Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neurobiol Aging ; 34(11): 2676-82, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23796661

RESUMO

The incidence of olfactory perceptual dysfunction increases substantially with aging. Putative mechanisms for olfactory sensory loss are surfacing, including neuroanatomical modifications within brain regions responsible for odor information processing. The islands of Calleja (IC) are dense cell clusters localized within the olfactory tubercle, a cortical structure receiving monosynaptic input from the olfactory bulb. The IC are hypothesized to be important for intra- and extra-olfactory tubercle information processing, and thus olfaction. However, whether the anatomy of the IC are affected throughout normal aging remains unclear. By examining the IC of C57bl/6 mice throughout adulthood and early aging (4-18 months of age), we found that the number of IC decreases significantly with aging. Stereological analysis revealed that the remaining IC in 18-month-old mice were significantly reduced in estimated volume compared with those in 4- month-old mice. We additionally found that whereas young adults (4 months of age) possess greater numbers of IC within the posterior parts of the olfactory tubercle, by 18 months of age, a greater percentage of IC are found within the anterior-most part of the olfactory tubercle, perhaps providing a substrate for the differential access of the IC to odor information throughout aging. These results show that the IC are highly plastic components of the olfactory cortex, changing in volume, localization, and even number throughout normal aging. We predict that modifications among the IC throughout aging and age-related neurodegenerative disorders might be a novel contributor to pathological changes in olfactory cortex function and olfactory perception.


Assuntos
Envelhecimento/patologia , Ínsulas Olfatórias/patologia , Condutos Olfatórios/patologia , Fatores Etários , Animais , Contagem de Células , Ínsulas Olfatórias/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estatística como Assunto , Técnicas Estereotáxicas
2.
Exp Neurol ; 187(1): 178-89, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15081599

RESUMO

In Parkinson's disease (PD) and animal models of parkinsonism the destruction of nigrostriatal (NSB) system results in a marked loss of the dopamine D(3) receptor and mRNA in the islands of Calleja (ICj) and the nucleus accumbens shell (NAS). In animal models, it has been reported that both measures are elevated by repeated intermittent administration of L-dopa. However, a large proportion of PD cases are resistant to L-dopa-induced elevation of D(3) receptor number. The zitter mutant (Zi/Zi) rat replicates the slow progressive degeneration of the NSB observed in PD and also exhibits a loss of D(3) receptor number in the NAS or ICj. To test if this could be reversed with subchronic L-dopa treatment, injections of carbidopa (10 mg/kg i.p.) were followed an hour later with injection of L-dopa (100 mg/kg i.p.) twice a day for 10 days. In control Sprague-Dawley (SD) and zitter heterozygote (Zi/-) rats that do not show a loss of D(3) receptors with vehicle treatment, L-dopa produced no change in D(3) receptor number or in DA terminal density as measured by dopamine transporter (DAT) binding and tyrosine hydroxylase immunoautoradiography (TH-IR). There was a marked loss of DAT and TH-IR in caudate-putamen (CPu) and NA, as well as D(3) receptors in NAS and ICj in Zi/Zi rats but no further change with L-dopa treatment. To determine if the resistance to L-dopa-induced increase in D(3) receptor was due to a deficiency in expression of cortical BDNF or its receptor, TrkB, in CPu and NAS, we examined BDNF mRNA by ISHH in frontal cortex and TrkB mRNA in frontal cortex, CPu, and NA. The loss of the NSB in the Zi/Zi did not alter levels of BDNF or TrkB mRNA, nor did L-dopa administration alter levels BDNF or TrkB mRNA. Thus, unlike in 6-hydroxydopamine-treated rats, in Zi/Zi rats administered L-dopa does not reverse the loss of BDNF mRNA or lead to an elevation of D(3) receptor number.


Assuntos
Levodopa/farmacologia , Glicoproteínas de Membrana , Proteínas do Tecido Nervoso , Transtornos Parkinsonianos/tratamento farmacológico , Receptores de Dopamina D2/deficiência , Receptores de Dopamina D2/metabolismo , Animais , Antiparkinsonianos/farmacologia , Fator Neurotrófico Derivado do Encéfalo/genética , Modelos Animais de Doenças , Progressão da Doença , Proteínas da Membrana Plasmática de Transporte de Dopamina , Heterozigoto , Homozigoto , Ínsulas Olfatórias/efeitos dos fármacos , Ínsulas Olfatórias/metabolismo , Ínsulas Olfatórias/patologia , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Neostriado/efeitos dos fármacos , Neostriado/metabolismo , Neostriado/patologia , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Núcleo Accumbens/patologia , Condutos Olfatórios/efeitos dos fármacos , Condutos Olfatórios/metabolismo , Condutos Olfatórios/patologia , Estresse Oxidativo/genética , Transtornos Parkinsonianos/patologia , Transtornos Parkinsonianos/fisiopatologia , Prosencéfalo/efeitos dos fármacos , Prosencéfalo/metabolismo , Prosencéfalo/patologia , RNA Mensageiro/metabolismo , Ratos , Ratos Mutantes , Ratos Sprague-Dawley , Receptor trkB/genética , Receptores de Dopamina D2/genética , Receptores de Dopamina D3 , Tirosina 3-Mono-Oxigenase/metabolismo
3.
Histol Histopathol ; 17(3): 973-1003, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12168809

RESUMO

Nitric oxide (NO) has been recognized as a key regulatory factor in many physiological processes, including central nervous system function, development, and phatophysiology. NO is produced by a class of enzymes known as NO synthases (NOS) and in normal adult animals only the neuronal isoform (nNOS) is detectable. During cortical development, nNOS was found at E14 in neuroblasts of the marginal zone and its expression raised to a zenith by P5, decreasing afterwards until reaching a steady level by P10. At that time, nNOS was found mainly in pyramidal neurons. Interestingly, the inducible isoform of the enzyme (iNOS) was also active from P3 to P7, but it disappeared almost completely by P20. The neurodegeneration observed during normal aging and following hypoxic accidents seems to be the result of cumulative free radical damage, and excessive production of NO may be at the basis of the cascade. After ischemic events we observed an elevation in the number of neurons expressing nNOS coincident with an elevation in Ca2+-dependent NOS activity for up to 120 min. After this period, nNOS activity began to decrease but it was substituted by a rapid increase in Ca2+-independent activity coincident with the histological appearance of previously undetectable iNOS-immunoreactive neurons. These increases in NO production were accompanied by specific patterns of protein nitration, a process that seems to result in loss of protein function. In particular, we observed a correlation between exposure to ischemia-reperfusion and nitration of cytochrome c. This process was coincident with the exit of the cytochrome from the mitochondria to the surrounding cytoplasm, an early event in neuronal apoptosis. Interestingly, most of the morphological and molecular changes associated with ischemic damage were prevented by treatment with inhibitors of NO production, indicating a clear path in the search for efficacious drugs in the battle against cerebrovascular accidents.


Assuntos
Encéfalo/patologia , Ínsulas Olfatórias/patologia , Sistema Nervoso/metabolismo , Óxido Nítrico/metabolismo , Animais , Animais Recém-Nascidos , Morte Celular , Sistema Nervoso Central/metabolismo , Córtex Cerebral/metabolismo , Citoplasma/metabolismo , Hipóxia , Imuno-Histoquímica , Isquemia , Ínsulas Olfatórias/metabolismo , Ratos , Traumatismo por Reperfusão , Acidente Vascular Cerebral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA