Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 889
Filtrar
1.
Nat Commun ; 15(1): 5875, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997266

RESUMO

Correct regulation of intercellular communication is a fundamental requirement for cell differentiation. In Arabidopsis thaliana, the female germline differentiates from a single somatic ovule cell that becomes encased in ß-1,3-glucan, a water insoluble polysaccharide implicated in limiting pathogen invasion, regulating intercellular trafficking in roots, and promoting pollen development. Whether ß-1,3-glucan facilitates germline isolation and development has remained contentious, since limited evidence is available to support a functional role. Here, transcriptional profiling of adjoining germline and somatic cells revealed differences in gene expression related to ß-1,3-glucan metabolism and signalling through intercellular channels (plasmodesmata). Dominant expression of a ß-1,3-glucanase in the female germline transiently perturbed ß-1,3-glucan deposits, allowed intercellular movement of tracer molecules, and led to changes in germline gene expression and histone marks, eventually leading to termination of germline development. Our findings indicate that germline ß-1,3-glucan fulfils a functional role in the ovule by insulating the primary germline cell, and thereby determines the success of downstream female gametogenesis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Gametogênese Vegetal , Regulação da Expressão Gênica de Plantas , Óvulo Vegetal , beta-Glucanas , Arabidopsis/metabolismo , Arabidopsis/genética , Óvulo Vegetal/metabolismo , Óvulo Vegetal/genética , beta-Glucanas/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Gametogênese Vegetal/genética , Plasmodesmos/metabolismo , Pólen/metabolismo , Pólen/genética , Pólen/crescimento & desenvolvimento , Perfilação da Expressão Gênica
2.
New Phytol ; 243(4): 1600-1609, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38937955

RESUMO

Pollination presents a risky journey for pollen grains. Pollen loss is sometimes thought to favour greater pollen investment to compensate for the inefficiency of transport. Sex allocation theory, to the contrary, has consistently concluded that postdispersal loss should have no selective effect on investment in either sex function. But the intuitively appealing compensation idea continues to be raised despite the lack of theoretical endorsement. We address the theoretical issue with a model that directly represents pollen loss (and ovule loss through floral demise or loss of receptivity) as rate-dependent dynamical processes. These loss rates can be varied to examine the effect of pollination efficiency on optimal sex allocation. Pollen-ovule ratios follow from the sex allocation based on the resource costs of pollen and ovule production. This model confirms conventional findings that pollen loss should have essentially no effect on sexual resource allocation in large, panmictic populations. Pollen limitation of seed set does not alter this conclusion. These results force us to rethink the empirical association of pollination efficiency with low pollen-ovule ratios. This pattern could arise if efficient pollen transport commonly results in stigmatic deposition of cohorts of related pollen. Empirical evidence of correlated paternity supports this explanation.


Assuntos
Modelos Biológicos , Óvulo Vegetal , Pólen , Polinização , Pólen/fisiologia , Polinização/fisiologia , Óvulo Vegetal/fisiologia
3.
Exp Appl Acarol ; 93(1): 99-114, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38722436

RESUMO

The immature development and reproduction of the predatory mites Amblyseius largoensis (Muma), Proprioseiopsis lenis (Corpuz and Rimando), and Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae) were investigated using both thrips eggs and first instars of the western flower thrips, Frankliniella occidentalis Pergande, as prey in a controlled laboratory environment at 25 °C and 60% relative humidity. When provided with thrips eggs as food, A. largoensis exhibited a notably shorter immature development period for both males (7.05 days) and females (6.51 days) as compared with A. swirskii (8.05 and 7.19 days, respectively) and P. lenis (8.10 days and 7.05 days, respectively). Amblyseius largoensis also displayed a higher oviposition rate (2.19 eggs/female/day) than A. swirskii and P. lenis (1.79 and 1.78 eggs/female/day, respectively). Moreover, it exhibited the highest fecundity (25.34 eggs/female), followed by P. lenis (24.23 eggs/female) and A. swirskii (22.86 eggs/female). These variations led to A. largoensis having the highest intrinsic rate of increase (rm) at 0.209, followed by A. swirskii at 0.188, and P. lenis at 0.165. However, when the predatory mites were provided with first instars of F. occidentalis, A. swirskii demonstrated a faster immature development period for both males (7.67 days) and females (7.59 days) as compared with P. lenis (9.00 days and 7.86 days, respectively) and A. largoensis (8.47 days and 8.61 days, respectively). While the oviposition rates of P. lenis (1.92 eggs/female/day) and A. swirskii (1.90 eggs/female/day) were similar when feeding on this prey, A. largoensis produced fewer eggs (1.83 eggs/female/day). Further, A. swirskii exhibited the highest fecundity (31.93 eggs/female), followed by A. largoensis (25.71 eggs/female) and P. lenis (23 eggs/female). Consequently, the intrinsic rate of increase (rm) on thrips first instars was highest in A. swirskii (0.190), followed by A. largoensis (0.186), and P. lenis (0.176). In summary, our findings indicate that in terms of life history parameters A. largoensis performs optimally when feeding on thrips eggs, whereas A. swirskii performs best when preying on the mobile first instars of the thrips. These insights into the dietary preferences and reproductive capabilities of the studied predatory mite species have important implications for their potential use as biological control agents against F. occidentalis in agricultural settings.


Assuntos
Larva , Ácaros , Oviposição , Comportamento Predatório , Tisanópteros , Animais , Feminino , Masculino , Ácaros/fisiologia , Ácaros/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/fisiologia , Tisanópteros/fisiologia , Tisanópteros/crescimento & desenvolvimento , Óvulo Vegetal/crescimento & desenvolvimento , Óvulo Vegetal/fisiologia , Óvulo/crescimento & desenvolvimento , Óvulo/fisiologia , Fertilidade
4.
EMBO Rep ; 25(6): 2529-2549, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38773320

RESUMO

In the pistil of flowering plants, each ovule usually associates with a single pollen tube for fertilization. This one-to-one pollen tube guidance, which contributes to polyspermy blocking and efficient seed production, is largely different from animal chemotaxis of many sperms to one egg. However, the functional mechanisms underlying the directional cues and polytubey blocks in the depths of the pistil remain unknown. Here, we develop a two-photon live imaging method to directly observe pollen tube guidance in the pistil of Arabidopsis thaliana, clarifying signaling and cellular behaviors in the one-to-one guidance. Ovules are suggested to emit multiple signals for pollen tubes, including an integument-dependent directional signal that reaches the inner surface of the septum and adhesion signals for emerged pollen tubes on the septum. Not only FERONIA in the septum but ovular gametophytic FERONIA and LORELEI, as well as FERONIA- and LORELEI-independent repulsion signal, are involved in polytubey blocks on the ovular funiculus. However, these funicular blocks are not strictly maintained in the first 45 min, explaining previous reports of polyspermy in flowering plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Óvulo Vegetal , Tubo Polínico , Transdução de Sinais , Tubo Polínico/crescimento & desenvolvimento , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Óvulo Vegetal/fisiologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fertilização
5.
Development ; 151(20)2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38738635

RESUMO

Tissue morphogenesis remains poorly understood. In plants, a central problem is how the 3D cellular architecture of a developing organ contributes to its final shape. We address this question through a comparative analysis of ovule morphogenesis, taking advantage of the diversity in ovule shape across angiosperms. Here, we provide a 3D digital atlas of Cardamine hirsuta ovule development at single cell resolution and compare it with an equivalent atlas of Arabidopsis thaliana. We introduce nerve-based topological analysis as a tool for unbiased detection of differences in cellular architectures and corroborate identified topological differences between two homologous tissues by comparative morphometrics and visual inspection. We find that differences in topology, cell volume variation and tissue growth patterns in the sheet-like integuments and the bulbous chalaza are associated with differences in ovule curvature. In contrast, the radialized conical ovule primordia and nucelli exhibit similar shapes, despite differences in internal cellular topology and tissue growth patterns. Our results support the notion that the structural organization of a tissue is associated with its susceptibility to shape changes during evolutionary shifts in 3D cellular architecture.


Assuntos
Arabidopsis , Imageamento Tridimensional , Óvulo Vegetal , Óvulo Vegetal/crescimento & desenvolvimento , Óvulo Vegetal/citologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/citologia , Imageamento Tridimensional/métodos , Cardamine , Morfogênese
6.
Physiol Plant ; 176(3): e14354, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38769079

RESUMO

Female gametogenesis has been rarely studied due to gametophyte lethality and the unavailability of related genetic resources. In this study, we identified a rice ATP-binding cassette transporter, OsABCB24, whose null function displayed a significantly reduced seed setting rate by as much as 94%-100% compared with that of the wild type (WT). The reciprocal cross of WT and mutant plants demonstrated that the female reproductive organs in mutants were functionally impaired. Confocal microscopy observations revealed that, although megasporogenesis remained unaffected in CRISPR/Cas9 osabcb24 mutants, the formation of female gametophytes was interrupted. Additionally, the structure of the syncytial nucleus was impaired during the initial stages of endosperm formation. Histochemical analysis showed that OsABCB24 was preferentially expressed at the conjunction of receptacle and ovary, spanning from the functional megaspore stage to the two-nucleate embryo sac stage. Further, OsABCB24 was identified as an endoplasmic reticulum membrane-localized protein. Notably, the overexpression of OsABCB24 triggered a 1.5- to 2-fold increase in grain production compared to the WT. Our findings showed that OsABCB24 plays a key role in both female gametophyte development and the early development of seeds.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Regulação da Expressão Gênica de Plantas , Oryza , Óvulo Vegetal , Proteínas de Plantas , Sementes , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/genética , Sementes/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Óvulo Vegetal/crescimento & desenvolvimento , Óvulo Vegetal/genética , Óvulo Vegetal/metabolismo , Mutação/genética , Plantas Geneticamente Modificadas
7.
Plant Biotechnol J ; 22(7): 1966-1980, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38561972

RESUMO

Cell fate determination and primordium initiation on the placental surface are two key events for ovule formation in seed plants, which directly affect ovule density and seed yield. Despite ovules form in the marginal meristematic tissues of the carpels, angiosperm carpels evolved after the ovules. It is not clear how the development of the ovules and carpels is coordinated in angiosperms. In this study, we identify the S. lycopersicum CRABS CLAW (CRC) homologue SlCRCa as an essential determinant of ovule fate. We find that SlCRCa is not only expressed in the placental surface and ovule primordia but also functions as a D-class gene to block carpel fate and promote ovule fate in the placental surface. Loss of function of SlCRCa causes homeotic transformation of the ovules to carpels. In addition, we find low levels of the S. lycopersicum AINTEGUMENTA (ANT) homologue (SlANT2) favour the ovule initiation, whereas high levels of SlANT2 promote placental carpelization. SlCRCa forms heterodimer with tomato INNER NO OUTER (INO) and AGAMOUS (AG) orthologues, SlINO and TOMATO AGAMOUS1 (TAG1), to repress SlANT2 expression during the ovule initiation. Our study confirms that angiosperm basal ovule cells indeed retain certain carpel properties and provides mechanistic insights into the ovule initiation.


Assuntos
Regulação da Expressão Gênica de Plantas , Óvulo Vegetal , Proteínas de Plantas , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Óvulo Vegetal/genética , Óvulo Vegetal/crescimento & desenvolvimento , Óvulo Vegetal/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Genes de Plantas/genética
8.
Int J Dev Biol ; 68(1): 9-17, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38591693

RESUMO

The megasporangium serves as a model system for understanding the concept of individual cell identity, and cell-to-cell communication in angiosperms. As development of the ovule progresses, three distinct layers, the epidermal (L1), the subepidermal or the hypodermal (L2) and the innermost layers (L3) are formed along the MMC (megaspore mother cell). The MMC, which is the primary female germline cell, is initiated as a single subepidermal cell amongst several somatic cells. MMC development is governed by various regulatory pathways involving intercellular signaling, small RNAs and DNA methylation. The programming and reprograming of a single nucellar cell to enter meiosis is governed by 'permissive' interacting processes and factors. Concomitantly, several nucellar sister cells are prevented from germline fate also by a set of 'repressive' factors. However, in certain angiosperms, anomalies in development of the female gametophyte have been observed. The sporophytic tissue surrounding the female gametophyte affects the gametophyte in multiple ways. The role of genes and transcription factors in the development of the MMC and in the regulation of various processes studied in selected model plants such as Arabidopsis is explained in detail in this paper. However, as angiosperms display enormous diversity, it is important to investigate early stages of megasporogenesis in other plant systems as well. Such studies provide valuable insights in understanding the regulation of megasporogenesis and the evolution of the female gametophyte from gymnosperms to flowering plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Gametogênese Vegetal/genética , Óvulo Vegetal/genética , Óvulo Vegetal/metabolismo , Células Germinativas/metabolismo , Regulação da Expressão Gênica de Plantas
9.
Int J Mol Sci ; 25(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38674037

RESUMO

Ovule abortion significantly contributes to a reduction in chestnut yield. Therefore, an examination of the mechanisms underlying ovule abortion is crucial for increasing chestnut yield. In our previous study, we conducted a comprehensive multiomic analysis of fertile and abortive ovules and found that ACS genes in chestnuts (CmACS) play a crucial role in ovule development. Therefore, to further study the function of ACS genes, a total of seven CmACS members were identified, their gene structures, conserved structural domains, evolutionary trees, chromosomal localization, and promoter cis-acting elements were analyzed, and their subcellular localization was predicted and verified. The spatiotemporal specificity of the expression of the seven CmACS genes was confirmed via qRT-PCR analysis. Notably, CmACS7 was exclusively expressed in the floral organs, and its expression peaked during fertilization and decreased after fertilization. The ACC levels remained consistently greater in fertile ovules than in abortive ovules. The ACSase activity of CmACS7 was identified using the genetic transformation of chestnut healing tissue. Micro Solanum lycopersicum plants overexpressing CmACS7 had a significantly greater rate of seed failure than did wild-type plants. Our results suggest that ovule fertilization activates CmACS7 and increases ACC levels, whereas an overexpression of CmACS7 leads to an increase in ACC content in the ovule prior to fertilization, which can lead to abortion. In conclusion, the present study demonstrated that chestnut ovule abortion is caused by poor fertilization and not by nutritional competition. Optimization of the pollination and fertilization of female flowers is essential for increasing chestnut yield and reducing ovule abortion.


Assuntos
Fagaceae , Regulação da Expressão Gênica de Plantas , Óvulo Vegetal , Proteínas de Plantas , Óvulo Vegetal/genética , Óvulo Vegetal/crescimento & desenvolvimento , Óvulo Vegetal/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fagaceae/genética , Fagaceae/crescimento & desenvolvimento , Fagaceae/metabolismo , Família Multigênica , Genoma de Planta , Filogenia , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo
10.
J Exp Bot ; 75(11): 3351-3367, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38459807

RESUMO

In gymnosperms such as Ginkgo biloba, the arrival of pollen plays a key role in ovule development, before fertilization occurs. Accordingly, G. biloba female plants geographically isolated from male plants abort all their ovules after the pollination drop emission, which is the event that allows the ovule to capture pollen grains. To decipher the mechanism induced by pollination required to avoid ovule senescence and then abortion, we compared the transcriptomes of pollinated and unpollinated ovules at three time points after the end of the emission of pollination drop. Transcriptomic and in situ expression analyses revealed that several key genes involved in programmed cell death such as senescence and apoptosis, DNA replication, and cell cycle regulation were differentially expressed in unpollinated ovules compared to pollinated ovules. We provide evidence that the pollen captured by the pollination drop affects auxin local accumulation and might cause deregulation of key genes required for the ovule's programmed cell death, activating both the cell cycle regulation and DNA replication genes.


Assuntos
Ginkgo biloba , Óvulo Vegetal , Pólen , Polinização , Óvulo Vegetal/crescimento & desenvolvimento , Óvulo Vegetal/fisiologia , Óvulo Vegetal/genética , Pólen/genética , Pólen/crescimento & desenvolvimento , Pólen/fisiologia , Ginkgo biloba/genética , Ginkgo biloba/fisiologia , Ginkgo biloba/crescimento & desenvolvimento , Transcriptoma , Regulação da Expressão Gênica de Plantas
11.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542248

RESUMO

Strigolactones (SLs) were recently defined as a novel class of plant hormones that act as key regulators of diverse developmental processes and environmental responses. Much research has focused on SL biosynthesis and signaling in roots and shoots, but little is known about whether SLs are produced in early developing seeds and about their roles in ovule development after fertilization. This study revealed that the fertilized ovules and early developing pericarp in Xanthoceras sorbifolium produced minute amounts of two strigolactones: 5-deoxystrigol and strigol. Their content decreased in the plants with the addition of exogenous phosphate (Pi) compared to those without the Pi treatment. The exogenous application of an SL analog (GR24) and a specific inhibitor of SL biosynthesis (TIS108) affected early seed development and fruit set. In the Xanthoceras genome, we identified 69 potential homologs of genes involved in SL biological synthesis and signaling. Using RNA-seq to characterize the expression of these genes in the fertilized ovules, 37 genes were found to express differently in the fertilized ovules that were aborting compared to the normally developing ovules. A transcriptome analysis also revealed that in normally developing ovules after fertilization, 12 potential invertase genes were actively expressed. Hexoses (glucose and fructose) accumulated at high concentrations in normally developing ovules during syncytial endosperm development. In contrast, a low ratio of hexose and sucrose levels was detected in aborting ovules with a high strigolactone content. XsD14 virus-induced gene silencing (VIGS) increased the hexose content in fertilized ovules and induced the proliferation of endosperm free nuclei, thereby promoting early seed development and fruit set. We propose that the crosstalk between sugar and strigolactone signals may be an important part of a system that accurately regulates the abortion of ovules after fertilization. This study is useful for understanding the mechanisms underlying ovule abortion, which will serve as a guide for genetic or chemical approaches to promote seed yield in Xanthoceras.


Assuntos
Compostos Heterocíclicos com 3 Anéis , Lactonas , Óvulo Vegetal , Sapindaceae , Óvulo Vegetal/genética , Fertilização/genética , Sementes , Sapindaceae/genética , Hexoses/metabolismo , Regulação da Expressão Gênica de Plantas
12.
Sci Rep ; 14(1): 7127, 2024 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531911

RESUMO

Although Chaenomeles is widely used in horticulture, traditional Chinese medicine and landscape greening, insufficient research has hindered its breeding and seed selection. This study investigated the floral phenology, floral organ characteristics, palynology, and breeding systems of Chaenomeles speciosa (Sweet) Nakai. The floral characteristics of C. speciosa were observed both visually and stereoscopically. The microstructures of the flower organs were observed using scanning electron microscopy. Pollen stainability was determined using triphenyl tetrazolium chloride staining. Stigma receptivity was determined using the benzidine-H2O2 method and the post-artificial pollination pollen germination method. The breeding system was assessed based on the outcrossing index and pollen-ovule ratio. The flowers of C. speciosa were bisexual with a flowering period from March to April. The flowering periods of single flowers ranged from 8 to 19 d, and those of single plants lasted 18-20 d. The anthers were cylindrical, with the base attached to the filament, and were split longitudinally to release pollen. The flower had five styles, with a connate base. The ovaries had five carpels and five compartments. The inverted ovules were arranged in two rows on the placental axis. The stigma of C. speciosa was dry and had many papillary protrusions. In the early flowering stage (1-2 d of flowering), the pollen exhibited high stainability (up to 84.24%), but all stainability was lost at 7 d of flowering. Storage at - 20 °C effectively delayed pollen inactivation. The stigma receptivity of C. speciosa lasted for approximately 7 days, and the breeding system was classified as outcrossing with partial self-compatibility.


Assuntos
Polinização , Rosaceae , Gravidez , Feminino , Humanos , Polinização/fisiologia , Óvulo Vegetal , Peróxido de Hidrogênio , Melhoramento Vegetal , Placenta , Reprodução/fisiologia , Flores/fisiologia , Pólen/fisiologia
13.
Plant Cell ; 36(6): 2201-2218, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38376990

RESUMO

In adverse environments, the number of fertilizable female gametophytes (FGs) in plants is reduced, leading to increased survival of the remaining offspring. How the maternal plant perceives internal growth cues and external stress conditions to alter FG development remains largely unknown. We report that homeostasis of the stress signaling molecule nitric oxide (NO) plays a key role in controlling FG development under both optimal and stress conditions. NO homeostasis is precisely regulated by S-nitrosoglutathione reductase (GSNOR). Prior to fertilization, GSNOR protein is exclusively accumulated in sporophytic tissues and indirectly controls FG development in Arabidopsis (Arabidopsis thaliana). In GSNOR null mutants, NO species accumulated in the degenerating sporophytic nucellus, and auxin efflux into the developing FG was restricted, which inhibited FG development, resulting in reduced fertility. Importantly, restoring GSNOR expression in maternal, but not gametophytic tissues, or increasing auxin efflux substrate significantly increased the proportion of normal FGs and fertility. Furthermore, GSNOR overexpression or added auxin efflux substrate increased fertility under drought and salt stress. These data indicate that NO homeostasis is critical to normal auxin transport and maternal control of FG development, which in turn determine seed yield. Understanding this aspect of fertility control could contribute to mediating yield loss under adverse conditions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Homeostase , Ácidos Indolacéticos , Óxido Nítrico , Óvulo Vegetal , Estresse Fisiológico , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Óxido Nítrico/metabolismo , Ácidos Indolacéticos/metabolismo , Óvulo Vegetal/genética , Óvulo Vegetal/crescimento & desenvolvimento , Óvulo Vegetal/metabolismo , Aldeído Oxirredutases/metabolismo , Aldeído Oxirredutases/genética , Glutationa Redutase
14.
Int J Mol Sci ; 25(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38396651

RESUMO

Ovule abortion, which is the main cause of empty burs in the Chinese chestnut, affects the formation of embryos and further reduces yield; therefore, it is important to study the mechanism of ovule abortion. In this study, we analyzed the transcriptomic and metabolomic data of ovules at critical developmental stages to explore the key regulatory networks affecting ovule development. The metabolites were enriched mainly in pathways involved in phytohormone signaling, energy metabolism, and amino acid synthesis in the endoplasmic reticulum. Analysis of the differentially expressed genes (DEGs) revealed that the HSP genes were significantly down-regulated during fertilization, indicating that this process is extremely sensitive to temperature. The hormone and sucrose contents of ovules before and after fertilization and of fertile and abortive ovules at different developmental stages showed significant differences, and it is hypothesized that that abnormal temperature may disrupt hormone synthesis, affecting the synthesis and catabolism of sucrose and ultimately resulting in the abortive development of Chinese chestnut ovules. At the pollination and fertilization stage of chestnuts, spraying with ethylene, ACC, and AIB significantly increased the number of developing fruit in each prickly pod compared to CK (water) treatment. These results indicated that both ethylene and ACC increased the rate of ovule development. This study provides an important theoretical molecular basis for the subsequent regulation of ovule development and nut yield in the Chinese chestnut.


Assuntos
Perfilação da Expressão Gênica , Óvulo Vegetal , Óvulo Vegetal/metabolismo , Etilenos/metabolismo , Hormônios/metabolismo , Sacarose/metabolismo , Regulação da Expressão Gênica de Plantas
15.
Protoplasma ; 261(4): 725-733, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38286848

RESUMO

Ovule morphology, megasporogenesis, and megagametogenesis processes were examined in Hydrocleys nymphoides, Alisma plantago-aquatica, and Sagittaria montevidensis. Each of these species belongs to a different clade within the Alismataceae family. It is worth mentioning that the genus Hydrocleys previously belonged to the Limnocharitaceae family but is now classified within the Alismataceae. Flowers in different developmental stages were processed following classical histological methods for their observation with bright-field microscope. The three species present an anatropous and bitegmic mature ovule. This is tenuinucellate in A. plantago-aquatica and S. montevidensis and pseudo-crassinucellate in H. nymphoides. Although all three species have the same type of megasporogenesis, they differ in the megagametogenesis and in the total number of nuclei and cells that form the mature gametophyte. H. nymphoides has a female gametophyte composed of four cells and four nuclei, while A. plantago-aquatica and S. montevidensis have a female gametophyte of five cells and six nuclei. The results are discussed according to the phylogenetic position of each of the species. Moreover, new types of megagametophyte development are described: Hydrocleys and Sagittaria types. The reduction of the female gametophyte with respect to the Polygonum type is found in families belonging to the ANA grade and in other aquatic families within the order Alismatales. We infer that the reduction in the number of cells and nuclei in the female gametophyte is characteristic of species that inhabit aquatic environments. Future studies in aquatic species belonging to other families would be necessary to confirm this hypothesis.


Assuntos
Sagittaria , Sagittaria/citologia , Óvulo Vegetal/citologia , Alisma/química , Alisma/citologia , Alismataceae/citologia
16.
Plant Cell Physiol ; 65(3): 338-349, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38174428

RESUMO

Sexual differentiation is a fundamental process in the life cycles of land plants, ensuring successful sexual reproduction and thereby contributing to species diversity and survival. In the dioicous liverwort Marchantia polymorpha, this process is governed by an autosomal sex-differentiation locus comprising FEMALE GAMETOPHYTE MYB (FGMYB), a female-promoting gene, and SUPPRESSOR OF FEMINIZATION (SUF), an antisense strand-encoded long non-coding RNA (lncRNA). SUF is specifically transcribed in male plants and suppresses the expression of FGMYB, leading to male differentiation. However, the molecular mechanisms underlying this process remain elusive. Here, we show that SUF acts through its transcription to suppress FGMYB expression. Transgene complementation analysis using CRISPR/Cas9D10A-based large-deletion mutants identified a genomic region sufficient for the sex differentiation switch function in the FGMYB-SUF locus. Inserting a transcriptional terminator sequence into the SUF-transcribed region resulted in the loss of SUF function and allowed expression of FGMYB in genetically male plants, leading to conversion of the sex phenotype from male to female. Partial deletions of SUF had no obvious impact on its function. Replacement of the FGMYB sequence with that of an unrelated gene did not affect the ability of SUF transcription to suppress sense-strand expression. Taken together, our findings suggest that the process of SUF transcription, rather than the resulting transcripts, is required for controlling sex differentiation in M. polymorpha.


Assuntos
Marchantia , RNA Longo não Codificante , Masculino , Humanos , Marchantia/genética , RNA Longo não Codificante/genética , Óvulo Vegetal , Feminização , Plantas/genética
17.
Plant Reprod ; 37(1): 1-13, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37449999

RESUMO

KEY MESSAGE: In Araucaria angustifolia, the seed scale is part of the ovule, the female gametophyte presents a monosporic origin and arises from a coenocytic tetrad, and the pollen tube presents a single axis. The seed cone of conifers has many informative features, and its ontogenetic data may help interpret relationships among function, development patterns, and homology among seed plants. We reported the seed cone development, from pollination to pre-fertilization, including seed scale, ovule ontogeny, and pollen tube growth in Araucaria angustifolia. The study was performed using light microscopy, scanning electron microscopy, and X-ray microcomputed tomography (µCT). During the pollination period, the ovule arises right after the seed scale has emerged. From that event to the pre-fertilization period takes about 14 months. Megasporogenesis occurs three weeks after ovule formation, producing a coenocytic tetrad. At the same time as the female gametophyte's first nuclear division begins, the pollen tube grows through the seed scale adaxial face. Until maturity, the megagametophyte goes through the free nuclei stage, cellularization stage, and cellular growth stage. Along its development, many pollen tubes develop in the nucellar tissue extending straight toward the female gametophyte. Our observations show that the seed scale came out of the same primordia of the ovule, agreeing with past studies that this structure is part of the ovule itself. The formation of a female gametophyte with a monosporic origin that arises from a coenocytic tetrad was described for the first time in conifers, and the three-dimensional reconstruction of the ovule revealed the presence of pollen tubes with only one axis and no branches, highlighting a new pattern of pollen tube growth in Araucariaceae.


Assuntos
Araucaria , Araucariaceae , Polinização , Tubo Polínico , Cone de Plantas , Brasil , Microtomografia por Raio-X , Sementes , Óvulo Vegetal , Biologia
18.
Plant Physiol ; 194(4): 2117-2135, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38060625

RESUMO

The gynoecium is critical for the reproduction of flowering plants as it contains the ovules and the tissues that foster pollen germination, growth, and guidance. These tissues, known as the reproductive tract (ReT), comprise the stigma, style, and transmitting tract (TT). The ReT and ovules originate from the carpel margin meristem (CMM) within the pistil. SHOOT MERISTEMLESS (STM) is a key transcription factor for meristem formation and maintenance. In all above-ground meristems, including the CMM, local STM downregulation is required for organ formation. However, how this downregulation is achieved in the CMM is unknown. Here, we have studied the role of HISTONE DEACETYLASE 19 (HDA19) in Arabidopsis (Arabidopsis thaliana) during ovule and ReT differentiation based on the observation that the hda19-3 mutant displays a reduced ovule number and fails to differentiate the TT properly. Fluorescence-activated cell sorting coupled with RNA-sequencing revealed that in the CMM of hda19-3 mutants, genes promoting organ development are downregulated while meristematic markers, including STM, are upregulated. HDA19 was essential to downregulate STM in the CMM, thereby allowing ovule formation and TT differentiation. STM is ectopically expressed in hda19-3 at intermediate stages of pistil development, and its downregulation by RNA interference alleviated the hda19-3 phenotype. Chromatin immunoprecipitation assays indicated that STM is a direct target of HDA19 during pistil development and that the transcription factor SEEDSTICK is also required to regulate STM via histone acetylation. Thus, we identified factors required for the downregulation of STM in the CMM, which is necessary for organogenesis and tissue differentiation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Histonas/genética , Óvulo Vegetal/genética , Óvulo Vegetal/metabolismo , Arabidopsis/fisiologia , Fatores de Transcrição/metabolismo , Meristema , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Histona Desacetilases/metabolismo
19.
Protoplasma ; 261(3): 411-424, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37932636

RESUMO

Megasporogenesis, megagametogenesis and embryogenesis of Liparis elliptica (family Orchidaceae, tribe Malaxideae, subtribe Malaxidinae) have been studied. It was shown that the L. elliptica embryo sac is monosporic and develops from the chalazal cell of the megaspore triad according to the modified Polygonum type. The embryo sacs are reduced to four-six nuclei. The suspensor is unicellular, spherical in shape, originating from the basal cell (cb). A unique feature of L. elliptica is the unitegmal ovule, which distinguishes this species from other members of the tribe Malaxideae. The seed coat is formed by an outer layer of the single internal integument. Reduction of the outer integument is a rare feature for epiphytic orchid species with photosynthetic leaves.


Assuntos
Gametogênese Vegetal , Orchidaceae , Óvulo Vegetal , Sementes , Desenvolvimento Embrionário
20.
Curr Biol ; 33(19): R1013-R1015, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37816321

RESUMO

Flowering plants evolved glandular synergid cells assisting female gametes to attract pollen tubes carrying sperm cells. A recent study shows how central cells serve as a back-up to ensure pollen tube attraction and reproductive success in the absence of the assistants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Sementes , Tubo Polínico , Reprodução , Fertilização , Óvulo Vegetal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA