Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.386
Filtrar
1.
BMC Oral Health ; 24(1): 501, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38725023

RESUMO

BACKGROUND: Releasing of metal ions might implicate in allergic reaction as a negative subsequent of the corrosion of Stainless Steel (SS304) orthodontic wires. The aim of this study was to evaluate the corrosion resistance of zinc-coated (Zn-coated) SS orthodontic wires. METHODS: Zinc coating was applied on SS wires by PVD method. Electrochemical impedance spectroscopy (EIS), Potentiodynamic polarization tests and Tafel analysis methods were used to predict the corrosion behavior of Zn-coated and uncoated SS wires in both neutral and acidic environments. RESULTS: The values of Ecorr ,icorr and Rct ,which were the electrochemical corrosion characteristics, reported better corrosion behavior of Zn-coated SS wires against uncoated ones in both artificial saliva and fluoride-containing environments. Experimental results of the Tafel plot analyses were consistent with that of electrochemical impedance spectroscopy analyses for both biological solutions. CONCLUSION: Applying Zn coating on bare SS orthodontic wire by PVD method might increase the corrosion resistance of the underlying stainless-steel substrate.


Assuntos
Espectroscopia Dielétrica , Teste de Materiais , Fios Ortodônticos , Saliva Artificial , Aço Inoxidável , Zinco , Corrosão , Aço Inoxidável/química , Zinco/química , Saliva Artificial/química , Ligas Dentárias/química , Materiais Revestidos Biocompatíveis/química , Fluoretos/química , Concentração de Íons de Hidrogênio , Humanos , Propriedades de Superfície , Potenciometria
2.
J Med Virol ; 96(5): e29655, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38727091

RESUMO

Viruses can spread through contaminated aerosols and contaminated surface materials, and effective disinfection techniques are essential for virus inactivation. Nonthermal plasma-generated reactive oxygen and nitrogen species can effectively inactivate the coronavirus. We aim to interpret the coronavirus inactivation level and mechanism of surface interaction with materials with and without dielectric barrier discharge (DBD) plasma treatment. Nonthermal plasma, particularly surface-type DBD plasma, can inactivate human coronavirus 229E (HCoV-229E) on porous (paper, wood, mask) and nonporous (plastic, stainless steel, glass, Cu) materials. Virus inactivation was analyzed using a 50% tissue culture infectivity dose (TCID50) using cell line, flow cytometry, and immunofluorescence. Surfaces contaminated with HCoV-229E were treated at different time intervals (0-5 h) with and without plasma exposure (natural decay in ambient air conditions). HCoV-229E persistence conformed to the following order: plastic > cover glass > stainless steel > mask > wood > paper > Cu with and without plasma exposure. HCoV-229E was more stable in plastic, cover glass, and stainless steel in 5 h, and the viable virus titer gradually decreased from its initial log10 order of 6.892 to 1.72, 1.53, and 1.32 TCID50/mL, respectively, under plasma exposure. No virus was observed in Cu after treatment for 5 h. The use of airflow, ambient nitrogen, and argon did not promote virus inactivation. Flow cytometry and immunofluorescence analysis demonstrated a low expression level of spike protein (fluorescence intensity) during plasma treatment and in E and M genes expression compared with the virus control.


Assuntos
Coronavirus Humano 229E , Gases em Plasma , Inativação de Vírus , Humanos , Coronavirus Humano 229E/efeitos dos fármacos , Coronavirus Humano 229E/fisiologia , Inativação de Vírus/efeitos dos fármacos , Gases em Plasma/farmacologia , Linhagem Celular , Porosidade , Desinfecção/métodos , Aço Inoxidável
3.
Clin Oral Investig ; 28(5): 294, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38698252

RESUMO

OBJECTIVES: To compare ultrasonic scaler prototypes based on a planar piezoelectric transducer with different working frequencies featuring a titanium (Ti-20, Ti-28, and Ti-40) or stainless steel (SS-28) instrument, with a commercially available scaler (com-29) in terms of biofilm removal and reformation, dentine surface roughness and adhesion of periodontal fibroblasts. MATERIALS AND METHODS: A periodontal multi-species biofilm was formed on specimens with dentine slices. Thereafter specimens were instrumented with scalers in a periodontal pocket model or left untreated (control). The remaining biofilms were quantified and allowed to reform on instrumented dentine slices. In addition, fibroblasts were seeded for attachment evaluation after 72 h of incubation. Dentine surface roughness was analyzed before and after instrumentation. RESULTS: All tested instruments reduced the colony-forming unit (cfu) counts by about 3 to 4 log10 and the biofilm quantity (each p < 0.01 vs. control), but with no statistically significant difference between the instrumented groups. After 24-hour biofilm reformation, no differences in cfu counts were observed between any groups, but the biofilm quantity was about 50% in all instrumented groups compared to the control. The attachment of fibroblasts on instrumented dentine was significantly higher than on untreated dentine (p < 0.05), with the exception of Ti-20. The dentine surface roughness was not affected by any instrumentation. CONCLUSIONS: The planar piezoelectric scaler prototypes are able to efficiently remove biofilm without dentine surface alterations, regardless of the operating frequency or instrument material. CLINICAL RELEVANCE: Ultrasonic scalers based on a planar piezoelectric transducer might be an alternative to currently available ultrasonic scalers.


Assuntos
Biofilmes , Raspagem Dentária , Dentina , Fibroblastos , Ligamento Periodontal , Propriedades de Superfície , Titânio , Humanos , Raspagem Dentária/instrumentação , Técnicas In Vitro , Dentina/microbiologia , Ligamento Periodontal/citologia , Transdutores , Adesão Celular , Aço Inoxidável , Desenho de Equipamento , Terapia por Ultrassom/instrumentação
4.
Sci Rep ; 14(1): 8882, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632263

RESUMO

Wearable long-term monitoring applications are becoming more and more popular in both the consumer and the medical market. In wearable ECG monitoring, the data quality depends on the properties of the electrodes and on how they interface with the skin. Dry electrodes do not require any action from the user. They usually do not irritate the skin, and they provide sufficiently high-quality data for ECG monitoring purposes during low-intensity user activity. We investigated prospective motion artifact-resistant dry electrode materials for wearable ECG monitoring. The tested materials were (1) porous: conductive polymer, conductive silver fabric; and (2) solid: stainless steel, silver, and platinum. ECG was acquired from test subjects in a 10-min continuous settling test and in a 48-h intermittent long-term test. In the settling test, the electrodes were stationary, whereas both stationary and controlled motion artifact tests were included in the long-term test. The signal-to-noise ratio (SNR) was used as the figure of merit to quantify the results. Skin-electrode interface impedance was measured to quantify its effect on the ECG, as well as to leverage the dry electrode ECG amplifier design. The SNR of all electrode types increased during the settling test. In the long-term test, the SNR was generally elevated further. The introduction of electrode movement reduced the SNR markedly. Solid electrodes had a higher SNR and lower skin-electrode impedance than porous electrodes. In the stationary testing, stainless steel showed the highest SNR, followed by platinum, silver, conductive polymer, and conductive fabric. In the movement testing, the order was platinum, stainless steel, silver, conductive polymer, and conductive fabric.


Assuntos
Artefatos , Aço Inoxidável , Humanos , Platina , Prata , Estudos Prospectivos , Eletrocardiografia/métodos , Impedância Elétrica , Eletrodos , Polímeros
5.
Food Microbiol ; 121: 104531, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38637091

RESUMO

The present study aimed to assess the occurrence and counts of Staphylococcus aureus in Brazilian artisanal cheeses (BAC) produced in five regions of Brazil: Coalho and Manteiga (Northeast region); Colonial and Serrano (South); Caipira (Central-West); Marajó (North); and Minas Artisanal cheeses, from Araxá, Campos das Vertentes, Cerrado, Serro and Canastra microregions (Southeast). The resistance to chlorine-based sanitizers, ability to attach to stainless steel surfaces, and antibiogram profile of a large set of S. aureus strains (n = 585) were assessed. Further, a total of 42 isolates were evaluated for the presence of enterotoxigenic genes (sea, seb, sec, sed, see, seg, sei, sej, and ser) and submitted to typing using pulsed-field gel electrophoresis (PFGE). BAC presented high counts of S. aureus (3.4-6.4 log CFU/g), varying from 25 to 62.5%. From the S. aureus strains (n = 585) assessed, 16% could resist 200 ppm of sodium hypochlorite, whereas 87.6% produced strong ability to attach to stainless steel surfaces, corroborating with S. aureus ability to persist and spread in the environment. Furthermore, the relatively high frequency (80.5%) of multidrug-resistant S. aureus and the presence of enterotoxin genes in 92.6% of the strains is of utmost attention. It reveals the lurking threat of SFP that can survive when conditions are favorable. The presence of enterotoxigenic and antimicrobial-resistant strains of S. aureus in cheese constitutes a potential risk to public health. This result calls for better control of cheese contamination sources, and taking hygienic measures is necessary for food safety. More attention should be paid to animal welfare and hygiene practices in some dairy farms during manufacturing to enhance the microbiological quality of traditional cheese products.


Assuntos
Queijo , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Animais , Staphylococcus aureus/genética , Queijo/microbiologia , Brasil , Microbiologia de Alimentos , Aço Inoxidável/análise , Enterotoxinas/genética , Leite/microbiologia
6.
Food Microbiol ; 121: 104491, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38637093

RESUMO

The effect of lactocin AL705, bacteriocin produced by Latilactobacillus (Lat.) curvatus CRL1579 against Listeria biofilms on stainless steel (SS) and polytetrafluoroethylene (PTFE) coupons at 10 °C was investigated. L. monocytogenes FBUNT showed the greatest adhesion on both surfaces associated to the hydrophobicity of cell surface. Partially purified bacteriocin (800 UA/mL) effectively inhibited L. monocytogenes preformed biofilm through displacement strategy, reducing the pathogen by 5.54 ± 0.26 and 4.74 ± 0.05 log cycles at 3 and 6 days, respectively. The bacteriocin-producer decreased the pathogen biofilm by ∼2.84 log cycles. Control and Bac- treated samples reached cell counts of 7.05 ± 0.18 and 6.79 ± 0.06 log CFU/cm2 after 6 days of incubation. Confocal scanning laser microscopy (CLSM) allowed visualizing the inhibitory effect of lactocin AL705 on L. monocytogenes preformed biofilms under static and hydrodynamic flow conditions. A greater effect of the bacteriocin was found at 3 days independently of the surface matrix and pathogen growth conditions at 10 °C. As a more realistic approach, biofilm displacement strategy under continuous flow conditions showed a significant loss of biomass, mean thickness and substratum coverage of pathogen biofilm. These findings highlight the anti-biofilm capacity of lactocin AL705 and their potential application in food industries.


Assuntos
Bacteriocinas , Listeria monocytogenes , Listeria , Biofilmes , Bacteriocinas/farmacologia , Lactobacillus , Aço Inoxidável/análise , Microbiologia de Alimentos
7.
J Indian Soc Pedod Prev Dent ; 42(1): 37-45, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38616425

RESUMO

PURPOSE: The purpose of this clinical trial was to assess and compare the clinical outcomes of Bioflx crowns (BFCs) with stainless steel crowns (SSCs) in primary molars (PMs). MATERIALS AND METHODS: This prospective split-mouth randomized controlled clinical trial was conducted between March 2022 and June 2023. Thirty-eight patients (17 females and 21 males) with a mean age of 5.21 years participated in this study. Each child (n = 38) received both SSC and BFC. Clinical and radiographic follow-up was performed at baseline, 3, 6, and 12 months using the modified United States Public Health System scoring criteria to evaluate various parameters. RESULTS: At the 3 and 6 months' follow-up, no significant difference was observed between the two groups. However, at 1-year follow-up, a statistically significant difference (P < 0.05) was evident in the frequency between the two groups for the criteria of crown retention after cementation and anatomic form of the crown, indicating a preference for SSC over prototype 1 BFC. CONCLUSION: The 12-month results indicate that BFC performed similarly to the established SSC for the restoration of PMs providing better esthetics.


Assuntos
Boca , Aço Inoxidável , Criança , Feminino , Masculino , Humanos , Pré-Escolar , Estudos Prospectivos , Coroas , Dente Molar
8.
Anal Chim Acta ; 1302: 342516, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38580411

RESUMO

Conventional plate electrodes were commonly used in electrochemical flow injection analysis and only part of molecules diffused to the plane of electrodes could be detected, which would limit the performance of electrochemical detection. In this study, a low-cost native stainless steel wire mesh (SSWM) electrode was integrated into a 3D-printed device for electrochemical flow injection analysis with a pass-through mode, which is different compared with previous flow-through mode. This strategy was applied for sensitive analysis of hydrogen peroxide (H2O2) released from cells. Under the optimal conditions (the applied potentials, the flow rate and the sample volume), the device exhibits high sensitivity toward H2O2. Linear relationships could be achieved between electrochemical responses and the concentration of H2O2 ranging from 1 nM to 1 mM. The excellent analytical performance of the SSWM-based device could be attributed to the pass-through mode based on the mesh microstructure and intrinsic catalytic properties for H2O2 by stainless steel. This approach could be further successfully extended for screening of H2O2 released from HeLa cells with electrochemical responses linear to the number of cells in a range of 3 - 1.35 × 104 cells with an injection volume of 30 µL. This study revealed the potential of mesh electrodes in electrochemical flow injection analysis for cellular function and pathology and its possible extension in cell counting and on-line analysis.


Assuntos
Análise de Injeção de Fluxo , Peróxido de Hidrogênio , Humanos , Células HeLa , Peróxido de Hidrogênio/análise , Aço Inoxidável , Técnicas Eletroquímicas , Eletrodos
9.
Colloids Surf B Biointerfaces ; 238: 113908, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677153

RESUMO

In response to the critical demand for advancements in coronary artery stents, this study addresses the challenges associated with arterial recoil and restenosis post-angioplasty and the imperative to encourage rapid re-endothelialization for minimizing thrombosis risks. We employed an innovative approach inspired by mussel adhesion, incorporating placental anticoagulant protein (AnnexinV) on stent design. The introduction of a post-translationally modified catecholic amino acid L-3,4-dihydroxyphenylalanine (L-Dopa), mimicking mussel characteristics, allowed for effective surface modification of Stainless steel stents through genetic code engineering in AnnexinV (AnxDopa). The efficacy of AnxDopa was analyzed through microscale thermophoresis and flow cytometry, confirming AnxDopa's exceptional binding with phosphatidylserine and activated platelets. AnxDopa coated stainless steel demonstrates remarkable bio-, hemo-, and immuno-compatibility, preventing smooth muscle cell proliferation, platelet adhesion, and fibrin formation. It acts as an interface between the stent and biological fluid, which facilitates the anticoagulation and rapid endothelialization. Surface modification of SS verified through XPS analysis and contact angle measurement attests to the efficacy of AnxDopa mediated surface modification. The hydrophilic nature of the AnxDopa-coated surface enhanced the endothelialization through increased protein absorption. This approach represents a significant stride in developing coronary stents with improved biocompatibility and reduced restenosis risks, offering valuable contributions to scientific and clinical realms alike.


Assuntos
Materiais Revestidos Biocompatíveis , Stents , Humanos , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Vasos Coronários/efeitos dos fármacos , Adesividade Plaquetária/efeitos dos fármacos , Anticoagulantes/farmacologia , Anticoagulantes/química , Propriedades de Superfície , Proliferação de Células/efeitos dos fármacos , Aço Inoxidável/química , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/citologia , Animais , Levodopa/química , Levodopa/farmacologia
10.
J Appl Microbiol ; 135(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38609348

RESUMO

AIM: Evaluate the efficacy of sponge wipe sampling at recovering potential bacterial surrogates for Category A and B non-spore-forming bacterial bioterrorism agents from hard, nonporous surfaces. METHODS: A literature survey identified seven nonpathogenic bacteria as potential surrogates for selected Category A and B non-spore-forming bacterial agents. Small (2 × 4 cm) and large (35.6 × 35.6 cm) coupons made from either stainless steel, plastic, or glass, were inoculated and utilized to assess persistence and surface sampling efficiency, respectively. Three commercially available premoistened sponge wipes (3M™, Sani-Stick®, and Solar-Cult®) were evaluated. RESULTS: Mean recoveries from persistence testing indicated that three microorganisms (Yersinia ruckeri, Escherichia coli, and Serratia marcescens) demonstrated sufficient persistence across all tested material types. Sampling of large inoculated (≥107 CFU per sample) coupons resulted in mean recoveries ranging from 6.6 to 3.4 Log10 CFU per sample. Mean recoveries for the Solar-Cult®, 3M™ sponge wipes, and Sani-Sticks® across all test organisms and all material types were ≥5.7, ≥3.7, and ≥3.4 Log10 CFU per sample, respectively. Mean recoveries for glass, stainless steel, and ABS plastic across all test organisms and all sponge types were ≥3.8, ≥3.7, and ≥3.4 Log10 CFU per sample, respectively. CONCLUSIONS: Recovery results suggest that sponge wipe sampling can effectively be used to recover non-spore-forming bacterial cells from hard, nonporous surfaces such as stainless steel, ABS plastic, and glass.


Assuntos
Bioterrorismo , Aço Inoxidável , Bactérias/isolamento & purificação , Plásticos , Escherichia coli/isolamento & purificação , Serratia marcescens/isolamento & purificação , Vidro , Contagem de Colônia Microbiana , Armas Biológicas
11.
J Contemp Dent Pract ; 25(1): 41-51, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38514430

RESUMO

AIM: The study aims to correlate the frictional forces (FF) of four different types of commercially available ceramic brackets to their surface topography. MATERIALS AND METHODS: Two monocrystalline (MC) brackets (CLEAR™, Adanta, Germany; Inspire ICE™, Ormco, USA), one polycrystalline (PC) bracket (Symetri Clear™, Ormco, USA), one clear hybrid esthetic bracket (DISCREET™, Adanta, Germany), and a stainless-steel (SS) bracket (Victory™, 3M Unitek, USA) served as control. Both static friction (SF) and kinetic friction (KF) were recorded during sliding using an Instron universal machine in dry settings. The bracket slot surface topography was evaluated. A scanning electron microscope (SEM) and a profilometer machine were used for assessment before and after sliding. RESULTS: Frictional forces values during sliding were as follows in descending order; Inspire ICE™, CLEAR™, DISCREET™, Symetri Clear™, and, lastly, Victory™. Also, DISCREET™ scored the highest in surface roughness (Sa) values followed by Symetri Clear™. None of the correlations were statistically significant. CONCLUSION: Frictional forces produced during sliding were not always directly related to surface roughness. Monocrystalline ceramic brackets appeared to have the greatest FF and a low surface roughness. Furthermore, DISCREET™ scored a very low frictional value comparable to metal brackets yet showed the highest surface roughness. Metal brackets exhibited the greatest surface smoothness before sliding and the least SF. CLINICAL SIGNIFICANCE: Predicting the FFs produced during sliding mechanics would help the practitioner while choosing the bracket system to be used, and while planning the treatment mechanics, how much force to deliver, and how much tooth movement to expect. How to cite this article: AlBadr AH, Talic NF. Correlating Frictional Forces Generated by Different Bracket Types during Sliding and Surface Topography Using Scanning Electron Microscopy and Optical Profilometer. J Contemp Dent Pract 2024;25(1):41-51.


Assuntos
Braquetes Ortodônticos , Microscopia Eletrônica de Varredura , Fricção , Fios Ortodônticos , Desenho de Aparelho Ortodôntico , Análise do Estresse Dentário , Estética Dentária , Metais , Aço Inoxidável/química , Teste de Materiais , Propriedades de Superfície
12.
Medicina (Kaunas) ; 60(3)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38541166

RESUMO

Background and Objectives: Spring-assisted surgery is a popular option for the treatment of non-syndromic craniosynostosis. The main drawback of this procedure is the need for a second surgery for spring removal, which could be avoided if a distractor material could be metabolised over time. Iron-Manganese alloys (FeMn) have a good trade-off between degradation rate and strength; however, their biocompatibility is still debated. Materials and Methods: In this study, the neuro-compatibility of Fe-20Mn (wt.%) was assessed using standard assays. PC-12 cells were exposed to Fe-20Mn (wt.%) and stainless steel via indirect contact. To examine the cytotoxicity, a Cell Tox Green assay was carried out after 1, 2, and 3 days of incubation. Following differentiation, a neurite morphological examination after 1 and 7 days of incubation time was carried out. The degradation response in modified Hank's solution at 1, 3, and 7 days was investigated, too. Results: The cytotoxicity assay showed a higher toxicity of Fe-20Mn than stainless steel at earlier time points; however, at the latest time point, no differences were found. Neurite morphology was similar for cells exposed to Fe-20Mn and stainless steel. Conclusions: In conclusion, the Fe-20Mn alloy shows promising neuro-compatibility. Future studies will focus on in vivo studies to confirm the cellular response to Fe-20Mn.


Assuntos
Implantes Absorvíveis , Aço Inoxidável , Humanos , Teste de Materiais , Ligas
13.
Int J Food Microbiol ; 416: 110676, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38507974

RESUMO

Listeria monocytogenes biofilms present a significant challenge in the food industry. This study explores the impact of different acidic conditions of culture media and food matrices on the development and removal of biofilms developed on stainless steel surfaces by wild-type (WT) L. monocytogenes strains as well as in two mutant derivatives, ΔsigB and ΔagrA, that have defects in the general stress response and quorum sensing, respectively. Additionally, the study investigates the efficacy of nanoencapsulated carvacrol as an antimicrobial against L. monocytogenes biofilms developed in Tryptic Soy Broth (TSB) culture media acidified to different pH conditions (3.5, 4.5, 5.5, 6.5), and in food substrates (apple juice, strained yogurt, vegetable soup, semi-skimmed milk) having the same pH levels. No biofilm formation was observed for all L. monocytogenes strains at pH levels of 3.5 and 4.5 in both culture media and food substrates. However, at pH 5.5 and 6.5, increased biofilm levels were observed in both the culture media and food substrates, with the WT strain showing significantly higher biofilm formation (3.04-6.05 log CFU cm-2) than the mutant strains (2.30-5.48 log CFU cm-2). For both applications, the nanoencapsulated carvacrol demonstrated more potent antimicrobial activity against biofilms developed at pH 5.5 with 2.23 to 3.61 log reductions, compared to 1.58-2.95 log reductions at pH 6.5, with mutants being more vulnerable in acidic environments. In food substrates, nanoencapsulated carvacrol induced lower log reductions (1.58-2.90) than the ones in TSB (2.02-3.61). These findings provide valuable insights into the impact of different acidic conditions on the development of L. monocytogenes biofilms on stainless steel surfaces and the potential application of nanoencapsulated carvacrol as a biofilm control agent in food processing environments.


Assuntos
Anti-Infecciosos , Cimenos , Listeria monocytogenes , Aço Inoxidável/análise , Biofilmes , Meios de Cultura , Microbiologia de Alimentos , Contagem de Colônia Microbiana
14.
Sci Total Environ ; 924: 171600, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38461986

RESUMO

The electric field-assisted composting system (EACS) is an emerging technology that can enhance composting efficiency, but little attention has been given to electrode materials. Herein, an EACS was established to investigate the effects of electrode materials on humic substance formation and heavy metal speciation. Excitation-emission matrix analysis showed that carbon-felt and stainless-steel electrodes increased humic acid (HA) by 48.57 % and 47.53 %, respectively. In the EACS with the carbon-felt electrode, the bioavailability factors (BF) of Cu and Cr decreased by 18.00 % and 7.61 %, respectively. Despite that the stainless-steel electrodes decreased the BF of As by 11.26 %, the leaching of Cr, Ni, Cu, and Fe from the electrode itself is an inevitable concern. Microbial community analyses indicated that the electric field increased the abundance of Actinobacteria and stimulated the multiplication of heavy metal-tolerant bacteria. Redundancy analysis indicates that OM, pH, and current significantly affect the evolution of heavy metal speciation in the EACS. This study first evaluated the metal leaching risk of stainless-steel electrode, and confirmed that carbon-felt electrode is environment-friendly material with high performance and low risk in future research with EACS.


Assuntos
Compostagem , Metais Pesados , Solo/química , Metais Pesados/análise , Substâncias Húmicas/análise , Aço Inoxidável , Bactérias , Carbono
15.
Food Microbiol ; 120: 104457, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38431311

RESUMO

Brochothrix thermosphacta is considered as a major food spoiler bacteria. This study evaluates biofilm formation by B. thermosphacta CD337(2) - a strong biofilm producer strain - on three food industry materials (polycarbonate (PC), polystyrene (PS), and stainless steel (SS)). Biofilms were continuously grown under flow at 25 °C in BHI broth in a modified CDC biofilm reactor. Bacterial cells were enumerated by plate counting, and biofilm spatial organization was deciphered by combining confocal laser scanning microscopy and image analysis. The biofilms had the same growth kinetics on all three materials and reach 8log CFU/cm2 as maximal concentration. Highly structured biofilms were observed on PC and PS, but less structured ones on SS. This difference was confirmed by structural quantification analysis using the image analysis software tool BiofilmQ. Biofilm on SS show less roughness, density, thickness and volume. The biofilm 3D structure seemed to be related to the coupon topography and roughness. The materials used in this study do not affect biofilm growth. However, their roughness and topography affect the biofilm architecture, which could influence biofilm behaviour.


Assuntos
Biofilmes , Brochothrix , Indústria de Processamento de Alimentos , Aço Inoxidável
16.
Cochrane Database Syst Rev ; 2: CD007859, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319008

RESUMO

BACKGROUND: Initial arch wires are the first arch wires inserted into fixed appliance at the beginning of orthodontic treatment. With a number of different types of orthodontic arch wires available for initial tooth alignment, it is important to understand which are most efficient and which cause the least amount of root resorption and pain during the initial aligning stage of treatment. This is the third update of a Cochrane review first published in 2010. OBJECTIVES: To assess the effects of initial arch wires for the alignment of teeth with fixed orthodontic braces, in terms of the rate of tooth alignment, amount of root resorption accompanying tooth movement, and intensity of pain experienced by patients during the initial alignment stage of treatment. SEARCH METHODS: We searched Cochrane Oral Health's Trials Register, CENTRAL, MEDLINE, Embase, and two ongoing trials registries on 4 July 2022. SELECTION CRITERIA: We included randomised controlled trials (RCTs) of different initial arch wires used to align teeth with fixed orthodontic braces. We included people with full-arch fixed orthodontic appliances on the upper arch, lower arch, or both arches. DATA COLLECTION AND ANALYSIS: Two independent review authors were responsible for study selection, data extraction, and assessment of risk of bias in included studies. We contacted corresponding authors of included studies to obtain missing information. We resolved disagreements by discussion between the review authors. Our main outcomes were alignment rate (movement of teeth in mm), root resorption, time to alignment, and intensity of pain measured on a 100-mm visual analogue scale (VAS). We pooled data from studies with similar interventions and outcomes using random-effects models. We reported mean differences (MDs) with 95% confidence intervals (CIs) for continuous data, risk ratios (RRs) with 95% CIs for dichotomous data, and alignment rate ratios with 95% CIs for time-to-event data. Two independent review authors assessed the certainty of evidence. We resolved disagreements by discussion between the review authors. MAIN RESULTS: We included 29 RCTs with 1915 participants (2581 arches) in this review. Studies were generally small (sample sizes ranged from 14 to 200 participants). Duration of follow-up varied between three days and six months. Eleven studies received funding, six received no funding, and 12 provided no information about funding sources. We judged eight studies at high risk of bias, nine at low risk, and 12 at unclear risk. We grouped the studies into six main comparisons. Multistrand stainless steel wires versus wires composed of other materials Six studies with 409 participants (545 arches) evaluated multistrand stainless steel (StSt) wires versus wires composed of other materials. We are very uncertain about the effect of multistrand StSt wires versus other wires on alignment rate (4 studies, 281 participants, 417 arches; very low-certainty evidence). There may be little to no difference between multistrand StSt wires and other wires in terms of intensity of pain (MD -2.68 mm, 95% CI -6.75 to 1.38; 2 studies, 127 participants, 127 arches; low-certainty evidence). Conventional nickel-titanium wires versus superelastic nickel-titanium wires Four studies with 266 participants (274 arches) evaluated conventional nickel-titanium (NiTi) wires versus superelastic NiTi wires. There may be little to no difference between the different wire types in terms of alignment rate (124 participants, 124 arches, 2 studies; low-certainty evidence) and intensity of pain (MD -0.29 mm, 95% CI -1.10 to 0.52; 2 studies, 142 participants, 150 arches; low-certainty evidence). Conventional nickel-titanium wires versus thermoelastic copper-nickel-titanium wires Three studies with 210 participants (210 arches) evaluated conventional Ni-Ti versus thermoelastic copper-nickel-titanium (CuNiTi) wires. We are very uncertain about the effects of the different arch wires on alignment rate (1 study, 66 participants, 66 arches; very low-certainty evidence). There may be little to no difference between conventional NiTi wires and thermoelastic CuNiTi wires in terms of time to alignment (alignment rate ratio 1.30, 95% CI 0.68 to 2.50; 1 study, 60 participants, 60 arches; low-certainty evidence). Superelastic nickel-titanium wires versus thermoelastic nickel-titanium wires Twelve studies with 703 participants (936 arches) evaluated superelastic NiTi versus thermoelastic NiTi wires. There may be little to no difference between superelastic NiTi wires and thermoelastic NiTi wires in alignment rate at four weeks (MD -0.28 mm, 95% CI 0.62 to 0.06; 5 studies, 183 participants, 183 arches; low-certainty evidence). We are very uncertain about the effects of the different wires on root resorption (2 studies, 52 participants, 312 teeth; very low-certainty evidence). Superelastic NiTi wires compared with thermoelastic NiTi wires may result in a slight increase in time to alignment (MD 0.5 months, 95% CI 0.21 to 0.79; 1 study, 32 participants, 32 arches; low-certainty evidence) but are probably associated with a slight increase in intensity of pain (MD 6.96 mm, 95% CI 1.82 to 12.10; 3 studies, 94 participants, 138 arches, moderate-certainty evidence). Single-strand superelastic nickel-titanium wires versus coaxial superelastic nickel-titanium wires Three studies with 104 participants (104 arches) evaluated single-strand superelastic NiTi versus coaxial superelastic NiTi wires. Use of single-strand superelastic NiTi wires compared with coaxial superelastic NiTi wires probably results in a slight reduction in alignment rate at four weeks (MD -2.64 mm, 95% CI -4.61 to -0.67; 2 studies, 64 participants, 64 arches, moderate-certainty evidence). Different sizes of nickel-titanium wires Two studies with 149 participants (232 arches) compared different types of NiTi wires. There may be little to no difference between different sizes of NiTi wires in terms of pain (low-certainty evidence). AUTHORS' CONCLUSIONS: Superelastic NiTi wires probably produce slightly more pain after one day than thermoelastic NiTi wires, and single-strand superelastic NiTi wires probably have a lower alignment rate over four weeks compared with coaxial superelastic NiTi wires. All other evidence on alignment rate, root resorption, time to alignment, and pain is of low or very low certainty in all comparisons. Therefore, there is insufficient evidence to determine whether any particular arch wire material or size is superior to any other. The findings of this review are imprecise and unreliable; well-designed larger studies are needed to give better estimates of the benefits and harms of different arch wires. Orthodontists should exercise caution when interpreting the findings of this review and be prepared to adapt their treatment plans based on individual patient needs.


Assuntos
Ligas , Braquetes Ortodônticos , Reabsorção da Raiz , Humanos , Níquel , Titânio , Reabsorção da Raiz/etiologia , Aço Inoxidável , Cobre , Braquetes Ortodônticos/efeitos adversos , Dor
17.
Bioelectrochemistry ; 157: 108665, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38342073

RESUMO

Acetobacter aceti is a microbe that produces corrosive organic acids, causing severe corrosion of industrial equipment. Previous studies have focused on the organic acid corrosion of A. aceti, but neglected the possibility that it has electron transfer corrosion. This study found that electron transfer and organic acids can synergistically promote the corrosion of 2205 duplex stainless steel (DSS). Electrochemical measurement results showed that corrosion of 2205 DSS was more severe in the presence of A. aceti. Surface analysis indicated a thick biofilm formed on the steel surface, with low pH and dissolved oxygen concentrations under the biofilm. Corrosion intensified when A. aceti lacked a carbon source, suggesting that A. aceti can corrode metals by using metallic substrates as electron donors, in addition to its acidic by-products.


Assuntos
Acetobacter , Elétrons , Aço Inoxidável , Corrosão , Transporte de Elétrons , Aço , Biofilmes , Compostos Orgânicos
18.
Environ Sci Pollut Res Int ; 31(12): 18842-18855, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38351355

RESUMO

Copper-containing stainless steel (SS) has been reported to mitigate biofilms in industrial and clinical environments. However, the impact of copper released from copper-containing SS in natural seawater on biofilms and corrosion is still unclear. In this study, three kinds of 316L SS were immersed in natural seawater for 6 months, and the pitting depth decreased in the order: 316L-Cu SS (annealed) > 316L SS > 316L-Cu SS (aged). The biofilm thickness and number of sessile cells on the surface of 316L-Cu SS (annealed) and 316L SS were similar but notably greater than those of 316L-Cu SS (aged). Furthermore, the results of the community analysis indicated that the addition of copper in 316L-Cu SS (aged) reduced the diversity and richness of the microbial community, resulting in a significant reduction in the number of genera constituting the biofilms. Copper ions exhibit a broad-spectrum bactericidal effect, effectively reducing the abundance of dominant populations and microbial genera in the biofilms, thereby mitigating pitting corrosion induced by microorganisms. In addition, the PCoA scatter plot showed that time also played an important role in the regulation of microbial community structure.


Assuntos
Cobre , Aço Inoxidável , Cobre/química , Aço Inoxidável/química , Corrosão , Biofilmes , Água do Mar
19.
BMC Oral Health ; 24(1): 269, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395853

RESUMO

BACKGROUND: The aim of this study is to evaluate the stress distributions of a primary molar tooth restored with a stainless steel crown (SSC) using resin and glass ionomer luting cements by Finite Element Analysis (FEA). METHODS: Original DICOM data of a primary molar was used to create a 3D model. One model was prepared as a tooth model with SSC. A 30 µm cement layer was used in model. Two different luting cements were tested in the study: self-cure adhesive resin cement, and glass ionomer cement. Vertical and oblique loads of 330 N were applied to simulate maximum bite force and lateral forces in the occlusal contact areas of the models. Maximum von Mises stress values in the models were evaluated as MPa. RESULTS: The maximum von Mises stress value was observed in the force application and general occlusal contact areas for all models. The maximum von Mises stress values were higher in the tooth model with SSC using self-cure adhesive resin cement (478.09 MPa and 214.62 MPa) than in the tooth model with SSC using glass ionomer cement (220.06 MPa and 198.72 MPa) in both vertical and oblique loading, respectively. CONCLUSIONS: Depending on the magnitude of the bite force on the SSC, fracture of the luting cement materials could occur if the stress exceeds the endurance limit of the luting cement. Cementation with glass ionomer cement may help to reduce stress levels in SSC restorations of primary molars in children.


Assuntos
Cimentos de Resina , Aço Inoxidável , Criança , Humanos , Cimentos de Resina/uso terapêutico , Cimentos Dentários/uso terapêutico , Cimentos de Ionômeros de Vidro/uso terapêutico , Coroas , Dente Molar , Teste de Materiais
20.
ACS Appl Mater Interfaces ; 16(8): 10601-10622, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38376231

RESUMO

Stainless steel (316L SS) has been widely used in orthopedic, cardiovascular stents, and other biomedical implant applications due to its strength, corrosion resistance, and biocompatibility. To address the weak interaction between steel implants and tissues, it is a widely adopted strategy to enhance implant performance through the application of bioactive coatings. In this study, Cu-doped brushite coatings were deposited successfully through pulse electrodeposition on steel substrates facilitated with a biosurfactant (BS) (i.e., surfactin). Further, the combined effect of various concentrations of Cu ions and BS on the structural, electrochemical, and biological properties was studied. The X-ray diffraction (XRD) confirms brushite composition with Cu substitution causing lattice contraction and a reduced crystallite size. The scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS) studies reveal the morphological changes of the coatings with the incorporation of Cu, which is confirmed by X-ray photoelectron spectroscopy (XPS) and elemental mapping. The Fourier transform infrared (FTIR) and Raman spectroscopy confirm the brushite and Cu doping in the coatings, respectively. Increased surface roughness and mechanical properties of Cu-doped coatings were analyzed by using atomic force microscopic (AFM) and nanohardness tests, respectively. Electrochemical assessments demonstrate corrosion resistance enhancement in Cu-doped coatings, which is further improved with the addition of biosurfactants. In vitro biomineralization studies show the Cu-doped coating's potential for osseointegration, with added stability. The cytocompatibility of the coatings was analyzed using live/dead and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assays; cell adhesion, proliferation, and migration studies were evaluated using SEM. Antibacterial assays highlight significant improvement in the antibacterial properties of Cu-doped coatings with BS. Thus, the developed Cu-doped brushite coatings with BS demonstrate their potential in the realm of biomedical implant technologies, paving the way for further exploration.


Assuntos
Fosfatos de Cálcio , Aço Inoxidável , Fosfatos de Cálcio/química , Aço Inoxidável/química , Antibacterianos/química , Corrosão , Stents , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA