RESUMO
The research aimed to investigate the solubility and thermodynamics of salicylic acid in two binary solvent mixtures of (1-propanol+propylene glycol) and (ethylene glycol monomethyl ether+1-propanol). The study was conducted in the temperature range of 293.2 to 313.2K. To analyze the experimental solubility data, several linear and nonlinear cosolvency models, such as the van't Hoff, Jouyban-Acree, Jouyban-Acree-van't Hoff, mixture response surface, and modified Wilson models were employed. The models' effectiveness was evaluated by comparing the mean relative deviations of the back-calculated solubility data to the experimental values. In addition, the apparent thermodynamic parameters, including Gibbs energy, enthalpy, and entropy, were calculated using the van't Hoff and Gibbs equations. Furthermore, the study measured the density values for salicylic acid-saturated mixtures and represented them mathematically through the Jouyban-Acree model.
Assuntos
1-Propanol , Propilenoglicol , Ácido Salicílico , Solubilidade , Temperatura , Termodinâmica , Ácido Salicílico/química , Propilenoglicol/química , 1-Propanol/química , Solventes/química , Etilenoglicóis/químicaRESUMO
This study addresses the pressing issues of energy production and consumption, in line with global sustainable development goals. Focusing on the potential of alcohols as "green" alternatives to traditional fossil fuels, especially in biofuel applications, we investigate the thermochemical properties of three alcohols (n-propanol, n-butanol, n-pentanol) blended with sunflower oil. The calorimetric analysis allows for the experimental determination of excess enthalpies in pseudo-binary mixtures at 303.15 K, revealing similarities in the trends of the curves (dependence on concentrations) but with different values for the excess enthalpies for each mixture. Despite the structural differences of the alcohols studied, the molar excess enthalpy values exhibit uniformity, suggesting consistent mixing behavior. The peak values of excess enthalpies for systems with sunflower oil and n-propanol, n-butanol and n-pentanol are, respectively, 3255.2 J/mole, 3297.4 J/mole and 3150.1 J/mole. Both the NRTL and Redlich-Kister equations show satisfactory agreement with the obtained values.
Assuntos
Álcoois , Biocombustíveis , Pentanóis , Álcoois/química , Óleo de Girassol , 1-Propanol , 1-ButanolRESUMO
A comparative toxicity of widely applied organic solvents (methanol, ethanol, n-propanol, i-propanol, n-butanol, 2-butanol, i-butanol, t-butanol, 3-methoxy-3-methylbutanol-1 (MMB), ethylene glycol, diethylene glycol, 2-methoxyethanol, 2-ethoxyethanol, glycerol, ethyl acetate, acetonitrile, benzene, dioxane, dimethylformamide, dimethylacetamide, dimethylsulfoxide, 2-pyrrolidone, and N-methyl-2-pyrrolidone) and surfactants (PEG 300, PEG 6000, Tween 20, Tween 80, miramistin, and Cremophor EL) was studied using a sea urchin embryo model. Sea urchin embryo morphological alterations caused by the tested chemicals were described. The tested molecules affected P. lividus embryo development in a concentration-dependent manner. The observed phenotypic anomalies ranged from developmental delay and retardation of plutei growth to formation of aberrant blastules and gastrules, cleavage alteration/arrest, and embryo mortality. Discernible morphological defects were found after embryo exposure with common pharmaceutical ingredients, such as glycerol, Tween 80, and Cremophor EL. In general, solvents were less toxic than surfactants. PEG 6000 PEG 300, DMSO, ethanol, and methanol were identified as the most tolerable compounds with minimum effective concentration (MEC) values of 3.0-7.92 mg/mL. Previously reported MEC value of Pluronic F127 (4.0 mg/mL) fell within the same concentration range. Toxic effects of methanol, ethanol, DMSO, 2-methoxyethanol, 2-ethoxyethanol, Tween 20, and Tween 80 on P. lividus embryos correlated well with their toxicity obtained using other cell and animal models. The sea urchin embryos could be considered as an appropriate test system for toxicity assessment of solvents and surfactants for their further application as solubilizers of hydrophobic molecules in conventional in vitro cell-based assays and in vivo mammalian models. Nevertheless, to avoid adverse effect of a solubilizing agent in ecotoxicological and biological experiments, the preliminary assessment of its toxicity on a chosen test model would be beneficial.
Assuntos
Etilenoglicóis , Glicerol/análogos & derivados , Metanol , Polissorbatos , Animais , Polissorbatos/toxicidade , Glicerol/toxicidade , Dimetil Sulfóxido , Tensoativos/toxicidade , Solventes/toxicidade , Ouriços-do-Mar , Etanol/farmacologia , Excipientes/química , 1-Propanol , Embrião não Mamífero , Mamíferos , PolietilenoglicóisRESUMO
Ethanol is the psychoactive substance identified most frequently in post-mortem specimens. Unfortunately, interpreting post-mortem ethanol concentrations can be difficult because of post-mortem alcohol redistribution and the possibility of post-mortem alcohol neogenesis. Indeed, in the time interval between death and sample collection, the decedent may be exposed to non-controlled environments for an extended period, promoting microbial colonization. Many authors report that in the presence of carbohydrates and other biomolecules, various species of bacteria, yeast, and fungi can synthesize ethanol and other volatile substances in vitro and in vivo. The aim of this study was to study the impact of several variables on microbial ethanol production as well as develop a mathematical model that could estimate the microbial-produced ethanol in correlation with the most significant consensual produced higher alcohol, 1-propanol. An experimental setup was developed using human blood samples and cadaveric fragments incubated under strictly anaerobic conditions to produce a novel substrate, "cadaveric putrefactive blood" mimicking post-mortem corpse conditions. The samples were analyzed daily for ethanol and 1-propanol using an HS-GC-FID validated method. The formation of ethanol was evaluated considering different parameters such as putrefactive stage, blood glucose concentration, storage temperature, and storage time. Statistical analysis was performed using the Mann-Whitney non-parametric test and simple linear regression. The results indicate that the early putrefactive stage, high blood glucose concentration, high temperature, and time of incubation increase microbial ethanol production. In addition, the developed mathematical equation confirms the feasibility of using 1-propanol as a marker of post-mortem ethanol production.
Assuntos
1-Propanol , Etanol , Mudanças Depois da Morte , Estudo de Prova de Conceito , Humanos , Etanol/análise , Manejo de Espécimes , Cromatografia Gasosa , Biomarcadores/análise , Biomarcadores/metabolismo , Depressores do Sistema Nervoso Central/análise , Toxicologia Forense , Concentração Alcoólica no Sangue , Cadáver , Temperatura , Modelos Teóricos , Ionização de ChamaRESUMO
Buffalo is a silent heat animal and doesn't show prominent signs of estrous like cattle so it becomes difficult for farmers to determine the receptivity of the animal based purely on the animal behaviour. India, having a huge population size, needs to produce more milk for the population. Successful artificial insemination greatly depends on the receptivity of the animal. Hence the present study aimed to identify the changes in the metabolome of the buffalo. GC-MS based mass spectrometric analysis was deployed for the determination of estrous by differential expression of metabolites. It was found that hydracrylic acid, 3-bromo-1-propanol and benzyl serine were significantly upregulated in the estrous phase of buffalo (p.value ≤0.05, FC ≥ 2). The pathway enrichment analysis also supported the same as pathways related to amino acid metabolism and fatty acid metabolism were up regulated along with the Warburg effect which is linked to the rapid cell proliferation which might help prepare animals to meet the energy requirement during the estrous. Further analysis of the metabolic biomarkers using ROC analysis also supported these three metabolites as probable biomarkers as they were identified with AUC values of 0.7 or greater. SIGNIFICANCE: The present study focuses on the untargeted metabolomics studies of buffalo urine with special reference to the estrous phase of reproductive cycle. The estrous signals are more prominent in cattle, where animals show clear estrous signals such as mounting and discharge along with vocal signals. Buffalo is a silent heat animal and it becomes difficult for farmers to detect the estrous based on the physical and behavioral signals. Hence the present study focuses on GC-MS based untargeted metabolomics to identify differentially expressed urine metabolites. In this study, hydracrylic acid, 3-bromo-1-propanol and benzyl serine were found to be significantly upregulated in the estrous phase of buffalo (p-value ≤0.05, FC ≥ 2). Further confirmation of the metabolic biomarkers was done using Receiver operating characteristics (ROC) analysis which also supported these three metabolites as probable biomarkers as they had AUC values of 0.7 or greater. Hence, this study will be of prime importance for the people working in the area of animal metabolomics.
Assuntos
1-Propanol , Ácido Láctico/análogos & derivados , Serina , Humanos , Feminino , Animais , Bovinos , Estro , Metabolômica , Biomarcadores/análise , Metaboloma , PropanóisRESUMO
OBJECTIVE: To study the characteristics of postmortem ethanol production and its relation with alcohol congeners in postmortem rat liver and muscle tissues. METHOD: Postmortem liver and muscle tissues in Sprague-Dawley rats, from postmortem time interval (PMI) day 0-20, were analyzed via headspace gas chromatograph flame ionization detection to observe production of postmortem ethanol and 5 selected alcohol congeners. RESULT: 1. Putrid ethanol production increased gradually to a peak and then decreased with the prolongation of PMI; 2. Acetaldehyde, 1-propanol, and 3-methyl-butyraldehyde were produced along with postmortem ethanol; 1-butanol was only detected from day 11-20; 3. The concentrations of acetaldehyde, 1-propanol and 3-methyl-butyraldehyde was related with ethanol production. Fifteen mathematical models were constructed for putrid ethanol production based on acetaldehyde, 1-propanol, and 3-methyl-butyraldehyde. CONCLUSION: A peak in postmortem ethanol production was identified. The production trends of acetaldehyde, 1-propanol, and 3-methyl-butyraldehyde in the liver, and of 1-propanol in muscle, were consistent with those of ethanol, and could potentially to be used as biomarkers of postmortem ethanol production. Further human samples and data analysis are needed to verify this.
Assuntos
1-Propanol , Aldeídos , Etanol , Ratos , Humanos , Animais , Ratos Sprague-Dawley , Acetaldeído , Fígado , Músculos , Mudanças Depois da MorteRESUMO
The preservation of drug stability in biological evidence during the processes of collection and storage poses a substantial obstacle to the progress of forensic investigations. In conjunction with other constituents, the microorganisms present in the samples play a vital role in this investigation. The present investigation employed the high-performance liquid chromatography (HPLC) technique to assess the stability of (1R,2 S)-(-)-2-methylamino-1-phenyl-1-propanol hydrochloride in plasma and urine samples that were inoculated with Escherichia coli. These samples were subjected to storage conditions of 37 °C for 48 h and - 20 °C for a duration of 6 months. Minimal inhibitory concentration (MIC) and Minimal bactericidal concentration (MBC) of MPPH against E. coli were determined using microdilution method. The stability of MPPH in plasma and urine samples inoculated with E. coli was investigated using HPLC method. The results showed the MIC and MBC of MPPH were 87.5 ± 25 ppm and 175 ± 50 ppm, respectively. While MPPH remained stable in plasma for 48 h at 37 °C, it showed a notable decrease of about 11% in stability when stored in urine for the same period and temperature. From the beginning of the first month, a decrease in the stability of the compound appeared in all samples that were stored at - 20 °C, and the decrease reached 7% for plasma samples and about 11% for urine samples. The decrease in the stability reached its peak in the sixth month, reaching more than 30% and 70% of plasma and urine samples preserved at - 20 °C. This work concluded that E. coli can negatively affect the stability of MPPH in plasma and urine samples. This may lead to incorrect conclusions regarding the analysis of biological samples in criminal cases.
Assuntos
1-Propanol , Escherichia coli , Cromatografia Líquida de Alta Pressão , 2-Propanol , Testes de Sensibilidade MicrobianaRESUMO
Accurate determination of the concentration of alcohols and their metabolites is important in forensics and in several life science areas. A new headspace gas chromatography-mass spectrometry method has been developed to quantify alcohols and their oxidative products using isotope-labeled internal standards. The limit of detection (LOD) of the analytes in the developed method was 0.211 µg/mL for methanol, 0.158 µg/mL for ethanol, 0.157 µg/mL for isopropanol, 0.010 µg/mL for n-propanol, 0.157 µg/mL for acetone, and 0.209 µg/mL for acetaldehyde. The precision and accuracy of the method were evaluated, and the relative standard deviation percentages were found to be less than 3%. This work demonstrates the application of this method, specifically in quantifying the concentration of oxidative products of alcohol and other minor alcohols found in hand sanitizers, which have become an essential household item since the COVID-19 pandemic. Apart from the major components, the minor alcohols found in hand sanitizers include methanol, isopropanol, and n-propanol. The concentration range of these minor alcohols found in ethanol-based hand sanitizer samples was as follows: methanol, 0.000921-0.0151 mg/mL; isopropanol, 0.454-13.8 mg/mL; and n-propanol, 0.00474-0.152 mg/mL. In ethanol-based hand sanitizers, a significant amount of acetaldehyde (0.00623-0.231 mg/mL) was observed as an oxidation product, while in the isopropanol-based hand sanitizer, acetone (0.697 mg/mL) was observed as an oxidation product. The concentration of acetaldehyde in ethanol-based hand sanitizers significantly increased with storage time and temperature, whereas no such increase in acetone concentration was observed in isopropanol-based hand sanitizers with storage time and temperature. In two of the selected hand sanitizers, the acetaldehyde levels increased by almost 200% within a week when stored at room temperature. Additionally, exposing the hand sanitizers to a temperature of 45 °C for 24 h resulted in a 100% increase in acetaldehyde concentration. On the contrary, the acetone level remained constant upon the change in storage time and temperature.
Assuntos
Higienizadores de Mão , Metanol , Humanos , Acetaldeído , Acetona , 2-Propanol , 1-Propanol , Temperatura , Cromatografia Gasosa-Espectrometria de Massas , Pandemias , EtanolRESUMO
To investigate the solvent effect on the detection of peptides and proteins, nanoelectrospray mass spectra were measured for mixtures of 1 % acetic acid and 5 × 10-6 M gramicidin S (G), ubiquitin (U), and cytochrome c (C) in water (W), methanol (MeOH), 1-propanol (1-PrOH), acetonitrile (AcN), and 2-propanol (2-PrOH). Although doubly protonated G (G2+) and multiply protonated U (Un+) and C (Cn+) were readily detected with a wide range of mixing ratios of W solutions for MeOH, 1-PrOH, and AcN, Cn+ was totally suppressed for the solutions with mixing ratios (v/v) of W/2-PrOH (50/50) and (70/30). However, denatured Cn+ started to be detected with W/2-PrOH (90/10) together with Gn+ (n = 1, 2) and native Un+ (n = 6-8). At the mixing ratio of W/2-PrOH (95/5), native Cn+ (n = 7-10) together with Gn+ (n = 1, 2) and native Un+ (n = 6-8) were detected with high ion intensities. The use of W/2-PrOH (95/5) is profitable because it enables the detection of native proteins with high detection sensitivities.
Assuntos
1-Propanol , 2-Propanol , Solventes , Proteínas , Espectrometria de Massas , Peptídeos , Água , MetanolRESUMO
Chiral heterocyclic alcohols are important precursors for production of pharmaceutical medicines and natural products. (S)-1-(furan-2-yl)propan-1-ol ((S)-2) can be used production of pyranone, which can be used in the synthesis of sugar analogues, antibiotics, tirantamycines, and anticancer drugs. The synthetic approaches for (S)-2, however, have substantial difficulties in terms of inadequate enantiomeric excess (ee) and gram scale synthesis. Moreover, the biocatalytic synthesis of (S)-2 is unknown until now. In this study, the synthesis of (S)-2 was carried out by performing the asymmetric bioreduction of 1-(furan-2-yl)propan-1-one (1) using the Lactobacillus paracasei BD101 biocatalyst obtained from boza, a grain-based fermented beverage. (S)-2 was obtained with >99% conversion, >99% ee, and 96% yield under the optimized conditions. Furthermore, in 50 h, 8.37 g of 1 was entirely transformed into (S)-2 on gram scale (96% isolated yield, 8.11 g). This is the first report on the high-gram scale biocatalyzed synthesis of enantiopure (S)-2. These data suggest that L. paracasei BD101 can be used to bioreduction of 1 in gram scale and efficiently produce (S)-2. Furthermore, these findings laid the base for future study into the biocatalytic production of (S)-2. It was particularly notable as it was the highest known to date optical purity of (S)-2 generated by asymmetric reduction using a biocatalyst. This work offers a productive environmentally friendly method for producing (S)-2 using biocatalysts.
Assuntos
Lacticaseibacillus paracasei , Estereoisomerismo , Álcoois , Biocatálise , 1-Propanol , FenilpropanolaminaRESUMO
A healthy breath is mainly composed of water, carbon dioxide, molecular nitrogen, and oxygen and it contains many species, in small quantities, which are related to the ambient atmosphere and the metabolism. The breath of a person affected by lung cancer presents a concentration of 1-propanol higher than usual. In this context, the development of specific sensors to detect 1-propanol from breath is of high interest. The amount of propanol usually detected on the breath is of few ppb; this small quantity is a handicap for a reliable diagnostic. This limitation can be overcome if the sensor is equipped with a pre-concentrator. Our studies aim to provide an efficient material playing this role. This will contribute to the development of reliable and easy to use lung cancer detectors. For this, we investigate the properties of a few hydrophobic porous materials (chabazite, silicalite-1, and dealuminated faujasite). Hydrophobic structures are used to avoid saturation of materials by the water present in the exhaled breath. Our experimental and simulation results suggest that silicalite -1 (MFI) is the most suitable structure to be used as a pre-concentrator.
Assuntos
Neoplasias Pulmonares , Zeolitas , Humanos , 1-Propanol , Adsorção , Neoplasias Pulmonares/diagnóstico , Zeolitas/química , Água/químicaRESUMO
Chronic toxicity tests on adult and larval honey bees (Apis mellifera) can require the use of dietary additives (solvents, emulsifiers, adjuvants and viscosifier agents) when the active ingredient of plant protection products cannot be dissolved or does not remain stable and homogeneous within the test diets. Acetone is the widely used and accepted solvent allowed within the international regulatory guidelines, but it can be ineffective in keeping certain compounds in solution and can cause toxicity to adults and larvae. In this publication, we present an evaluation of alternative additives in adult and larval diets. Six dietary additives including five solvents (ethanol, isopropanol, n-propanol, propylene glycol and triethylene glycol) and a viscosifier agent (xanthan gum) at five concentrations along with a negative control and a solvent control (acetone) were investigated at seven laboratories. The safe levels for bees were determined for each of the additives used in the 10-day chronic adult and 22-day chronic larval tests. In the 10-day chronic adult study, ethanol and isopropanol were found to be safe at concentrations ≤ 5.0 %, while xanthan gum can be reliably used at concentrations ≤ 0.1 %. Greater variability across laboratories was observed for N-propanol, propylene glycol, and triethylene glycol and these agents may cause mortality when added to diets at concentrations above 0.25-0.5 %. The safe levels of additives to larval diet in the 22-day chronic larval test had a greater variability and were generally lower than what were observed for adult diet. Our results do not recommend the inclusion of ethanol or n-propanol into the larval diet, and isopropanol, propylene glycol, and triethylene glycol may cause mortality at concentrations above 0.25-0.5 %. Safe levels for xanthan gum were more variable than what was observed for adults, but it can be used reliably at concentrations ≤ 0.05 %. Our analyses conclude that several additives can be integrated successfully in honey bee laboratory bioassays at levels that cause low mortality to adults and larvae.
Assuntos
2-Propanol , Acetona , Abelhas , Animais , Larva , 1-Propanol , Laboratórios , Dieta , Solventes , Etanol , PropilenoglicóisRESUMO
OBJECTIVE: To quantify the bacterial burden after skin disinfection using an alcohol octenidine dihydrochloride combination (Octenisept®) compared to an 74.1% ethanol 10% 2-propanol combination (Softasept N®). STUDY DESIGN: Prospective randomized clinical trial. MATERIAL & METHODS: 61 dogs undergoing clean or clean-contaminated surgeries (excluding surgeries on the gastrointestinal tract) were randomly assigned to group O (skin disinfection with alcohol and octenidine dihydrochloride after washing with octenidine containing soap) or to control group C (skin disinfection using the ethanol-2-propanol combination after washing with a neutral soap without antiseptic ingredients). Samples were then taken from 8 different locations within the surgical field at four different stages: after clipping, after washing, after disinfection and one hour later. At each stage, two different sampling techniques (wet-dry swab technique (WDS) and contact plates (CP)) were used for quantitative analysis of bacterial counts. RESULTS: WDS detected about 100-fold more bacteria compared to CP sampling in cases with high bacterial burden, but was not accurate enough to detect small numbers. CP sampling was therefore used for comparison of treatment protocols. 30 dogs were assigned to group O and 31 to group C. A relative reduction of 69% in group O and 77 percent in group C was observed after the soap wash. No significant differences were detected between both groups. Washing and disinfection resulted in a reduction of bacterial counts of 99.99% in group O versus 99.7% in group C (p = 0.018). Bacterial reduction one hour after washing and disinfection was significantly higher in group O (99.9%) than in group C (98.5%, p = 0.001). CONCLUSION: Additional octenidine dihydrochloride provided a slightly better decontamination effect after disinfection, particularly one hour after, which means it may only be indicated in longer surgeries. WDS is more sensitive but less specific to detect bacteria on the skin than the CP sampling.
Assuntos
Anti-Infecciosos Locais , Cães , Animais , Anti-Infecciosos Locais/farmacologia , Anti-Infecciosos Locais/uso terapêutico , Etanol , Sabões , 2-Propanol , Estudos Prospectivos , Pele/microbiologia , Desinfecção/métodos , Bactérias , 1-Propanol , ClorexidinaRESUMO
Gas sensors integrated with machine learning algorithms have aroused keen interest in pattern recognition, which ameliorates the drawback of poor selectivity on a sensor. Among various kinds of gas sensors, the yttria-stabilized zirconia (YSZ)-based mixed potential-type sensor possesses advantages of low cost, simple structure, high sensitivity, and superior stability. However, as the number of sensors increases, the increased power consumption and more complicated integration technology may impede their extensive application. Herein, we focus on the development of a single YSZ-based mixed potential sensor from sensing material to machine learning for effective detection and discrimination of unary, binary, and ternary gas mixtures. The sensor that is sensitive to isoprene, n-propanol, and acetone is manufactured with the MgSb2O6 sensing electrode prepared by a simple sol-gel method. Unique response patterns for specific gas mixtures could be generated with temperature regulation. We chose seven algorithm models to be separately trained for discrimination. In order to realize more accurate discrimination, we further discuss the selection of suitable feature parameters and its reasons. With temperature regulation coefficients which are easily available as feature input to model, a single sensor is verified to achieve elevated accuracy rates of 95 and 99% for the discrimination of seven gases (three unary gases, three binary gas mixtures, and one ternary gas mixture) and redefined six gas mixtures. This article provides a potential new approach via a mixed potential sensor instead of a sensor array that could provide a wide application prospect in the field of electronic nose and artificial olfaction.
Assuntos
1-Propanol , Acetona , Temperatura , GasesRESUMO
This study reports the successful development of a sustainable synthesis protocol for a phase-pure metal azolate framework (MAF-6) and its application in enzyme immobilization. An esterase@MAF-6 biocomposite was synthesized, and its catalytic performance was compared with that of esterase@ZIF-8 and esterase@ZIF-90 in transesterification reactions. Esterase@MAF-6, with its large pore aperture, showed superior enzymatic performance compared to esterase@ZIF-8 and esterase@ZIF-90 in catalyzing transesterification reactions using both n-propanol and benzyl alcohol as reactants. The hydrophobic nature of the MAF-6 platform was shown to activate the immobilized esterase into its open-lid conformation, which exhibited a 1.5- and 4-times enzymatic activity as compared to free esterase in catalyzing transesterification reaction using n-propanol and benzyl alcohol, respectively. The present work offers insights into the potential of MAF-6 as a promising matrix for enzyme immobilization and highlights the need to explore MOF matrices with expanded pore apertures to broaden their practical applications in biocatalysis.
Assuntos
1-Propanol , Carboxilesterase , Esterases , Álcool BenzílicoRESUMO
This study evaluated the efficacy of therapeutic baths with Carapa guianensis (andiroba) oil against monogeneans of Colossoma macropomum (tambaqui), as well as the hematological and histological effects on fish. Among the fatty acids identified in C. guianensis oil, oleic acid (53.4%) and palmitic acid (28.7%) were the major compounds, and four limonoids were also identified. Therapeutic baths of 1 hour were performed for five consecutive days, and there was no fish mortality in any of the treatments. Therapeutic baths using 500 mg/L of C. guianensis oil had an anthelmintic efficacy of 91.4% against monogeneans. There was increase of total plasma protein and glucose, number of erythrocytes, thrombocytes, leukocytes, lymphocytes and number of monocytes and decrease in mean corpuscular volume. Histological changes such as epithelium detachment, hyperplasia, lamellar fusion and aneurysm were found in the gills of tambaqui from all treatments, including controls with water of culture tank and water of culture tank plus iso-propyl alcohol. Therapeutic baths with 500 mg/L of C. guianensis oil showed high efficacy and caused few physiological changes capable of compromising fish gill function. Results indicate that C. guianensis oil has an anthelmintic potential for control and treatment of infections by monogeneans in tambaqui.
Assuntos
Caraciformes , Meliaceae , Animais , Antiparasitários , Brânquias , 1-PropanolRESUMO
The plethora of stress factors that can damage microbial cells has evolved sophisticated stress response mechanisms. While existing bioreporters can monitor individual responses, sensors for detecting multimodal stress responses in living microorganisms are still lacking. Orthogonally detectable red, green, and blue fluorescent proteins combined in a single plasmid, dubbed RGB-S reporter, enable simultaneous, independent, and real-time analysis of the transcriptional response of Escherichia coli using three promoters which report physiological stress (PosmY for RpoS), genotoxicity (PsulA for SOS), and cytotoxicity (PgrpE for RpoH). The bioreporter is compatible with standard analysis and Fluorescent Activated Cell Sorting (FACS) combined with subsequent transcriptome analysis. Various stressors, including the biotechnologically relevant 2-propanol, activate one, two, or all three stress responses, which can significantly impact non-stress-related metabolic pathways. Implemented in microfluidic cultivation with confocal fluorescence microscopy imaging, the RGB-S reporter enabled spatiotemporal analysis of live biofilms revealing stratified subpopulations of bacteria with heterogeneous stress responses.
Assuntos
1-Propanol , Biofilmes , Cor , Escherichia coli/genética , Perfilação da Expressão GênicaRESUMO
The human body releases numerous volatile organic compounds (VOCs) through tissues and various body fluids, including breath. These compounds form a specific chemical profile that may be used to detect the colorectal cancer CRC-related changes in human metabolism and thereby diagnose this type of cancer. The main goal of this study was to investigate the volatile signatures formed by VOCs released from the CRC tissue. For this purpose, headspace solid-phase microextraction gas chromatography-mass spectrometry was applied. In total, 163 compounds were detected. Both cancerous and non-cancerous tissues emitted 138 common VOCs. Ten volatiles (2-butanone; dodecane; benzaldehyde; pyridine; octane; 2-pentanone; toluene; p-xylene; n-pentane; 2-methyl-2-propanol) occurred in at least 90% of both types of samples; 1-propanol in cancer tissue (86% in normal one), acetone in normal tissue (82% in cancer one). Four compounds (1-propanol, pyridine, isoprene, methyl thiolacetate) were found to have increased emissions from cancer tissue, whereas eleven showed reduced release from this type of tissue (2-butanone; 2-pentanone; 2-methyl-2-propanol; ethyl acetate; 3-methyl-1-butanol; d-limonene; tetradecane; dodecanal; tridecane; 2-ethyl-1-hexanol; cyclohexanone). The outcomes of this study provide evidence that the VOCs signature of the CRC tissue is altered by the CRC. The volatile constituents of this distinct signature can be emitted through exhalation and serve as potential biomarkers for identifying the presence of CRC. Reliable identification of the VOCs associated with CRC is essential to guide and tune the development of advanced sensor technologies that can effectively and sensitively detect and quantify these markers.
Assuntos
1-Propanol , Neoplasias Colorretais , Humanos , 2-Propanol , Neoplasias Colorretais/diagnósticoRESUMO
Ionic liquids (ILs) have presented excellent behaviors in the separation of azeotropes in extractive distillation. However, the intrinsic molecular nature of ILs in the separation of azeotropic systems is not clear. In this paper, Fourier-transform infrared spectroscopy (FTIR) and theoretical calculations were applied to screen the microstructures of ethyl propionate-n-propanol-1-ethyl-3-methylimidzolium acetate ([EMIM][OAC]) systems before and after azeotropy breaking. A detailed vibrational analysis was carried out on the v(C=O) region of ethyl propionate and v(O-D) region of n-propanol-d1. Different species, including multiple sizes of propanol and ethyl propionate self-aggregators, ethyl propionate-n-propanol interaction complexes, and different IL-n-propanol interaction complexes, were identified using excess spectroscopy and confirmed with theoretical calculations. Their changes in relative amounts were also observed. The hydrogen bond between n-propanol and ethyl propionate/[EMIM][OAC] was detected, and the interaction properties were also revealed. Overall, the intrinsic molecular nature of the azeotropy breaking was clear. First, the interactions between [EMIM][OAC] and n-propanol were stronger than those between [EMIM][OAC] and ethyl propionate, which influenced the relative volatilities of the two components in the system. Second, the interactions between n-propanol and [EMIM][OAC] were stronger than those between n-propanol and ethyl propionate. Hence, adding [EMIM][OAC] could break apart the ethyl propionate-n-propanol complex (causing the azeotropy in the studied system). When x([EMIM][OAC]) was lower than 0.04, the azeotropy still existed mainly because the low IL could not destroy the whole ethyl propionate-n-propanol interaction complex. At x(IL) > 0.04, the whole ethyl propionate-n-propanol complex was destroyed, and the azeotropy disappeared.