Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Synth Biol ; 13(4): 1215-1224, 2024 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-38467016

RESUMO

Glycosylation of biomolecules can greatly alter their physicochemical properties, cellular recognition, subcellular localization, and immunogenicity. Glycosylation reactions rely on the stepwise addition of sugars using nucleotide diphosphate (NDP)-sugars. Making these substrates readily available will greatly accelerate the characterization of new glycosylation reactions, elucidation of their underlying regulation mechanisms, and production of glycosylated molecules. In this work, we engineered Saccharomyces cerevisiae to heterologously express nucleotide sugar synthases to access a wide variety of uridine diphosphate (UDP)-sugars from simple starting materials (i.e., glucose and galactose). Specifically, activated glucose, uridine diphosphate d-glucose (UDP-d-Glc), can be converted to UDP-d-glucuronic acid (UDP-d-GlcA), UDP-d-xylose (UDP-d-Xyl), UDP-d-apiose (UDP-d-Api), UDP-d-fucose (UDP-d-Fuc), UDP-l-rhamnose (UDP-l-Rha), UDP-l-arabinopyranose (UDP-l-Arap), and UDP-l-arabinofuranose (UDP-l-Araf) using the corresponding nucleotide sugar synthases of plant and microbial origins. We also expressed genes encoding the salvage pathway to directly activate free sugars to achieve the biosynthesis of UDP-l-Arap and UDP-l-Araf. We observed strong inhibition of UDP-d-Glc 6-dehydrogenase (UGD) by the downstream product UDP-d-Xyl, which we circumvented using an induction system (Tet-On) to delay the production of UDP-d-Xyl to maintain the upstream UDP-sugar pool. Finally, we performed a time-course study using strains containing the biosynthetic pathways to produce five non-native UDP-sugars to elucidate their time-dependent interconversion and the role of UDP-d-Xyl in regulating UDP-sugar metabolism. These engineered yeast strains are a robust platform to (i) functionally characterize sugar synthases in vivo, (ii) biosynthesize a diverse selection of UDP-sugars, (iii) examine the regulation of intracellular UDP-sugar interconversions, and (iv) produce glycosylated secondary metabolites and proteins.


Assuntos
Nucleotídeos , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Açúcares , Açúcares de Uridina Difosfato/genética , Açúcares de Uridina Difosfato/metabolismo , Xilose
2.
Metab Eng ; 61: 131-140, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32454222

RESUMO

UDP-glycosyltransferase (UGT)-mediated glycosylation is a widespread modification of plant natural products (PNPs), which exhibit a wide range of bioactivities, and are of great pharmaceutical, ecological and agricultural significance. However, functional annotation is available for less than 2% of the family 1 UGTs, which currently has 20,000 members that are known to glycosylate several classes of PNPs. This low percentage illustrates the difficulty of experimental study and accurate prediction of their function. Here, a synthetic biology platform for elucidating the UGT-mediated glycosylation process of PNPs was established, including glycosyltransferases dependent on UDP-glucose and UDP-xylose. This platform is based on reconstructing the specific PNPs biosynthetic pathways in dedicated microbial yeast chassis by the simple method of plug-and-play. Five UGT enzymes were identified as responsible for the biosynthesis of the main glycosylation products of triterpenes in Panax notoginseng, including a novel UDP-xylose dependent glycosyltransferase enzyme for notoginsenoside R1 biosynthesis. Additionally, we constructed a yeast cell factory that yields >1 g/L of ginsenoside compound K. This platform for functional gene identification and strain engineering can serve as the basis for creating alternative sources of important natural products and thereby protecting natural plant resources.


Assuntos
Panax notoginseng , Biologia Sintética , Triterpenos/metabolismo , Glicosilação , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Panax notoginseng/genética , Panax notoginseng/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Açúcares de Uridina Difosfato/genética , Açúcares de Uridina Difosfato/metabolismo
3.
Plant Cell ; 30(12): 3038-3057, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30429223

RESUMO

Glycosylation of small molecules is critical for numerous biological processes in plants, including hormone homeostasis, neutralization of xenobiotics, and synthesis and storage of specialized metabolites. Glycosylation of plant natural products is usually performed by uridine diphosphate-dependent glycosyltransferases (UGTs). Triterpene glycosides (saponins) are a large family of plant natural products that determine important agronomic traits such as disease resistance and flavor and have numerous pharmaceutical applications. Most characterized plant natural product UGTs are glucosyltransferases, and little is known about enzymes that add other sugars. Here we report the discovery and characterization of AsAAT1 (UGT99D1), which is required for biosynthesis of the antifungal saponin avenacin A-1 in oat (Avena strigosa). This enzyme adds l-Ara to the triterpene scaffold at the C-3 position, a modification critical for disease resistance. The only previously reported plant natural product arabinosyltransferase is a flavonoid arabinosyltransferase from Arabidopsis (Arabidopsis thaliana). We show that AsAAT1 has high specificity for UDP-ß-l-arabinopyranose, identify two amino acids required for sugar donor specificity, and through targeted mutagenesis convert AsAAT1 into a glucosyltransferase. We further identify a second arabinosyltransferase potentially implicated in the biosynthesis of saponins that determine bitterness in soybean (Glycine max). Our investigations suggest independent evolution of UDP-Ara sugar donor specificity in arabinosyltransferases in monocots and eudicots.


Assuntos
Glicosiltransferases/metabolismo , Pentosiltransferases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Avena/genética , Avena/metabolismo , Glicosiltransferases/genética , Pentosiltransferases/genética , Saponinas/metabolismo , Triterpenos/metabolismo , Açúcares de Uridina Difosfato/genética , Açúcares de Uridina Difosfato/metabolismo
4.
J Microbiol Biotechnol ; 28(11): 1859-1864, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30270602

RESUMO

Synthesis of flavonoid glycoside is difficult due to diverse hydroxy groups in flavonoids and sugars. As such, enzymatic synthesis or biotransformation is an approach to solve this problem. In this report, we used stepwise biotransformation to synthesize two quercetin bisglycosides (quercetin 3-O-glucuronic acid 7-O-rhamnoside [Q-GR] and quercetin 3-O-arabinose-7-O-rhamnoside [Q-AR]) because quercetin O-rhamnosides contain antiviral activity. Two sequential enzymatic reactions were required to synthesize these flavonoid glycosides. We first synthesized quercetin 3-O-glucuronic acid [Q-G], and quercetin 3-O-arabinose-[Q-A] from quercetin using E. coli harboring specific uridine diphopsphate glycosyltransferase (UGT) and genes for UDP-glucuronic acid and UDP-arabinose, respectively. With each quercetin 3-O-glycoside, rhamnosylation using E. coli harboring UGT and the gene for UDP-rhamnose was conducted. This approach resulted in the production of 44.8 mg/l Q-GR and 45.1 mg/l Q-AR. This stepwise synthesis could be applicable to synthesize various natural product derivatives in case that the final yield of product was low due to the multistep reaction in one cell or when sequential synthesis is necessary in order to reduce the synthesis of byproducts.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Glicosídeos/biossíntese , Engenharia Metabólica , Quercetina/biossíntese , Biotransformação , Escherichia coli/enzimologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Flavonoides/biossíntese , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Modelos Moleculares , Quercetina/análogos & derivados , Quercetina/genética , Especificidade por Substrato , Açúcares de Uridina Difosfato/biossíntese , Açúcares de Uridina Difosfato/genética
5.
J Agric Food Chem ; 66(27): 7139-7149, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29916708

RESUMO

UDP-Rhamnose synthase (RHM), the branch-point enzyme controlling the nucleotide sugar interconversion pathway, converts UDP-d-glucose into UDP-rhamnose. As a rhamnose residue donor, UDP-l-rhamnose is essential for the biosynthesis of pectic polysaccharides and secondary metabolites in plants. In this study, three CsRHM genes from tea plants ( Camellia sinensis) were cloned and characterized. Enzyme assays showed that three recombinant proteins displayed RHM activity and were involved in the biosynthesis of UDP-rhamnose in vitro. The transcript profiles, metabolite profiles, and mucilage location suggest that the three CsRHM genes likely contribute to UDP-rhamnose biosynthesis and may be involved in primary wall formation in C. sinensis. These analyses of CsRHM genes and metabolite profiles provide a comprehensive understanding of secondary metabolite biosynthesis and regulation in tea plants. Moreover, our results can be applied for the synthesis of the secondary metabolite rhamnoside in future studies.


Assuntos
Camellia sinensis/genética , Carboidratos Epimerases/genética , Carboidratos Epimerases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Açúcares de Uridina Difosfato/biossíntese , Camellia sinensis/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Espectroscopia de Ressonância Magnética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Metabolismo Secundário , Açúcares de Uridina Difosfato/genética
6.
Metab Eng ; 47: 314-322, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29654832

RESUMO

Microbial production of chondroitin and chondroitin-like polysaccharides from renewable feedstock is a promising and sustainable alternative to extraction from animal tissues. In this study, we attempted to improve production of fructosylated chondroitin in Escherichia coli K4 by balancing intracellular levels of the precursors UDP-GalNAc and UDP-GlcA. To this end, we deleted pfkA to favor the production of Fru-6-P. Then, we identified rate-limiting enzymes in the synthesis of UDP-precursors. Third, UDP-GalNAc synthesis, UDP-GlcA synthesis, and chondroitin polymerization were combinatorially optimized by altering the expression of relevant enzymes. The ratio of intracellular UDP-GalNAc to UDP-GlcA increased from 0.17 in the wild-type strain to 1.05 in a 30-L fed-batch culture of the engineered strain. Titer and productivity of fructosylated chondroitin also increased to 8.43 g/L and 227.84 mg/L/h; the latter represented the highest productivity level achieved to date.


Assuntos
Condroitina/biossíntese , Escherichia coli , Frutosefosfatos , Açúcares de Uridina Difosfato , Condroitina/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Frutosefosfatos/genética , Frutosefosfatos/metabolismo , Deleção de Genes , Glicosilação , Humanos , Açúcares de Uridina Difosfato/genética , Açúcares de Uridina Difosfato/metabolismo
7.
Methods Enzymol ; 597: 145-186, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28935101

RESUMO

This method describes the chemoenzymatic synthesis of several nucleotide sugars, which are essential substrates in the biosynthesis of prokaryotic N- and O-linked glycoproteins. Protein glycosylation is now known to be widespread in prokaryotes and proceeds via sequential action of several enzymes, utilizing both common and modified prokaryote-specific sugar nucleotides. The latter, which include UDP-hexoses such as UDP-diNAc-bacillosamine (UDP-diNAcBac), UDP-diNAcAlt, and UDP-2,3-diNAcManA, are also important components of other bacterial and archaeal glycoconjugates. The ready availability of these "high-value" intermediates will enable courses of study into inhibitor screening, glycoconjugate biosynthesis pathway discovery, and unnatural carbohydrate incorporation toward metabolic engineering.


Assuntos
Carboidratos/biossíntese , Glicoconjugados/genética , Engenharia Metabólica/métodos , Açúcares de Uridina Difosfato/biossíntese , Archaea/química , Archaea/genética , Bactérias/química , Bactérias/genética , Carboidratos/química , Carboidratos/genética , Glicoconjugados/biossíntese , Glicoconjugados/química , Glicoproteínas/química , Glicoproteínas/genética , Glicosilação , Nucleotídeos/biossíntese , Nucleotídeos/química , Nucleotídeos/genética , Açúcares de Uridina Difosfato/química , Açúcares de Uridina Difosfato/genética
8.
J Biol Chem ; 292(27): 11499-11507, 2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28490633

RESUMO

The enzyme UDP-glucose:glycoprotein glucosyltransferase (UGGT) mediates quality control of glycoproteins in the endoplasmic reticulum by attaching glucose to N-linked glycan of misfolded proteins. As a sensor, UGGT ensures that misfolded proteins are recognized by the lectin chaperones and do not leave the secretory pathway. The structure of UGGT and the mechanism of its selectivity for misfolded proteins have been unknown for 25 years. Here, we used negative-stain electron microscopy and small-angle X-ray scattering to determine the structure of UGGT from Drosophila melanogaster at 18-Å resolution. Three-dimensional reconstructions revealed a cage-like structure with a large central cavity. Particle classification revealed flexibility that precluded determination of a high-resolution structure. Introduction of biotinylation sites into a fungal UGGT expressed in Escherichia coli allowed identification of the catalytic and first thioredoxin-like domains. We also used hydrogen-deuterium exchange mass spectrometry to map the binding site of an accessory protein, Sep15, to the first thioredoxin-like domain. The UGGT structural features identified suggest that the central cavity contains the catalytic site and is lined with hydrophobic surfaces. This enhances the binding of misfolded substrates with exposed hydrophobic residues and excludes folded proteins with hydrophilic surfaces. In conclusion, we have determined the UGGT structure, which enabled us to develop a plausible functional model of the mechanism for UGGT's selectivity for misfolded glycoproteins.


Assuntos
Glucosiltransferases/química , Dobramento de Proteína , Açúcares de Uridina Difosfato/química , Animais , Medição da Troca de Deutério , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Domínios Proteicos , Selenoproteínas/química , Selenoproteínas/genética , Selenoproteínas/metabolismo , Açúcares de Uridina Difosfato/genética , Açúcares de Uridina Difosfato/metabolismo
9.
Plant Physiol Biochem ; 109: 536-548, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27835851

RESUMO

UDP-L-rhamnose (UDP-Rha) is an important sugar donor for the synthesis of rhamnose-containing compounds in plants. However, only a few enzymes and their encoding genes involved in UDP-Rha biosynthesis are available in plants. Here, two genes encoding rhamnose synthase (RhS) and bi-functional UDP-4-keto-6-deoxy-D-glucose (UDP-4K6DG) 3, 5-epimerase/UDP-4-keto-L-rhamnose (UDP-4KR) 4-keto-reductase (UER) were isolated from Ornithogalum caudatum based on the RNA-Seq data. The OcRhS1 gene has an ORF (open reading frame) of 2019 bp encoding a tri-functional RhS enzyme. In vitro enzymatic assays revealed OcRhS1 can really convert UDP-D-glucose (UDP-Glc) into UDP-Rha via three consecutive reactions. Biochemical evidences indicated that the recombinant OcRhS1 was active in the pH range of 5-11 and over the temperature range of 0-60 °C. The Km value of OcRhS1 for UDP-Glc was determined to be 1.52 × 10-4 M. OcRhS1 is a multi-domain protein with two sets of cofactor-binding motifs. The cofactors dependent properties of OcRhS1 were thus characterized in this research. Moreover, the N-terminal portion of OcRhS1 (OcRhS1-N) was observed to metabolize UDP-Glc to form intermediate UDP-4K6DG. OcUER1 contains an ORF of 906 bp encoding a polypeptide of 301 aa. OcUER1 shared high similarity with the carboxy-terminal domain of OcRhS1 (OcRhS1-C), suggesting its intrinsic ability of converting UDP-4K6DG into UDP-Rha. It was thus reasonably inferred that UDP-Glc could be bio-transformed into UDP-Rha under the collaborating action of OcRhS1-N and OcUER1. The subsequently biochemical assay verified this notion. Importantly, expression profiles of OcRhS1 and OcUER1 revealed their possible involvement in the biosynthesis of rhamnose-containing polysaccharides in O. caudatum.


Assuntos
Ornithogalum/genética , Ornithogalum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ramnose/análogos & derivados , Açúcares de Uridina Difosfato/biossíntese , Sequência de Aminoácidos , Vias Biossintéticas , Desidrogenases de Carboidrato/química , Desidrogenases de Carboidrato/genética , Desidrogenases de Carboidrato/metabolismo , Carboidratos Epimerases/química , Carboidratos Epimerases/genética , Carboidratos Epimerases/metabolismo , Genes de Plantas , Cinética , Filogenia , Proteínas de Plantas/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ramnose/biossíntese , Ramnose/genética , Homologia de Sequência de Aminoácidos , Açúcares de Uridina Difosfato/genética
10.
Molecules ; 21(11)2016 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-27834878

RESUMO

d-Galacturonic acid (GalA) is an important component of GalA-containing polysaccharides in Ornithogalum caudatum. The incorporation of GalA into these polysaccharides from UDP-d-galacturonic acid (UDP-GalA) was reasonably known. However, the cDNAs involved in the biosynthesis of UDP-GalA were still unknown. In the present investigation, one candidate UDP-d-glucuronic acid 4-epimerase (UGlcAE) family with three members was isolated from O. caudatum based on RNA-Seq data. Bioinformatics analyses indicated all of the three isoforms, designated as OcUGlcAE1~3, were members of short-chain dehydrogenases/reductases (SDRs) and shared two conserved motifs. The three full-length cDNAs were then transformed to Pichia pastoris GS115 for heterologous expression. Data revealed both the supernatant and microsomal fractions from the recombinant P. pastoris expressing OcUGlcAE3 can interconvert UDP-GalA and UDP-d-glucuronic acid (UDP-GlcA), while the other two OcUGlcAEs had no activity on UDP-GlcA and UDP-GalA. Furthermore, expression analyses of the three epimerases in varied tissues of O. caudatum were performed by real-time quantitative PCR (RT-qPCR). Results indicated OcUGlcAE3, together with the other two OcUGlcAE-like genes, was root-specific, displaying highest expression in roots. OcUGlcAE3 was UDP-d-glucuronic acid 4-epimerase and thus deemed to be involved in the biosynthesis of root polysaccharides. Moreover, OcUGlcAE3 was proposed to be environmentally induced.


Assuntos
Carboidratos Epimerases , DNA Complementar , Ornithogalum , Proteínas de Plantas , Raízes de Plantas , Carboidratos Epimerases/biossíntese , Carboidratos Epimerases/genética , Expressão Gênica , Ornithogalum/enzimologia , Ornithogalum/genética , Pichia , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Açúcares de Uridina Difosfato/genética , Açúcares de Uridina Difosfato/metabolismo
11.
J Biol Chem ; 291(41): 21434-21447, 2016 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-27551039

RESUMO

Apiose is a branched monosaccharide that is present in the cell wall pectic polysaccharides rhamnogalacturonan II and apiogalacturonan and in numerous plant secondary metabolites. These apiose-containing glycans are synthesized using UDP-apiose as the donor. UDP-apiose (UDP-Api) together with UDP-xylose is formed from UDP-glucuronic acid (UDP-GlcA) by UDP-Api synthase (UAS). It was hypothesized that the ability to form Api distinguishes vascular plants from the avascular plants and green algae. UAS from several dicotyledonous plants has been characterized; however, it is not known if avascular plants or green algae produce this enzyme. Here we report the identification and functional characterization of UAS homologs from avascular plants (mosses, liverwort, and hornwort), from streptophyte green algae, and from a monocot (duckweed). The recombinant UAS homologs all form UDP-Api from UDP-glucuronic acid albeit in different amounts. Apiose was detected in aqueous methanolic extracts of these plants. Apiose was detected in duckweed cell walls but not in the walls of the avascular plants and algae. Overexpressing duckweed UAS in the moss Physcomitrella patens led to an increase in the amounts of aqueous methanol-acetonitrile-soluble apiose but did not result in discernible amounts of cell wall-associated apiose. Thus, bryophytes and algae likely lack the glycosyltransferase machinery required to synthesize apiose-containing cell wall glycans. Nevertheless, these plants may have the ability to form apiosylated secondary metabolites. Our data are the first to provide evidence that the ability to form apiose existed prior to the appearance of rhamnogalacturonan II and apiogalacturonan and provide new insights into the evolution of apiose-containing glycans.


Assuntos
Bryopsida/metabolismo , Carboxiliases/metabolismo , Clorófitas/metabolismo , Evolução Molecular , Proteínas de Plantas/metabolismo , Açúcares de Uridina Difosfato/biossíntese , Bryopsida/genética , Carboxiliases/genética , Parede Celular/genética , Parede Celular/metabolismo , Clorófitas/genética , Proteínas de Plantas/genética , Polissacarídeos/biossíntese , Polissacarídeos/genética , Açúcares de Uridina Difosfato/genética
12.
J Biol Chem ; 290(52): 31162-72, 2015 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-26527682

RESUMO

Two closely related glycosyltransferases are responsible for the final step of the biosynthesis of ABO(H) human blood group A and B antigens. The two enzymes differ by only four amino acid residues, which determine whether the enzymes transfer GalNAc from UDP-GalNAc or Gal from UDP-Gal to the H-antigen acceptor. The enzymes belong to the class of GT-A folded enzymes, grouped as GT6 in the CAZy database, and are characterized by a single domain with a metal dependent retaining reaction mechanism. However, the exact role of the four amino acid residues in the specificity of the enzymes is still unresolved. In this study, we report the first structural information of a dual specificity cis-AB blood group glycosyltransferase in complex with a synthetic UDP-GalNAc derivative. Interestingly, the GalNAc moiety adopts an unusual yet catalytically productive conformation in the binding pocket, which is different from the "tucked under" conformation previously observed for the UDP-Gal donor. In addition, we show that this UDP-GalNAc derivative in complex with the H-antigen acceptor provokes the same unusual binding pocket closure as seen for the corresponding UDP-Gal derivative. Despite this, the two derivatives show vastly different kinetic properties. Our results provide a important structural insight into the donor substrate specificity and utilization in blood group biosynthesis, which can very likely be exploited for the development of new glycosyltransferase inhibitors and probes.


Assuntos
Sistema ABO de Grupos Sanguíneos/metabolismo , Glicosiltransferases/metabolismo , Açúcares de Uridina Difosfato/metabolismo , Sistema ABO de Grupos Sanguíneos/genética , Glicosiltransferases/genética , Humanos , Açúcares de Uridina Difosfato/genética
13.
J Biol Chem ; 288(45): 32248-32260, 2013 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-24064219

RESUMO

UDP-N,N'-diacetylbacillosamine (UDP-diNAcBac) is a unique carbohydrate produced by a number of bacterial species and has been implicated in pathogenesis. The terminal step in the formation of this important bacterial sugar is catalyzed by an acetyl-CoA (AcCoA)-dependent acetyltransferase in both N- and O-linked protein glycosylation pathways. This bacterial acetyltransferase is a member of the left-handed ß-helix family and forms a homotrimer as the functional unit. Whereas previous endeavors have focused on the Campylobacter jejuni acetyltransferase (PglD) from the N-linked glycosylation pathway, structural characterization of the homologous enzymes in the O-linked glycosylation pathways is lacking. Herein, we present the apo-crystal structures of the acetyltransferase domain (ATD) from the bifunctional enzyme PglB (Neisseria gonorrhoeae) and the full-length acetyltransferase WeeI (Acinetobacter baumannii). Additionally, a PglB-ATD structure was solved in complex with AcCoA. Surprisingly, this structure reveals a contrasting binding mechanism for this substrate when compared with the AcCoA-bound PglD structure. A comparison between these findings and the previously solved PglD crystal structures illustrates a dichotomy among N- and O-linked glycosylation pathway enzymes. Based upon these structures, key residues in the UDP-4-amino and AcCoA binding pockets were mutated to determine their effect on binding and catalysis in PglD, PglB-ATD, and WeeI. Last, a phylogenetic analysis of the aforementioned acetyltransferases was employed to illuminate the diversity among N- and O-linked glycosylation pathway enzymes.


Assuntos
Acetilglucosamina/análogos & derivados , Acetiltransferases/química , Acinetobacter baumannii/enzimologia , Proteínas de Bactérias/química , Neisseria gonorrhoeae/enzimologia , Açúcares de Uridina Difosfato/biossíntese , Acetilcoenzima A , Acetilglucosamina/biossíntese , Acetilglucosamina/química , Acetilglucosamina/genética , Acetiltransferases/genética , Acetiltransferases/metabolismo , Acinetobacter baumannii/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Glicosilação , Mutação , Neisseria gonorrhoeae/genética , Estrutura Terciária de Proteína , Açúcares de Uridina Difosfato/química , Açúcares de Uridina Difosfato/genética
14.
Biosci Biotechnol Biochem ; 77(8): 1795-7, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23924715

RESUMO

We have developed a new series of R4L1 Gateway binary vectors (R4L1pGWB), which carry the bialaphos resistance gene (bar) or the UDP-N-acetylglucosamine:dolichol phosphate N-acetylglucosamine-1-P transferase (GPT) gene as selection markers that confer BASTA® and tunicamycin resistance on plants respectively. R4L1pGWBs have an attR4-attL1-reporter and can accept an attL4-promoter-attR1 entry clone for easy construction of an attB4-promoter-attB1-reporter clone. The new R4L1pGWBs facilitate promoter:reporter analysis in pre-existing transgenic plants that are resistant to kanamycin or hygromycin.


Assuntos
Resistência Microbiana a Medicamentos/genética , Vetores Genéticos , Plantas Geneticamente Modificadas/genética , Açúcares de Uridina Difosfato/genética , Biomarcadores , Cinamatos/farmacologia , Higromicina B/análogos & derivados , Higromicina B/farmacologia , Canamicina/farmacologia , Compostos Organofosforados/metabolismo , Regiões Promotoras Genéticas , Tunicamicina/genética , Tunicamicina/metabolismo
15.
Planta ; 238(4): 683-93, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23801300

RESUMO

Flavonoids are predominantly found as glycosides in plants. The glycosylation of flavonoids is mediated by uridine diphosphate-dependent glycosyltransferases (UGT). UGTs attach various sugars, including arabinose, glucose, galactose, xylose, and glucuronic acid, to flavonoid aglycones. Two UGTs isolated from Arabidopsis thaliana, AtUGT78D2 and AtUGT78D3, showed 89 % amino acid sequence similarity (75 % amino acid sequence identity) and both attached a sugar to the 3-hydroxyl group of flavonols using a UDP-sugar. The two enzymes used UDP-glucose and UDP-arabinose, respectively, and AtUGT78D2 was approximately 90-fold more efficient than AtUGT78D3 when judged by the k(cat)/K(m) value. Domain exchanges between AtUGT78D2 and AtUGT78D3 were carried out to find UGTs with better catalytic efficiency for UDP-arabinose and exhibiting dual sugar selectivity. Among 19 fusion proteins examined, three showed dual sugar selectivity, and one fusion protein had better catalytic efficiency for UDP-arabinose compared with AtUGT78D3. Using molecular modeling, the changes in enzymatic properties in the chimeric proteins were elucidated. To the best of our knowledge, this is the first report on the construction of fusion proteins with expanded sugar-donor range and enhanced catalytic efficiencies for sugar donors.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Glicosiltransferases/genética , Uridina Difosfato Glucose/metabolismo , Açúcares de Uridina Difosfato/metabolismo , Sequência de Aminoácidos , Domínio Catalítico/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas Recombinantes de Fusão/genética , Especificidade por Substrato/genética , Uridina Difosfato Glucose/genética , Açúcares de Uridina Difosfato/genética
16.
J Biol Chem ; 288(15): 10578-87, 2013 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-23460642

RESUMO

Oligosaccharyltransferases (OTases) are enzymes that catalyze the transfer of an oligosaccharide from a lipid carrier to an acceptor molecule, commonly a protein. OTases are classified as N-OTases and O-OTases, depending on the nature of the glycosylation reaction. The N-OTases catalyze the glycan transfer to amide groups in asparagines in a reaction named N-linked glycosylation. The O-OTases are responsible for protein O-linked glycosylation, which involves the attachment of glycans to hydroxyl groups of serine or threonine residues. These enzymes exhibit a relaxed specificity and are able to transfer a variety of glycan structures to different protein acceptors. This property confers OTases with great biotechnological potential as these enzymes can produce glycoconjugates relevant to the pharmaceutical industry. Furthermore, OTases are thought to be involved in pathogenesis mechanisms. Several aspects of the functionality of OTases are not fully understood. In this work, we developed a novel approach to perform kinetic studies on PglL, the O-OTase from Neisseria meningitidis. We investigated the importance of the acyl moiety of the lipid glycan donor substrate on the functionality of PglL by testing the efficiency of glycosylation reactions using synthetic substrates carrying the same glycan structure but different acyl moieties. We found that PglL can function with many lipids as glycan donors, although the length and the conformation of the lipid moiety significantly influenced the catalytic efficiency. Interestingly, PglL was also able to transfer a monosaccharide employing its nucleotide-activated form, acting as a Leloir glycosyltransferase. These results provide new insights on the function and the evolution of oligosaccharyltransferases.


Assuntos
Hexosiltransferases/química , Lipídeos de Membrana/química , Proteínas de Membrana/química , Neisseria meningitidis/enzimologia , Açúcares de Uridina Difosfato/química , Glicosilação , Hexosiltransferases/genética , Hexosiltransferases/metabolismo , Metabolismo dos Lipídeos/fisiologia , Lipídeos de Membrana/genética , Lipídeos de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Neisseria meningitidis/genética , Especificidade por Substrato/fisiologia , Açúcares de Uridina Difosfato/genética , Açúcares de Uridina Difosfato/metabolismo
17.
J Biol Chem ; 287(34): 28882-97, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22692202

RESUMO

The O-GlcNAc modification involves the attachment of single ß-O-linked N-acetylglucosamine residues to serine and threonine residues of nucleocytoplasmic proteins. Interestingly, previous biochemical and structural studies have shown that O-GlcNAcase (OGA), the enzyme that removes O-GlcNAc from proteins, has an active site pocket that tolerates various N-acyl groups in addition to the N-acetyl group of GlcNAc. The remarkable sequence and structural conservation of residues comprising this pocket suggest functional importance. We hypothesized this pocket enables processing of metabolic variants of O-GlcNAc that could be formed due to inaccuracy within the metabolic machinery of the hexosamine biosynthetic pathway. In the accompanying paper (Bergfeld, A. K., Pearce, O. M., Diaz, S. L., Pham, T., and Varki, A. (2012) J. Biol. Chem. 287, 28865-28881), N-glycolylglucosamine (GlcNGc) was shown to be a catabolite of NeuNGc. Here, we show that the hexosamine salvage pathway can convert GlcNGc to UDP-GlcNGc, which is then used to modify proteins with O-GlcNGc. The kinetics of incorporation and removal of O-GlcNGc in cells occur in a dynamic manner on a time frame similar to that of O-GlcNAc. Enzymatic activity of O-GlcNAcase (OGA) toward a GlcNGc glycoside reveals OGA can process glycolyl-containing substrates fairly efficiently. A bacterial homolog (BtGH84) of OGA, from a human gut symbiont, also processes O-GlcNGc substrates, and the structure of this enzyme bound to a GlcNGc-derived species reveals the molecular basis for tolerance and binding of GlcNGc. Together, these results demonstrate that analogs of GlcNAc, such as GlcNGc, are metabolically viable species and that the conserved active site pocket of OGA likely evolved to enable processing of mis-incorporated analogs of O-GlcNAc and thereby prevent their accumulation. Such plasticity in carbohydrate processing enzymes may be a general feature arising from inaccuracy in hexosamine metabolic pathways.


Assuntos
Acetilglucosaminidase/metabolismo , Amino Açúcares/metabolismo , Intestinos/enzimologia , Açúcares de Uridina Difosfato/metabolismo , Acetilglucosaminidase/genética , Amino Açúcares/genética , Bactérias/enzimologia , Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Linhagem Celular , Humanos , Intestinos/microbiologia , Simbiose/fisiologia , Açúcares de Uridina Difosfato/genética
18.
J Biol Chem ; 287(34): 28898-916, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22692203

RESUMO

The outermost positions of mammalian cell-surface glycans are predominantly occupied by the sialic acids N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc). To date, hydroxylation of CMP-Neu5Ac resulting in the conversion into CMP-Neu5Gc is the only known enzymatic reaction in mammals to synthesize a monosaccharide carrying an N-glycolyl group. In our accompanying paper (Bergfeld, A. K., Pearce, O. M., Diaz, S. L., Pham, T., and Varki, A. (2012) J. Biol. Chem. 287, jbc.M112.363549), we report a metabolic pathway for degradation of Neu5Gc, demonstrating that N-acetylhexosamine pathways are tolerant toward the N-glycolyl substituent of Neu5Gc breakdown products. In this study, we show that exogenously added N-glycolylgalactosamine (GalNGc) serves as a precursor for Neu5Gc de novo biosynthesis, potentially involving seven distinct mammalian enzymes. Following the GalNAc salvage pathway, UDP-GalNGc is epimerized to UDP-GlcNGc, which might compete with the endogenous UDP-GlcNAc for the sialic acid biosynthetic pathway. Using UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase-deficient cells, we confirm that conversion of GalNGc into Neu5Gc depends on this key enzyme of sialic acid biosynthesis. Furthermore, we demonstrate by mass spectrometry that the metabolic intermediates UDP-GalNGc and UDP-GlcNGc serve as substrates for assembly of most major classes of cellular glycans. We show for the first time incorporation of GalNGc and GlcNGc into chondroitin/dermatan sulfates and heparan sulfates, respectively. As demonstrated by structural analysis, N-glycolylated hexosamines were found in cellular gangliosides and incorporated into Chinese hamster ovary cell O-glycans. Remarkably, GalNAc derivatives altered the overall O-glycosylation pattern as indicated by the occurrence of novel O-glycan structures. This study demonstrates that mammalian N-acetylhexosamine pathways and glycan assembly are surprisingly tolerant toward the N-glycolyl substituent.


Assuntos
Ácido N-Acetilneuramínico/metabolismo , Ácido N-Acetilneuramínico/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Animais , Células CHO , Carboidratos Epimerases/genética , Carboidratos Epimerases/metabolismo , Sulfatos de Condroitina/genética , Sulfatos de Condroitina/metabolismo , Cricetinae , Cricetulus , Dermatan Sulfato/genética , Dermatan Sulfato/metabolismo , Heparitina Sulfato/genética , Heparitina Sulfato/metabolismo , Humanos , Camundongos , Camundongos Knockout , Ácido N-Acetilneuramínico/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Açúcares de Uridina Difosfato/genética , Açúcares de Uridina Difosfato/metabolismo
19.
J Biol Chem ; 287(30): 24929-40, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22665487

RESUMO

TpeL is a member of the family of clostridial glucosylating toxins produced by Clostridium perfringens type A, B, and C strains. In contrast to other members of this toxin family, it lacks a C-terminal polypeptide repeat domain, which is suggested to be involved in target cell binding. It was shown that the glucosyltransferase domain of TpeL modifies Ras in vitro by mono-O-glucosylation or mono-O-GlcNAcylation (Nagahama, M., Ohkubo, A., Oda, M., Kobayashi, K., Amimoto, K., Miyamoto, K., and Sakurai, J. (2011) Infect. Immun. 79, 905-910). Here we show that TpeL preferably utilizes UDP-N-acetylglucosamine (UDP-GlcNAc) as a sugar donor. Change of alanine 383 of TpeL to isoleucine turns the sugar donor preference from UDP-GlcNAc to UDP-glucose. In contrast to previous studies, we show that Rac is a poor substrate in vitro and in vivo and requires 1-2 magnitudes higher toxin concentrations for modification by TpeL. The toxin is autoproteolytically processed in the presence of inositol hexakisphosphate (InsP(6)) by an intrinsic cysteine protease domain, located next to the glucosyltransferase domain. A C-terminally extended TpeL full-length variant (TpeL1-1779) induces apoptosis in HeLa cells (most likely by mono-O-GlcNAcylation of Ras), and inhibits Ras signaling including Ras-Raf interaction and ERK activation. In addition, TpeL blocks Ras signaling in rat pheochromocytoma PC12 cells. TpeL is a glucosylating toxin, which modifies Ras and induces apoptosis in target cells without having a typical C-terminal polypeptide repeat domain.


Assuntos
Acetilglucosamina/metabolismo , Toxinas Bacterianas/metabolismo , Clostridium perfringens/enzimologia , Glicosiltransferases/metabolismo , Proteína Oncogênica p21(ras)/metabolismo , Proteólise , Acetilglucosamina/genética , Animais , Apoptose/genética , Toxinas Bacterianas/genética , Clostridium perfringens/genética , Ativação Enzimática/genética , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glicosilação , Glicosiltransferases/genética , Células HeLa , Humanos , Proteína Oncogênica p21(ras)/genética , Células PC12 , Ratos , Açúcares de Uridina Difosfato/genética , Açúcares de Uridina Difosfato/metabolismo , Quinases raf/genética , Quinases raf/metabolismo
20.
Anal Biochem ; 421(2): 691-8, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22244806

RESUMO

Numerous different nucleotide sugars are used as sugar donors for the biosynthesis of glycans by bacteria, humans, fungi, and plants. However, many of these nucleotide sugars are not available either in their native form or with the sugar portion labeled with a stable or radioactive isotope. Here we demonstrate the use of Escherichia coli metabolically engineered to contain genes that encode proteins that convert monosaccharides into their respective monosaccharide-1-phosphates and subsequently into the corresponding nucleotide sugars. In this system, which we designated "in-microbe", reactions occur within 2 to 4 h and can be used to generate nucleotide sugars in amounts ranging from 5 to 12.5 µg/ml cell culture. We show that the E. coli can be engineered to produce the seldom observed nucleotide sugars UDP-2-acetamido-2-deoxy-glucuronic acid (UDP-GlcNAcA) and UDP-2-acetamido-2-deoxy-xylose (UDP-XylNAc). Using similar strategies, we also engineered E. coli to synthesize UDP-galacturonic acid (UDP-GalA) and UDP-galactose (UDP-Gal). ¹³C- and ¹5N-labeled NDP-sugars are formed using [¹³C] glucose as the carbon source and with [¹5N]NH4Cl as the nitrogen source.


Assuntos
Metabolismo dos Carboidratos , Escherichia coli/metabolismo , Nucleotídeos/metabolismo , Açúcares de Uridina Difosfato/metabolismo , Sequência de Bases , Primers do DNA , Escherichia coli/genética , Engenharia Genética , Açúcares de Uridina Difosfato/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA