Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.272
Filtrar
1.
Int J Nanomedicine ; 19: 3143-3166, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585472

RESUMO

Background: The ability of nanomaterials to induce osteogenic differentiation is limited, which seriously imped the repair of craniomaxillofacial bone defect. Magnetic graphene oxide (MGO) nanocomposites with the excellent physicochemical properties have great potential in bone tissue engineering. In this study, we aim to explore the craniomaxillofacial bone defect repairment effect of MGO nanocomposites and its underlying mechanism. Methods: The biocompatibility of MGO nanocomposites was verified by CCK8, live/dead staining and cytoskeleton staining. The function of MGO nanocomposites induced osteogenic differentiation of BMSCs was investigated by ALP activity detection, mineralized nodules staining, detection of osteogenic genes and proteins, and immune-histochemical staining. BMSCs with or without MGO osteogenic differentiation induction were collected and subjected to high-throughput circular ribonucleic acids (circRNAs) sequencing, and then crucial circRNA circAars was screened and identified. Bioinformatics analysis, Dual-luciferase reporter assay, RNA binding protein immunoprecipitation (RIP), fluorescence in situ hybridization (FISH) and osteogenic-related examinations were used to further explore the ability of circAars to participate in MGO nanocomposites regulation of osteogenic differentiation of BMSCs and its potential mechanism. Furthermore, critical-sized calvarial defects were constructed and were performed to verify the osteogenic differentiation induction effects and its potential mechanism induced by MGO nanocomposites. Results: We verify the good biocompatibility and osteogenic differentiation improvement effects of BMSCs mediated by MGO nanocomposites. Furthermore, a new circRNA-circAars, we find and identify, is obviously upregulated in BMSCs mediated by MGO nanocomposites. Silencing circAars could significantly decrease the osteogenic ability of MGO nanocomposites. The underlying mechanism involved circAars sponging miR-128-3p to regulate the expression of SMAD5, which played an important role in the repair craniomaxillofacial bone defects mediated by MGO nanocomposites. Conclusion: We found that MGO nanocomposites regulated osteogenic differentiation of BMSCs via the circAars/miR-128-3p/SMAD5 pathway, which provided a feasible and effective strategy for the treatment of craniomaxillofacial bone defects.


Assuntos
Grafite , MicroRNAs , Nanocompostos , MicroRNAs/genética , Osteogênese/genética , RNA Circular , Hibridização in Situ Fluorescente , Óxido de Magnésio , Células Cultivadas , Regeneração Óssea , Fenômenos Magnéticos , Diferenciação Celular
2.
Open Vet J ; 14(1): 545-552, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38633155

RESUMO

Background: Nanoparticles are regarded as magical bullets because of their exclusive features. Recently, the usage of nanoparticles has progressed in almost all aspects of science and technology due to its ability to revolutionize certain fields. In the field of food science and technology, the application of nanoparticles is being researched in many various areas thus provides the dairy industry with a variety of new attitudes for developing the quality, prolong shelf life, ensure the safety and healthiness of foods. Aim: This study aimed to focus on the application of some inorganic metal oxide nanoparticles (zinc oxide (ZnO), magnesium oxide (MgO), and calcium oxide (CaO)) to control E. coli in raw milk and ensure its safety. Methods: The antibacterial action of certain nanoparticles (ZnO, MgO, and CaO) with multiple concentrations (0.1, 0.05, 0.025, 0.0125, 0.006, and 0.003 mg/ml) was evaluated against E. coli strains in ultra heat treated (UHT) milk samples. Also, storage temperature and storage period effects were studied. Results: The findings of the current research revealed that inorganic metal oxide nanoparticles had a significant antibacterial role against E. coli, in the following order; ZnO, MgO, and CaO, respectively. The antibacterial effect of inorganic metal oxide nanoparticles is more noticeable at lower temperatures. Conclusion: Inorganic metal nanoparticles can be used in the food industry for the purpose of the control of E. coli, and extension of the shelf life of dairy products.


Assuntos
Compostos de Cálcio , Nanopartículas Metálicas , Óxido de Zinco , Animais , Escherichia coli , Óxido de Magnésio , Leite , Óxidos , Antibacterianos
3.
Molecules ; 29(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38611866

RESUMO

α-Dicarbonyls are significant degradation products resulting from the Maillard reaction during food processing. Their presence in foods can indicate the extent of heat exposure, processing treatments, and storage conditions. Moreover, they may be useful in providing insights into the potential antibacterial and antioxidant activity of U.S. honey. Despite their importance, the occurrence of α-dicarbonyls in honey produced in the United States has not been extensively studied. This study aims to assess the concentrations of α-dicarbonyls in honey samples from different regions across the United States. The identification and quantification of α-dicarbonyls were conducted using reverse-phase liquid chromatography after derivatization with o-phenylenediamine (OPD) and detected using ultraviolet (UV) and mass spectrometry methods. This study investigated the effects of pH, color, and derivatization reagent on the presence of α-dicarbonyls in honey. The quantification method was validated by estimating the linearity, precision, recovery, method limit of detection, and quantification using known standards for GO, MGO, and 3-DG, respectively. Three major OPD-derivatized α-dicarbonyls including methylglyoxal (MGO), glyoxal (GO), and 3-deoxyglucosone (3-DG), were quantified in all the honey samples. 3-Deoxyglucosone (3-DG) was identified as the predominant α-dicarbonyl in all the U.S. honey samples, with concentrations ranging from 10.80 to 50.24 mg/kg. The total α-dicarbonyl content ranged from 16.81 to 55.74 mg/kg, with the highest concentration measured for Southern California honey. Our results showed no significant correlation between the total α-dicarbonyl content and the measured pH solutions. Similarly, we found that lower amounts of the OPD reagent are optimal for efficient derivatization of MGO, GO, and 3-DG in honey. Our results also indicated that darker types of honey may contain higher α-dicarbonyl content compared with lighter ones. The method validation results yielded excellent recovery rates for 3-DG (82.5%), MGO (75.8%), and GO (67.0%). The method demonstrated high linearity with a limit of detection (LOD) and limit of quantitation (LOQ) ranging from 0.0015 to 0.002 mg/kg and 0.005 to 0.008 mg/kg, respectively. Our results provide insights into the occurrence and concentrations of α-dicarbonyl compounds in U.S. honey varieties, offering valuable information on their quality and susceptibility to thermal processing effects.


Assuntos
Mel , Fenilenodiaminas , Óxido de Magnésio , Glioxal , Aldeído Pirúvico
4.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38612389

RESUMO

Alkaline earth metal oxide (MgO, CaO, SrO) catalysts supported on BEA zeolite were prepared by a wet impregnation method and tested in the transesterification reaction of rapeseed oil with methanol towards the formation of biodiesel (FAMEs-fatty acid methyl esters). To assess the influence of the SiO2/Al2O3 ratio on the catalytic activity in the tested reaction, a BEA zeolite carrier material with different Si/Al ratios was used. The prepared catalysts were tested in the transesterification reaction at temperatures of 180 °C and 220 °C using a molar ratio of methanol/oil reagents of 9:1. The transesterification process was carried out for 2 h with the catalyst mass of 0.5 g. The oil conversion value and efficiency towards FAME formation were determined using the HPLC technique. The physicochemical properties of the catalysts were determined using the following research techniques: CO2-TPD, XRD, BET, FTIR, and SEM-EDS. The results of the catalytic activity showed that higher activity in the tested process was confirmed for the catalysts supported on the BEA zeolite characterized by the highest silica/alumina ratio for the reaction carried out at a temperature of 220 °C. The most active zeolite catalyst was the 10% CaO/BEA system (Si/Al = 300), which showed the highest triglyceride (TG) conversion of 90.5% and the second highest FAME yield of 94.6% in the transesterification reaction carried out at 220 °C. The high activity of this system is associated with its alkalinity, high value of the specific surface area, the size of the active phase crystallites, and its characteristic sorption properties in relation to methanol.


Assuntos
Biocombustíveis , Zeolitas , Óxido de Magnésio , Metanol , Óleo de Brassica napus , Dióxido de Silício , Ácidos Graxos , Óxidos
5.
Sci Total Environ ; 926: 172172, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38575019

RESUMO

To improve the retention and slow-release abilities of nitrogen (N) and phosphorus (P), an 82 %-purity struvite fertilizer (MAP-BC) was synthesized using magnesium-modified biochar and a solution with a 2:1 concentration ratio of NH4+ to PO43- at a pH of 8. Batch microscopic characterizations and soil column leaching experiments were conducted to study the retention and slow-release mechanisms and desorption kinetics of MAP-BC. The slow-release mechanism revealed that the dissolution rate of high-purity struvite was the dominant factor of NP slow release. The re-adsorption of NH4+ and PO43- by biochar and unconsumed MgO prolonged slow release. Mg2+ ionized by MgO could react with PO43- released from struvite to form Mg3(PO4)2. The internal biochar exhibited electrostatic attraction and pore restriction towards NH4+, while magnesium modification and nutrient loading formed a physical antioxidant barrier that ensured long-term release. The water diffusion experiment showed a higher cumulative release rate for PO43- compared to NH4+, whereas in soil column leaching, the trend was reversed, suggesting that soil's competitive adsorption facilitated the desorption of NH4+ from MAP-BC. During soil leaching, cumulative release rates of NH4+ and PO43- from chemical fertilizers were 3.55-3.62 times faster than those from MAP-BC. The dynamic test data for NH4+ and PO43- in MAP-BC fitted the Ritger-Peppas model best, predicting release periods of 163 days and 166 days, respectively. The leaching performances showed that MAP-BC reduced leaching solution volume by 5.58 % and significantly increased soil large aggregates content larger than 0.25 mm by 24.25 %. The soil nutrients retention and pH regulation by MAP-BC reduced leaching concentrations of NP. Furthermore, MAP-BC significantly enhanced plant growth, and it is more suitable as a NP source for long-term crops. Therefore, MAP-BC is expected to function as a long-term and slow-release fertilizer with the potential to minimize NP nutrient loss and replace part of quick-acting fertilizer.


Assuntos
Fertilizantes , Magnésio , Estruvita/química , Magnésio/química , Fertilizantes/análise , Óxido de Magnésio , Fósforo/química , Carvão Vegetal/química , Solo/química , Nitrogênio/análise
6.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38673825

RESUMO

This work is devoted to magnesium oxide (MgO) nanoparticles (NPs) for their use as additives for bone implants. Extracts from four different widely used plants, including Aloe vera, Echeveria elegans, Sansevieria trifasciata, and Sedum morganianum, were evaluated for their ability to facilitate the "green synthesis" of MgO nanoparticles. The thermal stability and decomposition behavior of the MgONPs were analyzed by thermogravimetric analysis (TGA). Structure characterization was performed by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), ultraviolet-visible spectroscopy (UV-Vis), dynamic light scattering (DLS), and Raman scattering spectroscopy (RS). Morphology was studied by scanning electron microscopy (SEM). The photocatalytic activity of MgO nanoparticles was investigated based on the degradation of methyl orange (MeO) using UV-Vis spectroscopy. Surface-enhanced Raman scattering spectroscopy (SERS) was used to monitor the adsorption of L-phenylalanine (L-Phe) on the surface of MgONPs. The calculated enhancement factor (EF) is up to 102 orders of magnitude for MgO. This is the first work showing the SERS spectra of a chemical compound immobilized on the surface of MgO nanoparticles.


Assuntos
Regeneração Óssea , Química Verde , Óxido de Magnésio , Extratos Vegetais , Análise Espectral Raman , Óxido de Magnésio/química , Química Verde/métodos , Regeneração Óssea/efeitos dos fármacos , Extratos Vegetais/química , Nanopartículas/química , Nanopartículas Metálicas/química , Difração de Raios X
7.
Int J Biol Macromol ; 267(Pt 1): 131471, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599419

RESUMO

The conversion of glucose into fructose can transform cellulose into high-value chemicals. This study introduces an innovative synthesis method for creating an MgO-based ordered mesoporous carbon (MgO@OMC) catalyst, aimed at the efficient isomerization of glucose into fructose. Throughout the synthesis process, lignin serves as the exclusive carbon precursor, while Mg2+ functions as both a crosslinking agent and a metallic active center. This enables a one-step synthesis of MgO@OMC via a solvent-induced evaporation self-assembly (EISA) method. The synthesized MgO@OMCs exhibit an impeccable 2D hexagonal ordered mesoporous structure, in addition to a substantial specific surface area (378.2 m2/g) and small MgO nanoparticles (1.52 nm). Furthermore, this catalyst was shown active, selective, and reusable in the isomerization of glucose to fructose. It yields 41 % fructose with a selectivity of up to 89.3 % at a significant glucose loading of 7 wt% in aqueous solution over MgO0.5@OMC-600. This performance closely rivals the current maximum glucose isomerization yield achieved with solid base catalysts. Additionally, the catalyst retains a fructose selectivity above 60 % even after 4 cycles, a feature attributable to its extended ordered mesoporous structure and the spatial confinement effect of the OMCs, bestowing it with high catalytic efficiency.


Assuntos
Carbono , Frutose , Glucose , Lignina , Óxido de Magnésio , Frutose/química , Lignina/química , Glucose/química , Carbono/química , Porosidade , Óxido de Magnésio/química , Catálise , Isomerismo
8.
Oncol Rep ; 51(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38577936

RESUMO

Cancer cells are characterized by increased glycolysis, known as the Warburg effect, which leads to increased production of cytotoxic methylglyoxal (MGO) and apoptotic cell death. Cancer cells often activate the protective nuclear factor erythroid 2­related factor2 (Nrf2)/glyoxalase1 (Glo1) system to detoxify MGO. The effects of sodium butyrate (NaB), a product of gut microbiota, on Nrf2/Glos/MGO pathway and the underlying mechanisms in prostate cancer (PCa) cells were investigated in the present study. Treatment with NaB induced the cell death and reduced the proliferation of PCa cells (DU145 and LNCap). Moreover, the protein kinase RNA-like endoplasmic reticulum kinase/Nrf2/Glo1 pathway was greatly inhibited by NaB, thereby accumulating MGO-derived adduct hydroimidazolone (MG-H1). In response to a high amount of MGO, the expression of Nrf2 and Glo1 was attenuated, coinciding with an increased cellular death. NaB also markedly inhibited the Janus kinase 2 (JAK2)/Signal transducer and activator of transcription 3 (Stat3) pathway. Conversely, co­treatment with Colivelin, a Stat3 activator, significantly reversed the effects of NaB on Glo1 expression, MG-H1 production, and the cell migration and viability. As expected, overexpression of Stat3 or Glo1 reduced NaB­induced cell death. The activation of calcium/calmodulin dependent protein kinase II gamma and reactive oxygen species production also contributed to the anticancer effect of NaB. The present study, for the first time, demonstrated that NaB greatly increases MGO production through suppression of the JAK2/Stat3/Nrf2/Glo1 pathway in DU145 cells, a cell line mimicking castration­resistant PCa (CRPC), suggesting that NaB may be a potential agent for PCa therapy.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Humanos , Masculino , Ácido Butírico/farmacologia , Janus Quinase 2/metabolismo , Óxido de Magnésio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Aldeído Pirúvico/metabolismo , Fator de Transcrição STAT3/metabolismo
9.
Bioprocess Biosyst Eng ; 47(5): 753-766, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38573334

RESUMO

Green synthesis of metal oxides as a treatment for bone diseases is still exploring. Herein, MgO and Fe2O3 NPs were prepared from the extract of Hibiscus sabdariffa L. to study their effect on vit D3, Ca+2, and alkaline phosphatase enzyme ALP associated with osteoporosis. Computational chemistry was utilized to gain insight into the possible interactions. These oxides were characterized by X-ray diffraction, SEM, FTIR, and AFM. Results revealed that green synthesis of MgO and Fe2O3 NPs was successful with abundant. MgO NPs were in vitro applied on osteoporosis patients (n = 35) and showed a significant elevation of vit D3 and Ca+2 (0.0001 > p < 0.001) levels, compared to healthy volunteers (n = 25). Thus, Hibiscus sabdariffa L. is a good candidate to prepare MgO NPs, with a promising enhancing effect on vit D3 and Ca+2 in osteoporosis. In addition, interactions of Fe2O3 and MgO NPs with ALP were determined by molecular docking study.


Assuntos
Hibiscus , Óxido de Magnésio , Osteoporose , Hibiscus/química , Humanos , Osteoporose/tratamento farmacológico , Óxido de Magnésio/química , Compostos Férricos/química , Extratos Vegetais/química , Feminino , Masculino , Cálcio/química , Simulação de Acoplamento Molecular , Nanopartículas Metálicas/química , Pessoa de Meia-Idade , Óxidos/química , Fosfatase Alcalina/metabolismo , Colecalciferol/química , Colecalciferol/farmacologia
10.
Environ Sci Pollut Res Int ; 31(20): 30149-30162, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38602634

RESUMO

Nanoparticles, particularly magnesium oxide nanoparticles (MgO-NPs), are increasingly utilized in various fields, yet their potential impact on cellular systems remains a topic of concern. This study aimed to comprehensively investigate the molecular mechanisms underlying MgO-NP-induced cellular impairment in Saccharomyces cerevisiae, with a focus on cell wall integrity, endoplasmic reticulum (ER) stress response, mitochondrial function, lipid metabolism, autophagy, and epigenetic alterations. MgO-NPs were synthesized through a chemical reduction method, characterized for morphology, size distribution, and elemental composition. Concentration-dependent toxicity assays were conducted to evaluate the inhibitory effect on yeast growth, accompanied by propidium iodide (PI) staining to assess membrane damage. Intracellular reactive oxygen species (ROS) accumulation was measured, and chitin synthesis, indicative of cell wall perturbation, was examined along with the expression of chitin synthesis genes. Mitochondrial function was assessed through Psd1 localization, and ER structure was analyzed using dsRed-HDEL marker. The unfolded protein response (UPR) pathway activation was monitored, and lipid droplet formation and autophagy induction were investigated. Results demonstrated a dose-dependent inhibition of yeast growth by MgO-NPs, with concomitant membrane damage and ROS accumulation. Cell wall perturbation was evidenced by increased chitin synthesis and upregulation of chitin synthesis genes. MgO-NPs impaired mitochondrial function, disrupted ER structure, and activated the UPR pathway. Lipid droplet formation and autophagy were induced, indicating cellular stress responses. Additionally, MgO-NPs exhibited differential cytotoxicity on histone mutant strains, implicating specific histone residues in cellular response to nanoparticle stress. Immunoblotting revealed alterations in histone posttranslational modifications, particularly enhanced methylation of H3K4me. This study provides comprehensive insights into the multifaceted effects of MgO-NPs on S. cerevisiae, elucidating key molecular pathways involved in nanoparticle-induced cellular impairment. Understanding these mechanisms is crucial for assessing nanoparticle toxicity and developing strategies for safer nanoparticle applications.


Assuntos
Parede Celular , Estresse do Retículo Endoplasmático , Óxido de Magnésio , Nanopartículas , Saccharomyces cerevisiae , Saccharomyces cerevisiae/efeitos dos fármacos , Óxido de Magnésio/toxicidade , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Nanopartículas/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Autofagia/efeitos dos fármacos
11.
Talanta ; 273: 125915, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38522188

RESUMO

Aflatoxin (AFs) contamination is one of the serious food safety issues. Aflatoxin B1 (AFB1) is the most common and toxic aflatoxin, which has been classified as a class 1 carcinogen by the International Agency for Research on Cancer (IARC). It is extremely destructive to liver tissue. Developing a convenient and sensitive detection technique is essential. In this paper, we developed a homogeneous dual recognition strategy based electrochemical aptasensor for accurate and sensitive detection of aflatoxin B1 (AFB1) based on the magnetic graphene oxide (MGO) and UiO-66. The MGO was synthesized for the recognition and magnetic separation of AFB1 from complex samples. UiO-66/ferrocenecarboxylic acid (Fc)/aptamer composites were constructed as both recognition and signal probes. The probes would specifically capture AFB1 enriched by MGO, which enables dual recognition in homogeneous solution, thus further improving the accuracy of AFB1 detection. The electrochemical aptasensor for AFB1 had a linear range from 0.005 to 500 ng mL-1. Additionally, the limit of detection was 1 pg mL-1. It shows a favorable potential for both sensitive and accurate detection of AFB1 in real samples.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Grafite , Estruturas Metalorgânicas , Ácidos Ftálicos , Aflatoxina B1/análise , Óxido de Magnésio , Técnicas Biossensoriais/métodos , Limite de Detecção , Fenômenos Magnéticos , Técnicas Eletroquímicas/métodos
12.
Environ Pollut ; 347: 123737, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38462190

RESUMO

Heavy metals contamination critically affects human health and ecosystems, necessitating pioneering approaches to diminish their adverse impacts. Hence, this study synthesized aminated magnetic graphene oxide (mGO-NH2) for the removal of mercury (Hg) from aqueous solutions. Although functionalized GO is an emerging technology at the early stages of development, its synthesis and application require special attention to the eco-environmental assessment. Therefore, the life cycle assessment and life cycle cost of mGO-NH2 were investigated from the cradle-to-gate approach for the removal of 1 kg Hg. The adsorption process was optimized based on pH, Hg concentration, adsorbent dose, and contact time at 6.48, 40 mg/l, 150 mg/l, and 35 min, respectively, resulting in an adsorption capacity of 184.17 mg/g. Human carcinogenic toxicity with a 40.42% contribution was the main environmental impact, relating to electricity (35.76%) and ethylenediamine (31.07%) usage. The endpoint method also revealed the pivotal effect of the mGO-NH2 synthesis on human health (90.52%). The most energy demand was supplied by natural gas and crude oil accounting for 70.8% and 22.1%, respectively. A 99.02% CO2 emission originated from fossil fuels consumption based on the greenhouse gas protocol (GGP). The cost of mGO-NH2 was about $143.7/kg with a net present value of $21064.8 per kg Hg removal for a 20-year lifetime. Considering the significant role of material cost (>70%), the utilization of industrial-grade raw materials is recommended to achieve a low-cost adsorbent. This study demonstrated that besides the appropriate performance of mGO-NH2 for Hg removal, it is essential that further studies evaluate eco-friendly approaches to decrease the adverse impacts of this emerging product.


Assuntos
Grafite , Mercúrio , Poluentes Químicos da Água , Humanos , Animais , Mercúrio/análise , Carbono , Análise Custo-Benefício , Ecossistema , Óxido de Magnésio , Adsorção , Fenômenos Magnéticos , Estágios do Ciclo de Vida , Cinética , Poluentes Químicos da Água/análise
13.
Chemosphere ; 354: 141735, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38499075

RESUMO

In Japan, the concentration of fluoride (F-) leached from rocks, such as tuff breccia, excavated in tunnel construction projects often exceeds the Japanese environmental standard of 0.8 mg/L. Because of this, proper disposal methods are necessary for managing F--bearing excavated rocks. One effective solution based on circular economy is the use of an adsorption layer system. This system can simultaneously prevent the migration of F- released from excavated rocks and allow the recycling of this construction waste material. To determine the most suitable material for the disposal of excavated F--bearing tuff breccia from a tunnel construction in Hokkaido, Japan, four types of natural geological materials (S-1, S-2, S-3, and S-4) obtained near the tunnel construction site, as well as three types of commercial adsorbents (calcium (Ca), magnesium (Mg), and CaMg adsorbents) were selected for evaluation. The batch adsorption test results showed that S-1 and S-4 had high adsorption capacities for F-, and the adsorption process followed the Langmuir isotherm. The adsorption of F- to the natural adsorbents was strongly influenced by the pH and the presence of bicarbonate ions (HCO3-), but unaffected by chloride (Cl-) and sulfate (SO42-). There was also a strong positive correlation between the abundance of amorphous aluminum (Al) and iron (Fe) extracted and the adsorption of F-, indicating the importance of ion exchange reactions associated with surface OH- in immobilizing F-. Meanwhile, the Mg-bearing adsorbent exhibited the highest adsorption affinity for F- among the commercial adsorbents. This was attributed to adsorption through electrostatic interactions and coprecipitation with magnesium hydroxide (Mg(OH)2) formed during the hydration of magnesium oxide (MgO). To effectively incorporate these adsorbents into the adsorption layer system, parameters such as permeability and residence time need to be determined in order to maximize the retention of F- through adsorption, ion exchange and coprecipitation reactions.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Fluoretos , Purificação da Água/métodos , Óxido de Magnésio , Alumínio , Magnésio , Adsorção , Cinética , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio
14.
Colloids Surf B Biointerfaces ; 237: 113860, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38520951

RESUMO

Biodegradable electrospun bone repair materials are effective means to treat bone defects. However, because the electrospun substrates are mostly organic polymer materials, there is a lack of real-time and intuitive monitoring methods for their degradation in vivo. Therefore, it is of great significance to develop in vivo traced electrospun bone repair materials for postoperative observation of their degradation. In this research, polycaprolactone/up-conversion nanoparticles/magnesium oxide (PCL/UCNPs/MgO) composite scaffolds were prepared by electrospun based on the luminescence characteristics of up-conversion nanoparticles (UCNPs) under near infrared excitation and the osteogenic ability of MgO. The in vivo and in vitro degradation results showed that with the increase of time, the electrospun scaffolds gradually degraded and its luminescence intensity decreased. The addition of UCNPs can effectively monitor the degradation of the scaffolds. In addition, the prepared electrospun scaffolds had great biocompatibility, among which PCL-1%UCNPs-1%MgO (P1U1M) electrospun scaffolds had obvious effect on promoting osteogenic differentiation of mouse embryonic osteoblasts cells (MC3T3-E1) in vitro. In conclusion, P1U1M electrospun scaffolds have the potential to induce bone regeneration at bone defect sites, and can monitor the degradation of electrospun scaffolds. It may be a potential candidate material for bone regeneration in defect area.


Assuntos
Osteogênese , Alicerces Teciduais , Camundongos , Animais , Engenharia Tecidual/métodos , Óxido de Magnésio , Regeneração Óssea , Poliésteres/farmacologia
15.
J Dent ; 144: 104952, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38508442

RESUMO

OBJECTIVES: Evaluation of the two-body wear of lithium-silicate ceramics against different antagonists compared to a direct resin composite and human teeth. METHODS: Initial LiSi Block [LISI], IPS e.max CAD [EMA], and CEREC Tessera [TESE] were investigated and compared with direct resin composite [FILL] and human teeth [tooth]. As antagonists were used: steatite, ceramic, and human enamel. The control group tooth was only tested with enamel antagonist. The combinations underwent thermomechanical aging using a chewing simulator. Material losses were calculated using GOM-analysis software. Kolmogorov-Smirnov test, Kruskal-Wallis H, Mann-Whitney-U-test with Bonferroni correction and Spearman-rho correlation were calculated. A fractographic analysis was performed. RESULTS: Within TESE, enamel antagonists led to lower restoration losses than steatite and ceramic antagonists. Within FILL, enamel and steatite antagonists caused lower material losses compared to ceramic antagonists. Against steatite antagonists, LISI showed lowest material losses. Against ceramic antagonists, the use of LISI led to lower material losses compared to FILL. Against tooth antagonists, TESE showed lower material losses than tooth and FILL and LISI lower than FILL. Within LISI, steatite antagonists showed lower material losses on the antagonist than ceramic. Within EMA, steatite antagonists showed higher material losses than ceramic ones. Within ceramic antagonists, LISI restoration material showed lower material losses than FILL and EMA. CONCLUSIONS: Regardless of the antagonist material, the material losses of LISI and EMA were comparable. However, the abrasion resistance of LISI tended to be higher than EMA. CLINICAL SIGNIFICANCE: LISI is a fully crystallized lithium-silicate ceramic and no longer needs to be processed after milling. In addition, the abrasion resistance is very good, regardless of the antagonist material chosen.


Assuntos
Cerâmica , Resinas Compostas , Esmalte Dentário , Porcelana Dentária , Óxido de Magnésio , Teste de Materiais , Dióxido de Silício , Humanos , Resinas Compostas/química , Porcelana Dentária/química , Esmalte Dentário/efeitos dos fármacos , Cerâmica/química , Materiais Dentários/química , Silicatos/química , Propriedades de Superfície , Desgaste de Restauração Dentária , Desenho Assistido por Computador , Lítio
16.
Sci Adv ; 10(10): eadk6084, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457498

RESUMO

The emerging therapeutic strategies for osteoarthritis (OA) are shifting toward comprehensive approaches that target periarticular tissues, involving both cartilage and subchondral bone. This shift drives the development of single-component therapeutics capable of acting on multiple tissues and cells. Magnesium, an element essential for maintaining skeletal health, shows promise in treating OA. However, the precise effects of magnesium on cartilage and subchondral bone are not yet clear. Here, we investigated the therapeutic effect of Mg2+ on OA, unveiling its protective effects on both cartilage and bone at the cellular and animal levels. The beneficial effect on the cartilage-bone interaction is primarily mediated by the PI3K/AKT pathway. In addition, we developed poly(lactic-co-glycolic acid) (PLGA) microspheres loaded with nano-magnesium oxide modified with stearic acid (SA), MgO&SA@PLGA, for intra-articular injection. These microspheres demonstrated remarkable efficacy in alleviating OA in rat models, highlighting their translational potential in clinical applications.


Assuntos
Cartilagem Articular , Nanopartículas , Osteoartrite , Ratos , Animais , Óxido de Magnésio/farmacologia , Magnésio/farmacologia , Fosfatidilinositol 3-Quinases , Osteoartrite/tratamento farmacológico
17.
J Agric Food Chem ; 72(14): 8027-8038, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38529939

RESUMO

There is considerable research evidence that α-dicarbonyl compounds, including glyoxal (GO) and methylglyoxal (MGO), are closely related to many chronic diseases. In this work, after comparison of the capture capacity, reaction pathway, and reaction rate of synephrine (SYN) and neohesperidin (NEO) on GO/MGO in vitro, experimental mice were administrated with SYN and NEO alone and in combination. Quantitative data from UHPLC-QQQ-MS/MS revealed that SYN/NEO/HES (hesperetin, the metabolite of NEO) could form the GO/MGO-adducts in mice (except SYN-MGO), and the levels of GO/MGO-adducts in mouse urine and fecal samples were dose-dependent. Moreover, SYN and NEO had a synergistic scavenging effect on GO in vivo by promoting each other to form more GO adducts, while SYN could promote NEO to form more MGO-adducts, although it could not form MGO-adducts. Additionally, human experiments showed that the GO/MGO-adducts of SYN/NEO/HES found in mice were also detected in human urine and fecal samples after drinking flowers of Citrus aurantium L. var. amara Engl. (FCAVA) tea using UHPLC-QTOF-MS/MS. These findings provide a novel strategy to reduce endogenous GO/MGO via the consumption of dietary FCAVA rich in SYN and NEO.


Assuntos
Citrus , Hesperidina/análogos & derivados , Aldeído Pirúvico , Humanos , Animais , Camundongos , Glioxal , Sinefrina , Espectrometria de Massas em Tandem , Óxido de Magnésio , Flores
18.
Sci Total Environ ; 926: 171808, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38508273

RESUMO

Enteric methane (CH4) produced by ruminant livestock is a potent greenhouse gas and represents significant energy loss for the animal. The novel application of oxidising compounds as antimethanogenic agents with future potential to be included in ruminant feeds, was assessed across two separate experiments in this study. Low concentrations of oxidising agents, namely urea hydrogen peroxide (UHP) with and without potassium iodide (KI), and magnesium peroxide (MgO2), were investigated for their effects on CH4 production, total gas production (TGP), volatile fatty acid (VFA) profiles, and nutrient disappearance in vitro using the rumen simulation technique. In both experiments, the in vitro diet consisted of 50:50 grass silage:concentrate on a dry matter basis. Treatment concentrations were based on the amount of oxygen delivered and expressed in terms of fold concentration. In Experiment 1, four treatments were tested (Control, 1× UHP + KI, 1× UHP, and 0.5× UHP + KI), and six treatments were assessed in Experiment 2 (Control, 0.5× UHP + KI, 0.5× UHP, 0.25× UHP + KI, 0.25× UHP, and 0.12× MgO2). All treatments in this study had a reducing effect on CH4 parameters. A dose-dependent reduction of TGP and CH4 parameters was observed, where treatments delivering higher levels of oxygen resulted in greater CH4 suppression. 1× UHP + KI reduced TGP by 28 % (p = 0.611), CH4% by 64 % (p = 0.075) and CH4 mmol/g digestible organic matter by 71 % (p = 0.037). 0.12× MgO2 reduced CH4 volume by 25 % (p > 0.05) without affecting any other parameters. Acetate-to-propionate ratios were reduced by treatments in both experiments (p < 0.01). Molar proportions of acetate and butyrate were reduced, while propionate and valerate were increased in UHP treatments. High concentrations of UHP affected the degradation of neutral detergent fibre in the forage substrate. Future in vitro work should investigate alternative slow-release oxygen sources aimed at prolonging CH4 suppression.


Assuntos
Propionatos , Rúmen , Animais , Feminino , Propionatos/metabolismo , Metano/metabolismo , Óxido de Magnésio/metabolismo , Dieta , Silagem/análise , Ruminantes , Acetatos/metabolismo , Oxigênio/metabolismo , Ração Animal/análise , Fermentação , Digestão , Lactação
19.
Int J Biol Macromol ; 265(Pt 2): 130835, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492694

RESUMO

An unexplored hybrid superporous hydrogel (MHSPH) of Dillenia indica fruit mucilage (DIFM) and carrageenan blend embedded with green synthesized magnesium oxide nanoparticles (MNPs) is utilized as an effective wound dressing material with appreciable mechanical strength in murine model. The prepared MNPs and the optimized MHSPH were characterized using X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier transform infrared (FT- IR) spectroscopy. Size, zeta potential and morphology of MNPs was assessed using Dynamic light scattering technique (DLS) and field-emission scanning electron microscopy (FESEM) respectively. The MHSPH grades were further optimized using swelling study in phosphate buffer solution at pH 1.2, 7.0, and 8. Both MNPs and the optimized grade of MHSPH were evaluated based on hemolysis assay, and protein denaturation assays indicating them to be safe for biological use. Acute toxicity studies of the optimized MHSPH on Zebra fish model, revealed no observable toxic effect on the gill cells. Wound healing in Swiss albino mice with application of optimized grade of MHSPH took only 11 days for healing when compared to control mice where healing took 14 days, thus concluding that MHSPH as an effective dressing material as well as tissue regrowth scaffold.


Assuntos
Dilleniaceae , Nanopartículas Metálicas , Nanopartículas , Animais , Camundongos , Carragenina/química , Hidrogéis/química , Óxido de Magnésio , Bandagens , Espectroscopia de Infravermelho com Transformada de Fourier , Antibacterianos/farmacologia , Nanopartículas Metálicas/química
20.
Chemosphere ; 355: 141776, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522667

RESUMO

The efficient removal of phosphate from water environments was extremely significant to control eutrophication of water bodies and prevent further deterioration of water quality. In this study, oxygen vacancy-rich magnesium oxide (OV-MgO) microspheres were synthesized by a simple solvothermal method coupling high-temperature calcination. The effects of adsorbent dosage, contact time, initial pH and coexisting components on phosphate adsorption performance were examined. The physicochemical properties of OV-MgO microspheres and the phosphate removal mechanisms were analyzed by various characterization techniques. The maximum adsorption capacity predicted by the Sips isotherm model was 379.7 mg P/g for OV-MgO microspheres. The phosphate adsorption in this study had a fast adsorption kinetics and a high selectivity. OV-MgO microspheres had a good acid resistance for phosphate adsorption, but their adsorption capacity decreased under alkaline conditions. The electrostatic attraction, ligand exchange, surface precipitation, inner-sphere surface complexation and oxygen vacancy capture were mainly responsible for efficient removal of phosphate from aqueous solutions. This study probably promoted the development of oxygen vacancy-rich metal (hydr)oxides with potential application prospects.


Assuntos
Fosfatos , Poluentes Químicos da Água , Fosfatos/química , Óxido de Magnésio/química , Microesferas , Poluentes Químicos da Água/análise , Cinética , Adsorção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA