Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 6869, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34824256

RESUMO

As the major component of cell membranes, phosphatidylcholine (PC) is synthesized de novo in the Kennedy pathway and then undergoes extensive deacylation-reacylation remodeling via Lands' cycle. The re-acylation is catalyzed by lysophosphatidylcholine acyltransferase (LPCAT) and among the four LPCAT members in human, the LPCAT3 preferentially introduces polyunsaturated acyl onto the sn-2 position of lysophosphatidylcholine, thereby modulating the membrane fluidity and membrane protein functions therein. Combining the x-ray crystallography and the cryo-electron microscopy, we determined the structures of LPCAT3 in apo-, acyl donor-bound, and acyl receptor-bound states. A reaction chamber was revealed in the LPCAT3 structure where the lysophosphatidylcholine and arachidonoyl-CoA were positioned in two tunnels connected near to the catalytic center. A side pocket was found expanding the tunnel for the arachidonoyl CoA and holding the main body of arachidonoyl. The structural and functional analysis provides the basis for the re-acylation of lysophosphatidylcholine and the substrate preference during the reactions.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase/química , Fosfolipídeos/química , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Acil Coenzima A/química , Acil Coenzima A/metabolismo , Acilação , Animais , Domínio Catalítico , Galinhas , Microscopia Crioeletrônica , Cristalografia por Raios X , Lisofosfatidilcolinas/química , Lisofosfatidilcolinas/metabolismo , Modelos Moleculares , Fosfolipídeos/metabolismo , Multimerização Proteica , Relação Estrutura-Atividade , Especificidade por Substrato
2.
FASEB J ; 35(6): e21501, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33956375

RESUMO

Platelet-activating factor (PAF) is a potent proinflammatory phospholipid mediator that elicits various cellular functions and promotes several pathological events, including anaphylaxis and neuropathic pain. PAF is biosynthesized by two types of lyso-PAF acetyltransferases: lysophosphatidylcholine acyltransferase 1 (LPCAT1) and LPCAT2, which are constitutive and inducible forms of lyso-PAF acetyltransferase, respectively. Because LPCAT2 mainly produces PAF under inflammatory stimuli, understanding the structure of LPCAT2 is important for developing specific drugs against PAF-related inflammatory diseases. Although the structure of LPCAT2 has not been determined, the crystal structure was reported for Thermotoga maritima PlsC, an enzyme in the same gene family as LPCAT2. Here, we identified residues in mouse LPCAT2 essential for its enzymatic activity and a potential acyl-coenzyme A (CoA)-binding pocket, based on homology modeling of mouse LPCAT2 with PlsC. We also found that Ala115 of mouse LPCAT2 was important for acyl-CoA selectivity. In conclusion, these results predict the three-dimensional (3D) structure of mouse LPCAT2. Our findings have implications for the future development of new drugs against PAF-related diseases.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase/química , Acil Coenzima A/metabolismo , Modelos Moleculares , Mutação , 1-Acilglicerofosfocolina O-Aciltransferase/genética , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Sequência de Aminoácidos , Animais , Domínio Catalítico , Camundongos , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica , Homologia de Sequência
3.
J Nutr Biochem ; 51: 1-7, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29078075

RESUMO

Green tea (GT) is a widely consumed beverage with health benefits, including antiobesity effects; however, the efficacy of GT on lipid levels associated with obesity is not clearly understood. Here, we examined the impact of GT consumption on lipid metabolism in the livers of high-fat diet (HFD)-induced obese mice. We performed lipid profiling using ultraperformance liquid chromatography quadrupole time-of-flight mass spectrometry in C57BL/6J mice fed a normal diet (ND), HFD and HFD with GT for 12 weeks. The partial least squares discriminant analysis score plot showed a difference among the groups and revealed that the levels of several lipid metabolites were altered in mice fed HFD with GT. The decreased levels of lysophospholipids (LPLs), such as lysophosphatidylcholine, lysophosphatidylethanolamine and lysophosphatidylserine, in HFD mice compared to those of the ND group were recovered by supplementation of GT. In agreement with these lipid metabolites changes, hepatic lysophosphatidylcholine acyltransferase 2/4 was significantly increased in HFD mice. This study showed abnormal changes in lipid species associated with obesity, and these levels were attenuated by GT intake, suggesting a relationship between the reduction of hepatic LPL levels and inflammation in obesity.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Fármacos Antiobesidade/uso terapêutico , Camellia sinensis/química , Suplementos Nutricionais , Metabolismo dos Lipídeos , Fígado/metabolismo , Obesidade/dietoterapia , Extratos Vegetais/uso terapêutico , 1-Acilglicerofosfocolina O-Aciltransferase/química , 1-Acilglicerofosfocolina O-Aciltransferase/genética , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Citocinas/genética , Citocinas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Análise Discriminante , Regulação Enzimológica da Expressão Gênica , Isoenzimas/genética , Isoenzimas/metabolismo , Fígado/imunologia , Fígado/patologia , Lisofosfolipídeos/química , Lisofosfolipídeos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Obesidade/imunologia , Obesidade/metabolismo , Obesidade/patologia , Folhas de Planta/química , Distribuição Aleatória
4.
Biochem Biophys Res Commun ; 493(1): 340-345, 2017 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-28888983

RESUMO

The Arabidopsis thaliana lysophospholipid acyltransferase At1g78690 acylates a variety of lysophospholipids such as lyso phosphatidylglycerol, lyso phosphatidylethanolamine and lyso phosphatidylserine. Despite di-acylate phosphatidylglycerol being a substrate, overexpression of At1g78690 in Escherichia coli leads to the accumulation of acyl-PG. Here we show that cardiolipin also accumulates in cells overexpressing At1g78690. To help try and explain this observation, we show, using a liquid chromatography mass spectrometry (LC-MS) based assay, that At1g78690 utilizes both mono- and di-lyso cardiolipin as an acyl acceptor. Because At1g78690 shares high homology (∼40%) with the cardiolipin remodeling enzyme tafazzin, we also tested whether At1g78690 was able to catalyze a tafazzin-like transacylation reaction. Di-linoleoyl phosphatidylcholine was used as the acyl donor and mono-lyso cardiolipin was used as the acyl acceptor in a reaction and the reaction was monitored by LC-MS. No transfer of the linoleoyl chains was detected in an At1g78690 dependent manner suggesting that, despite the strong homology, these enzymes catalyze unique reactions.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase/química , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Arabidopsis/enzimologia , Cardiolipinas/química , Cardiolipinas/metabolismo , Acilação , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação , Ativação Enzimática , Ligação Proteica
5.
Genet Mol Res ; 15(3)2016 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-27706605

RESUMO

The enzymes 1,2-diacylglycerol cholinephosphotrans-ferase (CPT) and lysophosphatidylcholine acyltransferase (LPCAT) are important in lipid metabolism in soybean seeds. Thus, understand-ing the genes that encode these enzymes may enable their modification and aid the improvement of soybean oil quality. In soybean, the genes encoding these enzymes have not been completely described; there-fore, this study aimed to identify, characterize, and analyze the in silico expression of these genes in soybean. We identified two gene models encoding CPT and two gene models encoding LPCAT, one of which presented an alternative transcript. The sequences were positioned on the physical map of soybean and the promoter regions were analyzed. Cis-elements responsible for seed-specific expression and responses to biotic and abiotic stresses were identified. Virtual expression analysis of the gene models for CPT and LPCAT indicated that these genes are expressed under different stress conditions, in somatic embryos during differentiation, in immature seeds, root tissues, and calli. Putative ami-no acid sequences revealed the presence of transmembrane domains, and analysis of the cellular localization of these enzymes revealed they are located in the endoplasmic reticulum.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase/genética , Diacilglicerol Colinofosfotransferase/genética , Retículo Endoplasmático/enzimologia , Glycine max/genética , Proteínas de Plantas/genética , 1-Acilglicerofosfocolina O-Aciltransferase/química , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Processamento Alternativo , Sequência de Aminoácidos , Simulação por Computador , Diacilglicerol Colinofosfotransferase/química , Diacilglicerol Colinofosfotransferase/metabolismo , Retículo Endoplasmático/química , Retículo Endoplasmático/ultraestrutura , Expressão Gênica , Metabolismo dos Lipídeos/genética , Modelos Genéticos , Mapeamento Físico do Cromossomo , Células Vegetais/enzimologia , Células Vegetais/ultraestrutura , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/enzimologia , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sementes/citologia , Sementes/enzimologia , Alinhamento de Sequência , Glycine max/citologia , Glycine max/enzimologia
6.
Methods Mol Biol ; 1496: 187-95, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27632011

RESUMO

Determining the abundance of phospholipids and neutral lipids in cellular membranes is paramount to understanding their biological functions. Many lipid-modifying enzymes have yet to be characterized due to limitations in substrate-product measurements and purification of membrane-bound enzymes. The method described here uses radiolabeled phospholipid substrates and cell-purified organelles to quantify phospholipid metabolism using thin-layer chromatography. This assay has the benefits of being specific and adaptable for numerous applications and systems.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase/química , 1-Acilglicerofosfocolina O-Aciltransferase/isolamento & purificação , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Complexo de Golgi/enzimologia , Animais , Humanos
7.
J Lipid Res ; 56(11): 2143-50, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26382650

RESUMO

The esterification of lysophospholipids contributes to phospholipid synthesis, remodeling, and scavenging. Acyl-CoA-dependent lysophospholipid acyltransferase activity with broad substrate use is mediated by Saccharomyces cerevisiae Lpt1p. We sought to identify Lpt1p active site amino acids besides the histidine conserved among homologs and repeatedly found to be required for catalysis. In vitro Lpt1p assays with amino acid modifying agents implicated aspartate, glutamate, and lysine as active site residues. Threonine and tyrosine were not ruled out. Aligning the primary structures of functionally characterized LPT1 homologs from fungi, plants, and animals identified 11 conserved aspartate, glutamate, lysine, threonine, and tyrosine residues. Site-directed mutagenesis of the respective codons showed that changing D146 and E297 abolished activity without abolishing protein expression. The mechanism of Lpt1p was further analyzed using monounsaturated acyl-CoA species with different double bond positions. Delta 6 species showed the highest catalytic efficiency. We propose that D146 and E297 act in conjunction with H382 as nucleophiles that attack the hydroxyl group in lysophospholipids in a general acid/base mechanism. This sequential mechanism provides a precedent for other members of the membrane bound O-acyltransferase family. Also, Lpt1p optimally orients acyl-CoA substrates with 7.5 Å between a double bond and the thioester bond.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , 1-Acilglicerofosfocolina O-Aciltransferase/fisiologia , Acil Coenzima A/química , Sequência de Aminoácidos , Ácido Aspártico , Biocatálise , Sequência Conservada , Ácido Glutâmico , Cinética , Lisofosfolipídeos/química , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas de Saccharomyces cerevisiae/fisiologia
8.
Lipids ; 50(4): 407-16, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25753896

RESUMO

The aim of this study was to evaluate the importance of three enzymes, LPCAT, PDCT and PDAT, involved in acyl turnover in phosphatidylcholine in order to explore the possibility of further increasing erucic acid (22:1) content in Crambe seed oil. The complete coding sequences of LPCAT1-1 and LPCAT1-2 encoding lysophosphatidylcholine acyltransferase (LPCAT), PDCT1 and PDCT2 encoding phosphatidylcholine:diacylglycerol cholinephosphotransferase (PDCT), and PDAT encoding phospholipid:diacylglycerol acyltransferase (PDAT) were cloned from developing Crambe seeds. The alignment of deduced amino acid sequences displayed a high similarity to the Arabidopsis homologs. Transgenic lines expressing RNA interference (RNAi) targeting either single or double genes showed significant changes in the fatty acid composition of seed oil. An increase in oleic acid (18:1) was observed, to varying degrees, in all of the transgenic lines, and a cumulative effect of increased 18:1 was shown in the LPCAT-PDCT double-gene RNAi. However, LPCAT single-gene RNAi led to a decrease in 22:1 accumulation, while PDCT or PDAT single-gene RNAi had no obvious effect on the level of 22:1. In agreement with the abovementioned oil phenotypes, the transcript levels of the target genes in these transgenic lines were generally reduced compared to wild-type levels. In this paper, we discuss the potential to further increase the 22:1 content in Crambe seed oil through downregulation of these genes in combination with fatty acid elongase and desaturases.


Assuntos
Crambe (Planta)/enzimologia , Crambe (Planta)/genética , Ácidos Erúcicos/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Interferência de RNA , 1-Acilglicerofosfocolina O-Aciltransferase/química , 1-Acilglicerofosfocolina O-Aciltransferase/genética , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Aciltransferases/química , Aciltransferases/genética , Aciltransferases/metabolismo , Sequência de Aminoácidos , Crambe (Planta)/química , Crambe (Planta)/metabolismo , Ácidos Erúcicos/análise , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Óleos de Plantas/química , Óleos de Plantas/metabolismo , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/metabolismo , Sementes/química , Sementes/enzimologia , Sementes/genética , Sementes/metabolismo , Alinhamento de Sequência , Transferases (Outros Grupos de Fosfato Substituídos)/química , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo
9.
ACS Chem Biol ; 10(1): 115-21, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-25322207

RESUMO

Dynamic palmitoylation is an important post-translational modification regulating protein localization, trafficking, and signaling activities. The Asp-His-His-Cys (DHHC) domain containing enzymes are evolutionarily conserved palmitoyl acyltransferases (PATs) mediating diverse protein S-palmitoylation. Cerulenin is a natural product inhibitor of fatty acid biosynthesis and protein palmitoylation, through irreversible alkylation of the cysteine residues in the enzymes. Here, we report the synthesis and characterization of a "clickable" and long alkyl chain analogue of cerulenin as a chemical probe to investigate its cellular targets and to label and profile PATs in vitro and in live cells. Our results showed that the probe could stably label the DHHC-family PATs and enable mass spectrometry studies of PATs and other target proteins in the cellular proteome. Such probe provides a new chemical tool to dissect the functions of palmitoylating enzymes in cell signaling and diseases and reveals new cellular targets of the natural product cerulenin.


Assuntos
Cerulenina , Lipoilação , Sondas Moleculares , Processamento de Proteína Pós-Traducional , Proteínas/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/química , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Aciltransferases/química , Aciltransferases/metabolismo , Animais , Cerulenina/análogos & derivados , Cerulenina/síntese química , Química Click , Humanos , Sondas Moleculares/síntese química , Sondas Moleculares/química , Proteínas/química , Tioléster Hidrolases/química , Tioléster Hidrolases/metabolismo
10.
PLoS One ; 9(8): e102377, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25090090

RESUMO

N-3 polyunsaturated fatty acids (PUFA), such as docosahexaenoic acid (DHA, 22:6n-3), have been reported to play roles in preventing cardiovascular diseases. The major source of DHA is fish oils but a recent increase in the global demand of DHA and decrease in fish stocks require a substitute. Thraustochytrids, unicellular marine protists belonging to the Chromista kingdom, can synthesize large amounts of DHA, and, thus, are expected to be an alternative to fish oils. DHA is found in the acyl chain(s) of phospholipids as well as triacylglycerols in thraustochytrids; however, how thraustochytrids incorporate DHA into phospholipids remains unknown. We report here a novel lysophospholipid acyltransferase (PLAT1), which is responsible for the generation of DHA-containing phosphatidylcholine and phosphatidylethanolamine in thraustochytrids. The PLAT1 gene, which was isolated from the genomic DNA of Aurantiochytrium limacinum F26-b, was expressed in Saccharomyces cerevisiae, and the FLAG-tagged recombinant enzyme was characterized after purification with anti-FLAG affinity gel. PLAT1 shows wide specificity for donor substrates as well as acceptor substrates in vitro, i.e, the enzyme can adopt lysophosphatidylcholine, lysophosphatidylethanolamine, lysophosphatidylserine and lysophosphatidylinositol as acceptor substrates, and 15:0/16:0-CoA and DHA-CoA as donor substrates. In contrast to the in vitro experiment, only lysophosphatidylcholine acyltransferase and lysophosphatidylethanolamine acyltransferase activities were decreased in plat1-knockout mutants, resulting in a decrease of 16:0-DHA-phosphatidylcholine (PC) [PC(38:6)] and 16:0-DHA-phosphatidylethanolamine (PE) [PE(38:6)], which are two major DHA-containing phospholipids in A. limacinum F26-b. However, the amounts of other phospholipid species including DHA-DHA-PC [PC(44:12)] and DHA-DHA-PE [PE(44:12)] were almost the same in plat-knockout mutants and the wild-type. These results indicate that PLAT1 is the enzyme responsible for the generation of 16:0-DHA-PC and 16:0-DHA-PE in the thraustochytrid.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Ácido Palmítico/metabolismo , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Estramenópilas/enzimologia , 1-Acilglicerofosfocolina O-Aciltransferase/química , Acil Coenzima A/metabolismo , Sequência de Aminoácidos , Western Blotting , Clonagem Molecular , Espaço Intracelular/enzimologia , Lisofosfolipídeos/metabolismo , Redes e Vias Metabólicas , Dados de Sequência Molecular , Mutação/genética , Filogenia , RNA Ribossômico 18S/genética , Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato
11.
J Lipid Res ; 55(4): 782-91, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24563510

RESUMO

Lysophospholipid acyltransferases (LPATs) incorporate fatty acyl chains into phospholipids via a CoA-dependent mechanism and are important in remodeling phospholipids to generate the molecular species of phospholipids found in cells. These enzymes use one lysophospholipid and one acyl-CoA ester as substrates. Traditional enzyme activity assays engage a single substrate pair, whereas in vivo multiple molecular species exist. We describe here an alternative biochemical assay that provides a mixture of substrates presented to the microsomal extracts. Microsomal preparations from RAW 264.7 cells were used to compare traditional LPAT assays with data obtained using a dual substrate choice assay using six different lysophospholipids and eight different acyl-CoA esters. The complex mixture of newly synthesized phospholipid products was analyzed using LC-MS/MS. Both types of assays provided similar results, but the dual choice assay provided information about multiple fatty acyl chain incorporation into various phospholipid classes in a single reaction. Engineered suppression of LPCAT3 activity in RAW 264.7 cells was easily detected by the dual choice method. These findings demonstrate that this assay is both specific and sensitive and that it provides much richer biochemical detail than traditional assays.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase/química , 1-Acilglicerofosfocolina O-Aciltransferase/genética , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Animais , Ligação Competitiva , Ensaios Enzimáticos , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Lisofosfolipídeos/química , Camundongos , Microssomos/enzimologia
12.
J Biol Chem ; 288(52): 36902-14, 2013 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-24189065

RESUMO

Acyl-CoA:lysophosphatidylcholine acyltransferase (LPCAT) enzymes have central roles in acyl editing of phosphatidylcholine (PC). Plant LPCAT genes were expressed in yeast and characterized biochemically in microsomal preparations of the cells. Specificities for different acyl-CoAs were similar for seven LPCATs from five different species, including species accumulating hydroxylated acyl groups in their seed oil, with a preference for C18-unsaturated acyl-CoA and low activity with palmitoyl-CoA and ricinoleoyl (12-hydroxyoctadec-9-enoyl)-CoA. We showed that Arabidopsis LPCAT1 and LPCAT2 enzymes catalyzed the acylation and de-acylation of both sn positions of PC, with a preference for the sn-2 position. When acyl specificities of the Arabidopsis LPCATs were measured in the reverse reaction, sn-2-bound oleoyl, linoleoyl, and linolenoyl groups from PC were transferred to acyl-CoA to a similar extent. However, a ricinoleoyl group at the sn-2-position of PC was removed 4-6-fold faster than an oleoyl group in the reverse reaction, despite poor utilization in the forward reaction. The data presented, taken together with earlier published reports on in vivo lipid metabolism, support the hypothesis that plant LPCAT enzymes play an important role in regulating the acyl-CoA composition in plant cells by transferring polyunsaturated and hydroxy fatty acids produced on PC directly to the acyl-CoA pool for further metabolism or catabolism.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase/química , Proteínas de Arabidopsis/química , Arabidopsis/enzimologia , 1-Acilglicerofosfocolina O-Aciltransferase/genética , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Acil Coenzima A/química , Acil Coenzima A/genética , Acil Coenzima A/metabolismo , Acilação , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Catálise , Ácidos Graxos Insaturados/biossíntese , Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/genética , Dados de Sequência Molecular , Especificidade da Espécie
13.
J Biochem ; 154(1): 21-8, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23698096

RESUMO

Glycerophospholipids are main components of cellular membranes and have numerous structural and functional roles to regulate cellular functions. Polyunsaturated fatty acids, such as arachidonic acid and eicosapentaenoic acid, are mainly located at the sn-2, but not the sn-1 position of glycerophospholipids in an asymmetrical manner and the fatty acid compositions at both the sn-1 and sn-2 positions differ in various cell types and tissues. Asymmetry and diversity of membrane glycerophospholipids are generated in the remodelling pathway (Lands' cycle), which are conducted by the concerted actions of phospholipases A2 (PLA2s) and lysophospholipid acyltransferases (LPLATs). The Lands' cycle was first reported in the 1950s. While PLA2s have been well characterized, little is known about the LPLATs. Recently, several laboratories, including ours, isolated LPLATs that function in the Lands' cycle from the 1-acylglycerol-3-phosphate O-acyltransferase family and the membrane bound O-acyltransferases family. In this review, we summarize recent studies on cloning and characterization of LPLATs that contribute to membrane asymmetry and diversity.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Lipídeos de Membrana/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/química , 1-Acilglicerofosfocolina O-Aciltransferase/genética , Motivos de Aminoácidos , Animais , Membrana Celular/química , Membrana Celular/metabolismo , Humanos , Fluidez de Membrana , Lipídeos de Membrana/química , Redes e Vias Metabólicas , Camundongos , Modelos Biológicos
14.
Curr Opin Lipidol ; 23(4): 290-302, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22777291

RESUMO

PURPOSE OF REVIEW: Over the past several years, many more isoforms for the same enzymes, specifically for 1-acylglycerol-3-phosphate O-acyltransferases (AGPATs), have been cloned and studied. In this review, we summarize their biochemical features and discuss their functional role. RECENT FINDINGS: The most significant role of these AGPATs appeared from our observation of AGPAT2 in the biology of adipose tissue (adipocytes) in humans and mice. Other isoforms are shown to be implicated in lung, reproductive and cardiac muscle function and in the cause of cancer. In-vitro substrate specificities of these AGPATs also suggest the in-vivo role of these AGPATs in remodeling of several of the glycerophospholipids. SUMMARY: Despite significant progress in understanding the role of these AGPATs, much is still to be discovered in terms of how each of these AGPATs function in the presence or absence of other AGPATs and what their functional role might be.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase , 1-Acilglicerofosfocolina O-Aciltransferase , Doença , 1-Acilglicerol-3-Fosfato O-Aciltransferase/química , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , 1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/química , 1-Acilglicerofosfocolina O-Aciltransferase/genética , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Sequência de Aminoácidos , Animais , Doença/genética , Estudo de Associação Genômica Ampla , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Dados de Sequência Molecular
15.
BMC Biochem ; 13: 8, 2012 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-22676268

RESUMO

BACKGROUND: Unsaturated fatty acids are susceptible to oxidation and damaged chains are removed from glycerophospholipids by phospholipase A(2). De-acylated lipids are then re-acylated by lysophospholipid acyltransferase enzymes such as LPCAT1 which catalyses the formation of phosphatidylcholine (PC) from lysoPC and long-chain acyl-CoA. RESULTS: Activity of LPCAT1 is inhibited by Ca(2+), and a Ca(2+)-binding motif of the EF-hand type, EFh-1, was identified in the carboxyl-terminal domain of the protein. The residues Asp-392 and Glu-403 define the loop of the hairpin structure formed by EFh-1. Substitution of D(392) and E(403) to alanine rendered an enzyme insensitive to Ca(2+), which established that Ca(2+) binding to that region negatively regulates the activity of the acyltransferase amino-terminal domain. Residue Cys-211 of the conserved motif III is not essential for catalysis and not sufficient for sensitivity to treatment by sulfhydryl-modifier agents. Among the several active cysteine-substitution mutants of LPCAT1 generated, we identified one to be resistant to treatment by sulfhydryl-alkylating and sulfhydryl-oxidizer agents. CONCLUSION: Mutant forms of LPCAT1 that are not inhibited by Ca(2+) and sulfhydryl-alkylating and -oxidizing agents will provide a better understanding of the physiological function of a mechanism that places the formation of PC, and the disposal of the bioactive species lysoPC, under the control of the redox status and Ca(2+) concentration of the cell.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Cálcio/metabolismo , Fosfatidilcolinas/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/química , 1-Acilglicerofosfocolina O-Aciltransferase/genética , Acil Coenzima A/metabolismo , Alanina/metabolismo , Alquilação , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Biocatálise , Cisteína/metabolismo , Íons/química , Camundongos , Mutagênese Sítio-Dirigida , Oxirredução , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
16.
Genome Inform ; 22: 191-201, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20238429

RESUMO

Glycerophospholipids are major structural lipids in cellular membrane systems and play key roles as suppliers of the first and second messengers in the signal transduction and molecular recognition processes. The distribution of lipid components differs among organelles and cells. The distribution is controlled by two pathways in lipid metabolism: de nova and remodeling pathways. Glycerophospholipids including arachidonic and stearic acids are mostly produced in the remodeling pathway, whereas lipid chains are reconstructed from those synthesized in the de novo pathway. Recently lysophospholipid acyltransferases have been isolated as key enzymes in the remodeling pathway, and the substrate specificity has been investigated in terms of the chemical substructures of glycerophospholipids, such as the type of head groups and the length of aliphatic chains. These experimental studies have been reported for specific organisms, and only two representative sequence motifs are known for acyltransferases: a general pattern and the pattern for membrane-bound O-acyltransferase (MBOAT). Here we attempt to correlate the sequence patterns and the substrate specificity of lysophospholipid acyltransferases in 89 eukaryotic genomes in order to understand the roles of this enzyme family and underlying glycerophospholipid structural variations. Using phylogenetic and domain analyses, the lysophospholipid acyltransferase family was divided into 18 subtypes. Furthermore, we examined the occurrence of identified subtypes in eukaryotic genomes, and found the expansion of these subtypes in vertebrates. These findings may provide clues to understanding structural variations and distributions of glycerophospholipids in different organisms.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase/química , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Eucariotos/genética , Metabolismo dos Lipídeos , Fosfolipídeos/química , Fosfolipídeos/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/genética , Animais , Membrana Celular/metabolismo , Genoma , Filogenia , Especificidade por Substrato
18.
Mol Biol Cell ; 20(24): 5224-35, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19864461

RESUMO

Enzymes of the membrane-bound O-acyltransferase (MBOAT) family add fatty acyl chains to a diverse range of protein and lipid substrates. A chromosomal translocation disrupting human MBOAT1 results in a novel syndrome characterized by male sterility and brachydactyly. We have found that the Drosophila homologues of MBOAT1, Oysgedart (Oys), Nessy (Nes), and Farjavit (Frj), are lysophospholipid acyltransferases. When expressed in yeast, these MBOATs esterify specific lysophospholipids preferentially with unsaturated fatty acids. Generating null mutations for each gene allowed us to identify redundant functions for Oys and Nes in two distinct aspects of Drosophila germ cell development. Embryos lacking both oys and nes show defects in the ability of germ cells to migrate into the mesoderm, a process guided by lipid signals. In addition, oys nes double mutant adult males are sterile due to specific defects in spermatid individualization. oys nes mutant testes, as well as single, double, and triple mutant whole adult animals, show an increase in the saturated fatty acid content of several phospholipid species. Our findings suggest that lysophospholipid acyltransferase activity is essential for germline development and could provide a mechanistic explanation for the etiology of the human MBOAT1 mutation.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/enzimologia , Células Germinativas/enzimologia , 1-Acilglicerofosfocolina O-Aciltransferase/química , Alelos , Sequência de Aminoácidos , Animais , Movimento Celular , Proteínas de Drosophila/metabolismo , Embrião não Mamífero/citologia , Embrião não Mamífero/enzimologia , Fertilidade , Deleção de Genes , Células Germinativas/citologia , Lipídeos/química , Masculino , Dados de Sequência Molecular , Mutação/genética , Filogenia , Espermátides/enzimologia
19.
J Lipid Res ; 50(9): 1824-31, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19383981

RESUMO

Pulmonary surfactant is a complex of phospholipids and proteins lining the alveolar walls of the lung. It reduces surface tension in the alveoli, and is critical for normal respiration. Pulmonary surfactant phospholipids consist mainly of phosphatidylcholine (PC) and phosphatidylglycerol (PG). Although the phospholipid composition of pulmonary surfactant is well known, the enzyme(s) involved in its biosynthesis have remained obscure. We previously reported the cloning of murine lysophosphatidylcholine acyltransferase 1 (mLPCAT1) as a potential biosynthetic enzyme of pulmonary surfactant phospholipids. mLPCAT1 exhibits lysophosphatidylcholine acyltransferase (LPCAT) and lysophosphatidylglycerol acyltransferase (LPGAT) activities, generating PC and PG, respectively. However, the enzymatic activity of human LPCAT1 (hLPCAT1) remains controversial. We report here that hLPCAT1 possesses LPCAT and LPGAT activities. The activity of hLPCAT1 was inhibited by N-ethylmaleimide, indicating the importance of some cysteine residue(s) for the catalysis. We found a conserved cysteine (Cys(211)) in hLPCAT1 that is crucial for its activity. Evolutionary analyses of the close homologs of LPCAT1 suggest that it appeared before the evolution of teleosts and indicate that LPCAT1 may have evolved along with the lung to facilitate respiration. hLPCAT1 mRNA is highly expressed in the human lung. We propose that hLPCAT1 is the biosynthetic enzyme of pulmonary surfactant phospholipids.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Fosfatidilcolinas/biossíntese , 1-Acilglicerofosfocolina O-Aciltransferase/química , 1-Acilglicerofosfocolina O-Aciltransferase/genética , Sequência de Aminoácidos , Animais , Linhagem Celular , Clonagem Molecular , Sequência Conservada , Cisteína , DNA Complementar/genética , Etilmaleimida/farmacologia , Evolução Molecular , Regulação Enzimológica da Expressão Gênica , Glicosilação , Humanos , Soros Imunes , Pulmão/metabolismo , Camundongos , Dados de Sequência Molecular , Mutação , Oxirredução , Filogenia , Surfactantes Pulmonares/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Respiração , Homologia de Sequência de Aminoácidos , Compostos de Sulfidrila/metabolismo
20.
Biochem Biophys Res Commun ; 383(3): 320-5, 2009 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-19361486

RESUMO

Cellular membranes contain several classes of glycerophospholipids, which have numerous structural and functional roles in cells. Membrane diversity and asymmetry are important for membrane fluidity, curvature, and storage of lipid mediator precursors. Using acyl-CoAs, glycerophospholipids are first formed in the de novo pathway (Kennedy pathway), and then modified in the remodeling pathway (Lands' cycle) to generate mature membrane. Recently, several lysophospholipid acyltransferases (LPLATs) from two families, the 1-acylglycerol-3-phosphate O-acyltransferase (AGPAT) family and the membrane bound O-acyltransferase (MBOAT) family, were shown to function in the remodeling pathway. The MBOAT family possesses either LPLAT activity or protein O-acyltransferase activity. While the motifs of the AGPAT family have been well characterized, the MBOAT motifs remain unclear. In this study, we identified four MBOAT motifs essential for LPLAT activities by extensive site-directed mutagenesis. These findings further our understanding of the enzyme reaction mechanisms and will contribute to structure predictions for the MBOAT family enzymes.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase/química , Membrana Celular/enzimologia , Sequência Conservada , Proteínas de Membrana/química , 1-Acilglicerofosfocolina O-Aciltransferase/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Humanos , Proteínas de Membrana/genética , Camundongos , Dados de Sequência Molecular , Alinhamento de Sequência , Análise de Sequência de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA