Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 282(25): 18162-18172, 2007 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-17449869

RESUMO

This report identifies a novel gene encoding 15-oxoprostaglandin-Delta13-reductase (PGR-2), which catalyzes the reaction converting 15-keto-PGE2 to 13,14-dihydro-15-keto-PGE2. The expression of PGR-2 is up-regulated in the late phase of 3T3-L1 adipocyte differentiation and predominantly distributed in adipose tissue. Overexpression of PGR-2 in cells decreases peroxisome proliferator-activated receptor gamma (PPARgamma)-dependent transcription and prohibits 3T3-L1 adipocyte differentiation without affecting expression of PPARgamma. Interestingly, we found that 15-keto-PGE2 can act as a ligand of PPARgamma to increase co-activator recruitment, thus activating PPARgamma-mediated transcription and enhancing adipogenesis of 3T3-L1 cells. Overexpression of 15-hydroxyprostaglandin dehydrogenase, which catalyzes the oxidation reaction of PGE2 to form 15-keto-PGE2, significantly increased PPARgamma-mediated transcription in a PGE2-dependent manner. Reciprocally, overexpression of wild-type PGR-2, but not the catalytically defective mutant, abolished the effect of 15-keto-PGE2 on PPARgamma activation. These results demonstrate a novel link between catabolism of PGE2 and regulation of ligand-induced PPARgamma activation.


Assuntos
15-Oxoprostaglandina 13-Redutase/genética , 15-Oxoprostaglandina 13-Redutase/fisiologia , Dinoprostona/metabolismo , PPAR gama/metabolismo , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/metabolismo , Sequência de Aminoácidos , Animais , Diferenciação Celular , Relação Dose-Resposta a Droga , Fibroblastos/metabolismo , Humanos , Camundongos , Dados de Sequência Molecular , Oxigênio/metabolismo , Homologia de Sequência de Aminoácidos
2.
J Biol Chem ; 275(33): 25372-80, 2000 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-10837478

RESUMO

The lipoxins (LX) are autacoids that act within a local inflammatory milieu to dampen neutrophil recruitment and promote resolution. 15-Hydroxyprostaglandin dehydrogenase (15-PGDH) and 15-oxoprostaglandin 13-reductase, also termed leukotriene B(4) 12-hydroxydehydrogenase (PGR/LTB(4)DH), are two enzymatic activities appreciated for their roles in the metabolism of prostaglandins and LTB(4). Here, we determined whether these oxidoreductases also catalyze the conversion of lipoxin A(4) (LXA(4)) and assessed the activities of these LXA(4) metabolites. 15-Oxo-LXA(4) was generated by incubating LXA(4) with 15-PGDH and NAD(+) for studies of its further conversion. PGR/LTB(4)DH catalyzed the NADH-dependent reduction of 15-oxo-LXA(4) to yield 13,14-dihydro-15-oxo-LXA(4). With NADH as a cofactor, 15-PGDH acted as a 15-carbonyl reductase and catalyzed the conversion of 13,14-dihydro-15-oxo-LXA(4) to 13, 14-dihydro-LXA(4). Human polymorphonuclear leukocytes (PMN) exposed to native LXA(4), 15-oxo-LXA(4), or 13,14-dihydro-LXA(4) did not produce superoxide anions. At concentrations where LXA(4) and a metabolically stable LXA(4) analog potently inhibited leukotriene B(4)-induced superoxide anion generation, the further metabolites were devoid of activity. Neither 15-oxo-LXA(4) nor 13, 14-dihydro-LXA(4) effectively competed with (3)H-labeled LXA(4) for specific binding to recombinant LXA(4) receptor (ALXR). In addition, introducing recombinant PGR/LTB(4)DH into a murine exudative model of inflammation increased PMN number by approximately 2-fold, suggesting that this enzyme participates in the regulation of PMN trafficking. These results establish the structures of LXA(4) further metabolites and indicate that conversion of LXA(4) to oxo- and dihydro- products represents a mode of LXA(4) inactivation in inflammation. Moreover, they suggest that these eicosanoid oxidoreductases have multifaceted roles controlling the levels of specific eicosanoids involved in the regulation of inflammation.


Assuntos
15-Oxoprostaglandina 13-Redutase/fisiologia , Oxirredutases do Álcool/fisiologia , Ácidos Hidroxieicosatetraenoicos/metabolismo , Inflamação/enzimologia , Lipoxinas , Oxirredutases/fisiologia , Animais , Ânions/metabolismo , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Escherichia coli/metabolismo , Cavalos , Humanos , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos BALB C , Modelos Químicos , Neutrófilos/enzimologia , Proteínas Recombinantes/metabolismo , Superóxidos , Suínos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA