the photocatalytic removal of persistent organic pollutants. In this study, we investigated the effect of doping ZnO nanoparticles with either copper, gallium or indium on the structure, morphology, photophysical properties and photocatalytic mineralization of pharmaceuticals. Their architecture was further improved through the fabrication of composites, pairing the best performing doped ZnO with either BaFe12O19 or nickel nanoparticles. Their suitability was tested on a complex 60-ppm multi-pollutant solution (tetracycline, levofloxacin and lansoprazole). The activation strategy combined photocatalysis with peroxymonosulfate (PMS) as an environmentally friendly source of highly oxidative sulfate radicals. The alliance of doped ZnO and BaFe12O19 was particularly successful, resulting in magnetic microcroquette-shaped composites with excellent inter-component synergy. In fact, indium outperformed the other proposed metal dopants, exceeding 97% mineralization after 1 h and achieving complete elimination after 3 h. All composites excelled in terms of reusability, with no catalytic loss after 10 consecutive cycles and minimal leakage of metal ions, highlighting their applicability in water remediation.


Assuntos
Poluentes Químicos da Água , Óxido de Zinco , Óxido de Zinco/química , Poluentes Químicos da Água/química , Catálise , Purificação da Água/métodos , Luz , Cobre/química , Preparações Farmacêuticas/química , Índio/química , Peróxidos
2.
Nature ; 629(8011): 335-340, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38658759

RESUMO

Flexible and large-area electronics rely on thin-film transistors (TFTs) to make displays1-3, large-area image sensors4-6, microprocessors7-11, wearable healthcare patches12-15, digital microfluidics16,17 and more. Although silicon-based complementary metal-oxide-semiconductor (CMOS) chips are manufactured using several dies on a single wafer and the multi-project wafer concept enables the aggregation of various CMOS chip designs within the same die, TFT fabrication is currently lacking a fully verified, universal design approach. This increases the cost and complexity of manufacturing TFT-based flexible electronics, slowing down their integration into more mature applications and limiting the design complexity achievable by foundries. Here we show a stable and high-yield TFT platform for the fabless manufacturing of two mainstream TFT technologies, wafer-based amorphous indium-gallium-zinc oxide and panel-based low-temperature polycrystalline silicon, two key TFT technologies applicable to flexible substrates. We have designed the iconic 6502 microprocessor in both technologies as a use case to demonstrate and expand the multi-project wafer approach. Enabling the foundry model for TFTs, as an analogy of silicon CMOS technologies, can accelerate the growth and development of applications and technologies based on these devices.


Assuntos
Silício , Transistores Eletrônicos , Silício/química , Eletrônica/instrumentação , Índio/química , Gálio/química , Óxido de Zinco/química , Desenho de Equipamento , Semicondutores
3.
Chem Commun (Camb) ; 60(37): 4958-4961, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38629343

RESUMO

Potential-selective electrochemiluminescence (ECL) with tunable maximum-emission-potential ranging from 0.95 to 0.30 V is achieved using AgInS2/ZnS nanocrystals, which is promising in the design of multiplexed bioassay on commercialized ECL setups. The model system AgInS2/ZnS/N2H4 exhibits efficient ECL around 0.30 V and can be exploited for sensitive immunoassays with less electrochemical interference and crosstalk.


Assuntos
Técnicas Eletroquímicas , Medições Luminescentes , Nanopartículas , Sulfetos , Compostos de Zinco , Sulfetos/química , Compostos de Zinco/química , Imunoensaio/métodos , Nanopartículas/química , Índio/química , Prata/química , Compostos de Prata/química , Humanos , Nanopartículas Metálicas/química
4.
Talanta ; 274: 125992, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38552479

RESUMO

Organic photoelectrochemical transistor (OPECT) biosensor is now appearing in perspective of public, which characterized by amplified the grating electrode potential by ion transport. In this study, the DNA network formed by the hybridization chain reaction (HCR) detects the target adenosine triphosphate (ATP) by adjusting the surface potential of the new heterojunction of ZnIn2S4/MXene. The formation of DNA network amplifies the detection signal of ATP. Significantly, OPECT biosensor could further amplify the signal, which calculated the gain achieved 103, which is consistent with the gain signal of the previously reported OPECT biosensor. Furthermore, the OPECT biosensor achieved a highly sensitivity detection of the target ATP, which the linear detection range is 0.03 pM-30 nM, and the detection limit is 0.03 pM, and illustrated a high selectivity to ATP. The proposed OPECT biosensor achieved signal amplification by adjusting the surface potential of ZnIn2S4/MXene through cascade DNA network, which provides a new direction for the detection of biomolecules.


Assuntos
Trifosfato de Adenosina , Técnicas Biossensoriais , DNA , Técnicas Eletroquímicas , Transistores Eletrônicos , Zinco , Trifosfato de Adenosina/análise , Trifosfato de Adenosina/química , Técnicas Biossensoriais/métodos , DNA/química , DNA/análise , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Zinco/química , Índio/química , Processos Fotoquímicos , Limite de Detecção , Hibridização de Ácido Nucleico
5.
Chemosphere ; 352: 141408, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336041

RESUMO

Waste liquid crystal displays (LCDs) are one of the most substantial and rapidly growing e-waste streams that contain a notable amount of critical, precious, and toxic elements. This study presented a novel thermal-biological hybrid method for resource recovery from waste LCDs. Through the design of a multistage thermal treatment process with the addition of optimized 20 wt% B2O3 to waste, the LCD's glass structure was separated into two interconnected phases, resulting in the transfer of metals from the LCD's glass phase to the B2O3 phase that can solubilize in the acid solution. Following the thermal treatment step, the biometabolites of Aspergillus niger were used for bioleaching of In, Sr, Al, and As from the obtained thermally treated product. The optimal bioleaching parameters were a pulp density of 10 g/L, temperature of 70 °C, and leaching time of 2 days, which led to the highest extraction of 82.6% Al, 70.8% As, 64.5% In, and 36.2% Sr from thermally treated LCD waste, representing a multifold increase in Al, As, and Sr extraction levels compared to untreated waste. This study demonstrated that the proposed hybrid method could successfully overcome waste complexities and ensure effective element extraction from discarded LCDs.


Assuntos
Resíduo Eletrônico , Cristais Líquidos , Metaloides , Cristais Líquidos/química , Índio/química , Resíduo Eletrônico/análise , Reciclagem/métodos
6.
Molecules ; 29(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276575

RESUMO

The aim of this work is to explore a new library of coordination compounds for medicinal applications. Gallium is known for its various applications in this field. Presently, indium is not particularly important in medicine, but it shares a lot of chemical traits with its above-mentioned lighter companion, gallium, and is also used in radio imaging. These metals are combined with thiosemicarbazones, ligating compounds increasingly known for their biological and pharmaceutical applications. In particular, the few ligands chosen to interact with these hard metal ions share the ideal affinity for a high charge density. Therefore, in this work we describe the synthesis and the characterization of the resulting coordination compounds. The yields of the reactions vary from a minimum of 21% to a maximum of 82%, using a fast and easy procedure. Nuclear Magnetic Resonance (NMR) and Infra Red (IR) spectroscopy, mass spectrometry, elemental analysis, and X-ray Diffraction (XRD) confirm the formation of stable compounds in all cases and a ligand-to-metal 2:1 stoichiometry with both cations. In addition, we further investigated their chemical and biological characteristics, via UV-visible titrations, stability tests, and cytotoxicity and antibiotic assays. The results confirm a strong stability in all explored conditions, which suggests that these compounds are more suitable for radio imaging applications rather than for antitumoral or antimicrobic ones.


Assuntos
Complexos de Coordenação , Gálio , Tiossemicarbazonas , Gálio/farmacologia , Gálio/química , Índio/química , Tiossemicarbazonas/química , Ligantes , Espectroscopia de Ressonância Magnética , Complexos de Coordenação/química
7.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38003515

RESUMO

The crystal structure determination of metal complexes of curcuminoids is a relevant topic to assess their unequivocal molecular structure. We report herein the first two X-ray crystal structures of homoleptic metal complexes of a curcuminoid, namely Dimethoxycurcumin (DiMeOC), with gallium and indium. Such successful achievement can be attributed to the suppression of interactions from the phenolic groups, which favor an appropriate molecular setup, rendering Dimethoxycurcumin gallium ((DiMeOC)2-Ga) and Dimethoxycurcumin indium ((DiMeOC)3-In) crystals. Surprisingly, the conformation of ligands in the crystal structures shows differences in each metal complex. Thus, the ligands in the (DiMeOC)2-Ga complex show two different conformers in the two molecules of the asymmetric unit. However, the ligands in the (DiMeOC)3-In complex exhibit three different conformations within the same molecule of the asymmetric unit, constituting the first such case described for an ML3 complex. The cytotoxic activity of the (DiMeOC)2-Ga complex is 4-fold higher than cisplatin against the K562 cell line and has comparable activity towards U251 and PC-3 cell lines. Interestingly, this complex exhibit three times lesser toxicity than cisplatin and even slightly lesser cytotoxicity than curcumin itself.


Assuntos
Antineoplásicos , Complexos de Coordenação , Gálio , Gálio/farmacologia , Gálio/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Cisplatino , Índio/química , Diarileptanoides , Linhagem Celular Tumoral , Ligantes , Antineoplásicos/farmacologia
8.
J Environ Manage ; 347: 119043, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37776794

RESUMO

Advanced high-tech applications for communication, renewable energy, and display, heavily rely on technology critical elements (TCEs) such as indium, gallium, and germanium. Ensuring their sustainable supply is a pressing concern due to their high economic value and supply risks in the European Union. Recovering these elements from end-of-life (EoL) products (electronic waste: e-waste) offers a potential solution to address TCEs shortages. The review highlights recent advances in pre-treatment and hydrometallurgical and biohydrometallurgical methods for indium, gallium, and germanium recovery from EoL products, including spent liquid crystal displays (LCDs), light emitting diodes (LEDs), photovoltaics (PVs), and optical fibers (OFs). Leaching methods, including strong mineral and organic acids, and bioleaching, achieve over 95% indium recovery from spent LCDs. Recovery methods emphasize solvent extraction, chemical precipitation, and cementation. However, challenges persist in separating indium from other non-target elements like Al, Fe, Zn, and Sn. Promising purification involves solid-phase extraction, electrochemical separation, and supercritical fluid extraction. Gallium recovery from spent GaN and GaAs LEDs achieves 99% yield via leaching with HCl after annealing and HNO3, respectively. Sustainable gallium purification techniques include solvent extraction, ionic liquid extraction, and nanofiltration. Indium and gallium recovery from spent CIGS PVs achieves over 90% extraction yields via H2SO4 with citric acid-H2O2 and alkali. Although bioleaching is slower than chemical leaching (several days versus several hours), indirect bioleaching shows potential, achieving 70% gallium extraction yield. Solvent extraction and electrolysis exhibit promise for pure gallium recovery. HF or alkali roasting leaches germanium with a high yield of 98% from spent OFs. Solvent extraction achieves over 90% germanium recovery with minimal silicon co-extraction. Solid-phase extraction offers selective germanium recovery. Advancements in optimizing and implementing these e-waste recovery protocols will enhance the circularity of these TCEs.


Assuntos
Resíduo Eletrônico , Gálio , Germânio , Resíduo Eletrônico/análise , Índio/química , Peróxido de Hidrogênio , Reciclagem/métodos , Tecnologia , Gálio/química , Solventes , Álcalis
9.
J Med Chem ; 66(12): 8043-8053, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37285471

RESUMO

Prostate-specific membrane antigen (PSMA) is a promising target for metastatic castration-resistant prostate cancer. We previously reported the effectiveness of PSMA-DA1 as a PSMA-targeting radiotheranostic agent containing an albumin binder moiety. To further enhance tumor uptake, we newly designed PSMA-NAT-DA1 (PNT-DA1) by the introduction of a lipophilic linker into PSMA-DA1. The PSMA affinity of [111In]In-PNT-DA1 was increased (Kd = 8.20 nM) compared with that of [111In]In-PSMA-DA1 (Kd = 89.4 nM). [111In]In-PNT-DA1 showed markedly high tumor accumulation (131.6% injected dose/g at 48 h post-injection), and [111In]In-PNT-DA1 enabled the visualization of the tumor clearly at 24 h post-injection with SPECT/CT imaging. The administration of [225Ac]Ac-PNT-DA1 (2.5 kBq) led to shrinkage of the tumor without marked toxicity, and the antitumor effects of [225Ac]Ac-PNT-DA1 were superior to those of [225Ac]Ac-PSMA-DA1 and [225Ac]Ac-PSMA-617, which is the current gold standard for PSMA-targeting 225Ac-endoradiotherapy. These results suggest that the combination of [111In]In-PNT-DA1 and [225Ac]Ac-PNT-DA1 comprises a promising method of PSMA-targeting radiotheranostics.


Assuntos
Glutamato Carboxipeptidase II , Neoplasias da Próstata , Humanos , Masculino , Albuminas , Antígenos de Superfície , Linhagem Celular Tumoral , Índio/química , Neoplasias da Próstata/patologia , Compostos Radiofarmacêuticos/uso terapêutico , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Radioisótopos de Índio/química , Radioisótopos de Índio/uso terapêutico
10.
Chemistry ; 29(38): e202300654, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37084011

RESUMO

Novel luminescent dialdiminate complexes of the Group 13 elements were prepared to evaluate the effects of the central element on their properties. We demonstrate that their absorption wavelength and the response to Lewis bases apparently depend on the central atom. The aluminum complex exhibited the absorption band in the higher-energy region than the gallium and indium congeners. Theoretical calculations suggest that the aluminum complex has a lower-lying highest-occupied molecular orbital than the other complexes. Additionally, the emission intensity of the aluminum complex clearly changed in response to a Lewis base. Quantum chemical calculations suggest that these element-dependent optical properties could originate from the difference in the electric charges on the central elements. Interestingly, the ligand exchange reactions were observed in the indium complexes together with the changes in the optical properties and controlled by the addition of InCl3 and InMe3 . Furthermore, all the complexes showed aggregation-induced emission enhancement (AIEE) and crystallization-induced emission enhancement (CIEE) properties. These results lead to proposing a practical strategy for manipulating the optoelectronic properties coupled with the reactivities of complexes by choosing the central elements in the same group.


Assuntos
Alumínio , Índio , Índio/química , Alumínio/química , Luminescência
11.
Environ Sci Technol ; 57(6): 2611-2624, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36735866

RESUMO

Indium has emerged as a strategic metal for high-tech and renewable industries, being catalogued as a critical material to foster a greener future. Nevertheless, its global sustainability is not well addressed. Here, using dynamic substance flow analysis, we study the indium industry evolution between 2010 and 2020 and estimate its future demand in the medium and long term toward 2050 to identify potential paths and mechanisms to decrease indium losses and to identify the key stages in its life cycle. As electronics and photovoltaic industries will play a crucial role in the indium demand, we assess their indium demand employing three cumulative photovoltaic capacity scenarios (8.5, 14, and 60 TW by 2050) with different dominant photovoltaic sub-technologies. Results show that liquid-crystal displays and photovoltaic panels will drive indium future demand, increasing its current demand by 2.2-4.2, 2.6-7.0, and 6.8-38.3 times for the 8.5, 14, and 60 TW scenarios, respectively, threatening with shortages that could occur as early as the next decade. Therefore, measures to reduce losses in primary production, innovations and improvements in electronics and solar panels, and indium recycling with an effective circular economy strategy could promote and secure the future sustainability of indium.


Assuntos
Índio , Tecnologia , Índio/química , Energia Renovável , Reciclagem , Indústrias
12.
J Colloid Interface Sci ; 638: 193-219, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36738544

RESUMO

Since the advent of photocatalytic technology, scientists have been searching for semiconductor materials with high efficiency in solar energy utilization and conversion to chemical energy. Recently, the development of quantum dot (QD) photocatalysts has attracted much attention because of their unique characteristics: small size, quantum effects, strong surface activity, and wide photoresponse range. Among ternary chalcogenide semiconductors, CuInS2 QDs are increasingly examined in the field of photocatalysis due to their high absorption coefficients, good matching of the absorption range with sunlight spectrum, long lifetimes of photogenerated electron-hole pairs and environmental sustainability. In this review paper, the structural and electronic properties, synthesis methods and various photocatalytic applications of CuInS2 QDs are systematically expounded. The current research status on the photocatalytic properties of materials based on CuInS2 QD is discussed combined with the existing modification approaches for the enhancement of their performances. Future challenges and new development opportunities of CuInS2 QDs in the field of photocatalysis are then prospected.


Assuntos
Pontos Quânticos , Pontos Quânticos/química , Cobre/química , Índio/química , Semicondutores , Sulfetos/química
13.
Chem Commun (Camb) ; 59(3): 260-269, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36510729

RESUMO

Photodetectors hold great application potential in many fields such as image sensing, night vision, infrared communication and health monitoring. To date, commercial photodetectors mainly rely on inorganic semiconductors, e.g., monocrystalline silicon, germanium, and indium selenide/gallium with complex and costly fabrication, which are hardly compatible with wearable electronics. In contrast, organic conjugated materials provide great superiority in flexibility and stretchability. In this Highlight, the unique properties of organic and quantum dot photodetectors were firstly discussed to reveal the great complementarity of the two technologies. Subsequently, the recent advance of organic/quantum dot hybrid photodetectors was outlined to highlight their great potential in developing broadband and high-performance photodetectors. Moreover, the multiple functions (e.g., dual-band detection and upconversion detection) of hybrid photodetectors were highlighted for their promising application in image sensing and infrared detection. Lastly, we present a forword-looking discussion on the challenges and our insights for the further advancement of hybrid photodetectors. This work may spark enormous research attention in organic/quantum dot electronics and advance the commercial applications.


Assuntos
Gálio , Pontos Quânticos , Semicondutores , Eletrônica , Gálio/química , Índio/química
14.
Adv Mater ; 35(11): e2208227, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36321332

RESUMO

Actively triggerable materials, which break down upon introduction of an exogenous stimulus, enable precise control over the lifetime of biomedical technologies, as well as adaptation to unforeseen circumstances, such as changes to an established treatment plan. Yet, most actively triggerable materials are low-strength polymers and hydrogels with limited long-term durability. By contrast, metals possess advantageous functional properties, including high mechanical strength and conductivity, that are desirable across several applications within biomedicine. To realize actively triggerable metals, a mechanism called liquid metal embrittlement is leveraged, in which certain liquid metals penetrate the grain boundaries of certain solid metals and cause them to dramatically weaken or disintegrate. In this work, it is demonstrated that eutectic gallium indium (EGaIn), a biocompatible alloy of gallium, can be formulated to reproducibly trigger the breakdown of aluminum within different physiologically relevant environments. The breakdown behavior of aluminum after triggering can further be readily controlled by manipulating its grain structure. Finally, three possible use cases of biomedical devices constructed from actively triggerable metals are demonstrated.


Assuntos
Alumínio , Gálio , Ligas , Gálio/química , Índio/química , Condutividade Elétrica
15.
Part Fibre Toxicol ; 19(1): 69, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36539793

RESUMO

BACKGROUND: Many studies have shown that occupational exposure to indium and its compounds could induce lung disease. Although animal toxicological studies and human epidemiological studies suggest indium exposure may cause lung injury, inflammation, pulmonary fibrosis, emphysema, pulmonary alveolar proteinosis, and even lung cancer, related data collected from humans is currently limited and confined to single workplaces, and the early effects of exposure on the lungs are not well understood. OBJECTIVES: This study combined population studies and animal experiments to examine the links of indium with pulmonary injury, as well as its mechanism of action. A cross-sectional epidemiological study of indium-exposed workers from China was conducted to evaluate associations between occupational indium exposure and serum biomarkers of early effect. This study also compares and analyzes the causal perspectives of changes in human serum biomarkers induced by indium compound exposure and indium exposure-related rat lung pathobiology, and discusses possible avenues for their recognition and prevention. METHODS: This is a study of 57 exposed (at least 6 h per day for one year) workers from an indium ingot production plant, and 63 controls. Indium concentration in serum, urine, and airborne as exposure indices were measured by inductively coupled plasma-mass spectrometry. Sixteen serum biomarkers of pulmonary injury, inflammation, and oxidative stress were measured using ELISA. The associations between serum indium and 16 serum biomarkers were analyzed to explore the mechanism of action of indium on pulmonary injury in indium-exposed workers. Animal experiments were conducted to measure inflammatory factors levels in bronchoalveolar lavage fluid (BALF) and lung tissue protein expressions in rats. Four different forms of indium compound-exposed rat models were established (intratracheal instillation twice per week, 8 week exposure, 8 week recovery). Model I: 0, 1.2, 3, and 6 mg/kg bw indium tin oxide group; Model II: 0, 1.2, 3, and 6 mg/kg bw indium oxide (In2O3) group; Model III: 0, 0.523, 1.046, and 2.614 mg/kg bw indium sulfate (In2(SO4)3) group; Model IV: 0, 0.065, 0.65, and 1.3 mg/kg bw indium trichloride (InCl3) group. Lung pathological changes were assessed by hematoxylin & eosin, periodic acid Schiff, and Masson's staining, transmission electron microscopy, and the protein changes were determined by immunohistochemistry. RESULTS: In the production workshop, the airborne indium concentration was 78.4 µg/m3. The levels of serum indium and urine indium in indium-exposed workers were 39.3 µg/L and 11.0 ng/g creatinine. Increased lung damage markers, oxidative stress markers, and inflammation markers were found in indium-exposed workers. Serum indium levels were statistically and positively associated with the serum levels of SP-A, IL-1ß, IL-6 in indium-exposed workers. Among them, SP-A showed a duration-response pattern. The results of animal experiments showed that, with an increase in dosage, indium exposure significantly increased the levels of serum indium and lung indium, as well as the BALF levels of IL­1ß, IL­6, IL­10, and TNF­α and up-regulated the protein expression of SP-A, SP-D, KL-6, GM-CSF, NF-κB p65, and HO-1 in all rat models groups. TEM revealed that In2(SO4)3 and InCl3 are soluble and that no particles were found in lung tissue, in contrast to the non-soluble compounds (ITO and In2O3). No PAS-staining positive substance was found in the lung tissue of In2(SO4)3 and InCl3 exposure groups, whereas ITO and In2O3 rat models supported findings of pulmonary alveolar proteinosis and interstitial fibrosis seen in human indium lung disease. ITO and InCl3 can accelerate interstitial fibrosis. Findings from our in vivo studies demonstrated that intra-alveolar accumulation of surfactant (immunohistochemistry) and characteristic cholesterol clefts granulomas of indium lung disease (PAS staining) were triggered by a specific form of indium (ITO and In2O3). CONCLUSIONS: In indium-exposed workers, biomarker findings indicated lung damage, oxidative stress and an inflammatory response. In rat models of the four forms of indium encountered in a workplace, the biomarkers response to all compounds overall corresponded to that in humans. In addition, pulmonary alveolar proteinosis was found following exposure to indium tin oxide and indium oxide in the rat models, and interstitial fibrosis was found following exposure to indium tin oxide and indium trichloride, supporting previous report of human disease. Serum SP-A levels were positively associated with indium exposure and may be considered a potential biomarker of exposure and effect in exposed workers.


Assuntos
Lesão Pulmonar , Proteinose Alveolar Pulmonar , Fibrose Pulmonar , Humanos , Ratos , Animais , Proteinose Alveolar Pulmonar/induzido quimicamente , Proteinose Alveolar Pulmonar/patologia , Índio/toxicidade , Índio/química , Estudos Transversais , Roedores , Interleucina-6 , Inflamação , Biomarcadores
16.
ACS Appl Mater Interfaces ; 14(51): 56429-56439, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36520994

RESUMO

It is a long-lasting research topic to avoid the formation of oxidation layers on gallium-based liquid metals. This study has developed a simple general method for modification of the eutectic gallium-indium (EGaIn) surface with p-aniline derivatives to introduce a monolayer of organic molecules with versatile functional groups. The binding affinity of carboxylic acid groups, amine groups, or thiol groups with EGaIn is in the order SH > NH2 > COOH. For the first time, it is evidenced that both NH2 and SH groups can coexist on the EGaIn nanoparticle surface with the binding affinities of 30 and 70%, respectively. The formation of these organic molecules on the EGaIn surface antioxidizes and thus stabilizes the EGaIn nanoparticles, while increasing the conductivity of EGaIn significantly. The resulting EGaIn nanoparticles have very good distribution in both ethanol and aqueous solutions and rich surface chemistry, making them suitable for the following attachment of biomolecules such as aptamers, antibodies, or enzymes for biomedical applications. As an example, the EGaIn surface is successfully modified with p-aminobenzoic acid followed by the attachment of an insulin aptamer, which can be used for the electrochemical detection of insulin with the lowest detectable concentration limit of 1 pM. This study reveals the modification of EGaIn nanoparticles with p-aniline derivatives with versatile functional groups to antioxidize EGaIn in a biological environment, opening a door for gallium-based liquid metals toward biomedical applications.


Assuntos
Gálio , Insulinas , Gálio/química , Índio/química , Condutividade Elétrica
17.
Chem Soc Rev ; 51(24): 9861-9881, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36408788

RESUMO

Colloidal quantum dots (QDs) emitting in the infrared (IR) are promising building blocks for numerous photonic, optoelectronic and biomedical applications owing to their low-cost solution-processability and tunable emission. Among them, lead- and mercury-based QDs are currently the most developed materials. Yet, due to toxicity issues, the scientific community is focusing on safer alternatives. In this regard, indium arsenide (InAs) QDs are one of the best candidates as they can absorb and emit light in the whole near infrared spectral range and they are RoHS-compliant, with recent trends suggesting that there is a renewed interest in this class of materials. This review focuses on colloidal InAs QDs and aims to provide an up-to-date overview spanning from their synthesis and surface chemistry to post-synthesis modifications. We provide a comprehensive overview from initial synthetic methods to the most recent developments on the ability to control the size, size distribution, electronic properties and carrier dynamics. Then, we describe doping and alloying strategies applied to InAs QDs as well as InAs based heterostructures. Furthermore, we present the state-of-the-art applications of InAs QDs, with a particular focus on bioimaging and field effect transistors. Finally, we discuss open challenges and future perspectives.


Assuntos
Arsenicais , Pontos Quânticos , Índio/química , Pontos Quânticos/química
18.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36361699

RESUMO

Solution-grown indium oxide (In2O3) based thin-film transistors (TFTs) hold good prospects for emerging advanced electronics due to their excellent mobility, prominent transparency, and possibility of low-cost and scalable manufacturing; however, pristine In2O3 TFTs suffer from poor switching characteristics due to intrinsic oxygen-vacancy-related defects and require external doping. According to Shanmugam's theory, among potential dopants, phosphorus (P) has a large dopant-oxygen bonding strength (EM-O) and high Lewis acid strength (L) that would suppress oxygen-vacancy related defects and mitigate dopant-induced carrier scattering; however, P-doped In2O3 (IPO) TFTs have not yet been demonstrated. Here, we report aqueous solution-grown crystalline IPO TFTs for the first time. It is suggested that the incorporation of P could effectively inhibit oxygen-vacancy-related defects while maintaining high mobility. This work experimentally demonstrates that dopant with high EM-O and L is promising for emerging oxide TFTs.


Assuntos
Fósforo , Transistores Eletrônicos , Índio/química , Oxigênio
19.
J Photochem Photobiol B ; 234: 112526, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35908358

RESUMO

In this study, the hydrothermal method was used to synthesis of silver indium sulfide/nickel molybdenum sulfide (AgInS2/NiMoS4) nanostructure and decorated on Palygorskite (Plg) as an excellent carrier of antibacterial materials. The performance of the prepared AgInS2/NiMoS4/Plg composites was investigated for light-driven antibacterial process and detection of uric acid from biological samples. The result shows the highest antibacterial activity of the AgInS2/NiMoS4/Plg with the minimum inhibitory concentrations about 0.2-0.3 mg/mL. The prepared AgInS2/NiMoS4/Plg as sensor depicted enhanced peroxidase-like activity for detection of acid uric. The detection limit of acid uric by AgInS2/NiMoS4/Plg was about 26.1 nM. Therefore, the AgInS2/NiMoS4/Plg can be developed in the bactericidal process and sensing in complex biological systems.


Assuntos
Gota , Nanoestruturas , Antibacterianos/farmacologia , Argila , Dissulfetos , Humanos , Índio/química , Minerais , Molibdênio , Nanoestruturas/química , Níquel , Prata/química , Ácido Úrico
20.
J Colloid Interface Sci ; 627: 247-260, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35849858

RESUMO

Indium hydroxide (In(OH)3) and indium oxide (In2O3) have proven to be efficient catalysts for photocatalytic water-splitting reactions to produce hydrogen (H2) and for organic pollutant degradation applications. However, the limited optical absorption features of indium-based nanostructures have restricted their practical applications. In this study, we have successfully designed indium hydroxide- and indium oxide-loaded metal sulfide (cadmium sulfide, CdS) heterostructures as excellent photocatalytic systems for photocatalytic hydrogen evolution and tetracycline hydrochloride pollutant degradation reactions. In this system, In(OH)3 and In2O3 established Type-I and S-scheme heterojunctions, respectively, with CdS, resulting in superior charge separation properties and outstanding photocatalytic activity. Specifically, the rational and appropriate design of the aforementioned indium-based heterostructures promoted the separation of photoexcited charge carriers via Type-I and S-scheme paths. Accordingly, enhanced photocatalytic H2 evolution activities of 9.58 and 14.98 mmol·g-1·h-1 were achieved for CdS-In(OH)3 and CdS-In2O3, respectively. Furthermore, the highest degradation efficiency of CdS-In2O3 was âˆ¼ 90%, which was higher than those of CdS-In(OH)3 (72%) and bare CdS nanorods (51%). Therefore, the results of this study provide an opportunity to enhance the catalytic activities of heterostructured photocatalytic systems by utilizing the strategy of transitioning band structure alignment from the Type-I to the S-scheme.


Assuntos
Poluentes Ambientais , Recuperação e Remediação Ambiental , Hidrogênio/química , Índio/química , Sulfetos/química , Tetraciclina , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA