Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Infect Dis ; 8(1): 197-209, 2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-34928596

RESUMO

ATP phosphoribosyltransferase (ATPPRT) catalyzes the first step of histidine biosynthesis in bacteria, namely, the condensation of ATP and 5-phospho-α-d-ribosyl-1-pyrophosphate (PRPP) to generate N1-(5-phospho-ß-d-ribosyl)-ATP (PRATP) and pyrophosphate. Catalytic (HisGS) and regulatory (HisZ) subunits assemble in a hetero-octamer where HisZ activates HisGS and mediates allosteric inhibition by histidine. In Acinetobacter baumannnii, HisGS is necessary for the bacterium to persist in the lung during pneumonia. Inhibition of ATPPRT is thus a promising strategy for specific antibiotic development. Here, A. baumannii ATPPRT is shown to follow a rapid equilibrium random kinetic mechanism, unlike any other ATPPRT. Histidine noncompetitively inhibits ATPPRT. Binding kinetics indicates histidine binds to free ATPPRT and to ATPPRT:PRPP and ATPPRT:ATP binary complexes with similar affinity following a two-step binding mechanism, but with distinct kinetic partition of the initial enzyme:inhibitor complex. The dipeptide histidine-proline inhibits ATPPRT competitively and likely uncompetitively, respectively, against PRPP and ATP. Rapid kinetics analysis shows His-Pro binds to the ATPPRT:ATP complex via a two-step binding mechanism. A related HisZ that shares 43% sequence identity with A. baumannii HisZ is a tight-binding allosteric inhibitor of A. baumannii HisGS. These findings lay the foundation for inhibitor design against A. baumannii ATPPRT.


Assuntos
ATP Fosforribosiltransferase , Acinetobacter baumannii , ATP Fosforribosiltransferase/genética , ATP Fosforribosiltransferase/metabolismo , Acinetobacter baumannii/metabolismo , Dipeptídeos , Histidina , Cinética
2.
Biochem J ; 475(16): 2681-2697, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-30072492

RESUMO

In the first committed step of histidine biosynthesis, adenosine 5'-triphosphate (ATP) and 5-phosphoribosyl-α1-pyrophosphate (PRPP), in the presence of ATP phosphoribosyltransferase (ATP-PRT, EC 2.4.2.17), yield phosphoribosyl-ATP. ATP-PRTs are subject to feedback inhibition by histidine that allosterically binds between the regulatory domains. Histidine biosynthetic pathways of bacteria, lower eukaryotes, and plants are considered promising targets for the design of antibiotics, antifungal agents, and herbicides because higher organisms are histidine heterotrophs. Plant ATP-PRTs are similar to one of the two types of their bacterial counterparts, the long-type ATP-PRTs. A biochemical and structural study of ATP-PRT from the model legume plant, Medicago truncatula (MedtrATP-PRT1) is reported herein. Two crystal structures, presenting homohexameric MedtrATP-PRT1 in its relaxed (R-) and histidine-bound, tense (T-) states allowed to observe key features of the enzyme and provided the first structural insights into an ATP-PRT from a eukaryotic organism. In particular, they show pronounced conformational reorganizations during R-state to T-state transition that involves substantial movements of domains. This rearrangement requires a trans- to cis- switch of a peptide backbone within the hinge region of MedtrATP-PRT1. A C-terminal α-helix, absent in bacteria, reinforces the hinge that is constituted by two peptide strands. As a result, conformations of the R- and T-states are significantly different from the corresponding states of prokaryotic enzymes with known 3-D structures. Finally, adenosine 5'-monophosphate (AMP) bound at the active site is consistent with a competitive (and synergistic with histidine) nature of AMP inhibition.


Assuntos
ATP Fosforribosiltransferase/química , ATP Fosforribosiltransferase/metabolismo , Histidina/biossíntese , Medicago truncatula/enzimologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , ATP Fosforribosiltransferase/genética , Cristalografia por Raios X , Histidina/genética , Medicago truncatula/genética , Proteínas de Plantas/genética , Domínios Proteicos , Estrutura Secundária de Proteína
3.
Biochem J ; 475(1): 247-260, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29208762

RESUMO

Adenosine triphosphate (ATP) phosphoribosyltransferase (ATP-PRT) catalyses the first committed step of histidine biosynthesis in plants and microorganisms. Two forms of ATP-PRT have been reported, which differ in their molecular architecture and mechanism of allosteric regulation. The short-form ATP-PRT is a hetero-octamer, with four HisG chains that comprise only the catalytic domains and four separate chains of HisZ required for allosteric regulation by histidine. The long-form ATP-PRT is homo-hexameric, with each chain comprising two catalytic domains and a covalently linked regulatory domain that binds histidine as an allosteric inhibitor. Here, we describe a truncated long-form ATP-PRT from Campylobacter jejuni devoid of its regulatory domain (CjeATP-PRTcore). Results showed that CjeATP-PRTcore is dimeric, exhibits attenuated catalytic activity, and is insensitive to histidine, indicating that the covalently linked regulatory domain plays a role in both catalysis and regulation. Crystal structures were obtained for CjeATP-PRTcore in complex with both substrates, and for the first time, the complete product of the reaction. These structures reveal the key features of the active site and provide insights into how substrates move into position during catalysis.


Assuntos
ATP Fosforribosiltransferase/química , Monofosfato de Adenosina/química , Trifosfato de Adenosina/química , Proteínas de Bactérias/química , Campylobacter jejuni/enzimologia , ATP Fosforribosiltransferase/genética , ATP Fosforribosiltransferase/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Motivos de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Campylobacter jejuni/química , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Histidina/química , Histidina/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
4.
ACS Chem Biol ; 12(10): 2662-2670, 2017 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-28872824

RESUMO

Adenosine triphosphate phosphoribosyltransferase (ATP-PRT) catalyzes the first step in histidine biosynthesis, a pathway essential to microorganisms and a validated target for antimicrobial drug design. The ATP-PRT enzyme catalyzes the reversible substitution reaction between phosphoribosyl pyrophosphate and ATP. The enzyme exists in two structurally distinct forms, a short- and a long-form enzyme. These forms share a catalytic core dimer but bear completely different allosteric domains and thus distinct quaternary assemblies. Understanding enzymatic transition states can provide essential information on the reaction mechanisms and insight into how differences in domain structure influence the reaction chemistry, as well as providing a template for inhibitor design. In this study, the transition state structures for ATP-PRT enzymes from Campylobacter jejuni and Mycobacterium tuberculosis (long-form enzymes) and from Lactococcus lactis (short-form) were determined and compared. Intrinsic kinetic isotope effects (KIEs) were obtained at reaction sensitive positions for the reverse reaction using phosphonoacetic acid, an alternative substrate to the natural substrate pyrophosphate. The experimental KIEs demonstrated mechanistic similarities between the three enzymes and provided experimental boundaries for quantum chemical calculations to characterize the transition states. Predicted transition state structures support a dissociative reaction mechanism with a DN*AN‡ transition state. Weak interactions from the incoming nucleophile and a fully dissociated ATP adenine are predicted regardless of the difference in overall structure and quaternary assembly. These studies establish that despite significant differences in the quaternary assembly and regulatory machinery between ATP-PRT enzymes from different sources, the reaction chemistry and catalytic mechanism are conserved.


Assuntos
ATP Fosforribosiltransferase/metabolismo , Bactérias/enzimologia , ATP Fosforribosiltransferase/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Domínio Catalítico , Cinética , Modelos Moleculares , Conformação Proteica , Isoformas de Proteínas , Transdução de Sinais
5.
Nat Commun ; 8(1): 203, 2017 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-28781362

RESUMO

ATP-phosphoribosyltransferase (ATP-PRT) is a hexameric enzyme in conformational equilibrium between an open and seemingly active state and a closed and presumably inhibited form. The structure-function relationship of allosteric regulation in this system is still not fully understood. Here, we develop a screening strategy for modulators of ATP-PRT and identify 3-(2-thienyl)-L-alanine (TIH) as an allosteric activator of this enzyme. Kinetic analysis reveals co-occupancy of the allosteric sites by TIH and L-histidine. Crystallographic and native ion-mobility mass spectrometry data show that the TIH-bound activated form of the enzyme closely resembles the inhibited L-histidine-bound closed conformation, revealing the uncoupling between ATP-PRT open and closed conformations and its functional state. These findings suggest that dynamic processes are responsible for ATP-PRT allosteric regulation and that similar mechanisms might also be found in other enzymes bearing a ferredoxin-like allosteric domain.Active and inactive state ATP-phosphoribosyltransferases (ATP-PRTs) are believed to have different conformations. Here the authors show that in both states, ATP-PRT has a similar structural arrangement, suggesting that dynamic alterations are involved in ATP-PRT regulation by allosteric modulators.


Assuntos
ATP Fosforribosiltransferase/química , ATP Fosforribosiltransferase/genética , ATP Fosforribosiltransferase/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Sítio Alostérico , Histidina/química , Histidina/metabolismo , Cinética , Modelos Moleculares
6.
Biochemistry ; 56(5): 793-803, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28092443

RESUMO

Adenosine 5'-triphosphate phosphoribosyltransferase (ATPPRT) catalyzes the first step in histidine biosynthesis, the condensation of ATP and 5-phospho-α-d-ribosyl-1-pyrophosphate to generate N1-(5-phospho-ß-d-ribosyl)-ATP and inorganic pyrophosphate. The enzyme is allosterically inhibited by histidine. Two forms of ATPPRT, encoded by the hisG gene, exist in nature, depending on the species. The long form, HisGL, is a single polypeptide chain with catalytic and regulatory domains. The short form, HisGS, lacks a regulatory domain and cannot bind histidine. HisGS instead is found in complex with a regulatory protein, HisZ, constituting the ATPPRT holoenzyme. HisZ triggers HisGS catalytic activity while rendering it sensitive to allosteric inhibition by histidine. Until recently, HisGS was thought to be catalytically inactive without HisZ. Here, recombinant HisGS and HisZ from the psychrophilic bacterium Psychrobacter arcticus were independently overexpressed and purified. The crystal structure of P. arcticus ATPPRT was determined at 2.34 Å resolution, revealing an equimolar HisGS-HisZ hetero-octamer. Steady-state kinetics indicate that both the ATPPRT holoenzyme and HisGS are catalytically active. Surprisingly, HisZ confers only a modest 2-4-fold increase in kcat. Reaction profiles for both enzymes cannot be distinguished by 31P nuclear magnetic resonance, indicating that the same reaction is catalyzed. The temperature dependence of kcat shows deviation from Arrhenius behavior at 308 K with the holoenzyme. Interestingly, such deviation is detected only at 313 K with HisGS. Thermal denaturation by CD spectroscopy resulted in Tm's of 312 and 316 K for HisZ and HisGS, respectively, suggesting that HisZ renders the ATPPRT complex more thermolabile. This is the first characterization of a psychrophilic ATPPRT.


Assuntos
ATP Fosforribosiltransferase/química , Aminoacil-tRNA Sintetases/química , Proteínas de Bactérias/química , Histidina/química , Proteínas de Transporte de Monossacarídeos/química , Psychrobacter/enzimologia , ATP Fosforribosiltransferase/genética , ATP Fosforribosiltransferase/metabolismo , Aclimatação , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Temperatura Baixa , Cristalografia por Raios X , Difosfatos/química , Difosfatos/metabolismo , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Histidina/biossíntese , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Modelos Moleculares , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Fosforribosil Pirofosfato/química , Fosforribosil Pirofosfato/metabolismo , Domínios Proteicos , Multimerização Proteica , Estrutura Secundária de Proteína , Psychrobacter/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinâmica
7.
FEBS Lett ; 590(16): 2603-10, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27393206

RESUMO

ATP-phosphoribosyltransferase (ATP-PRT) catalyses the first step of histidine biosynthesis. Two different forms of ATP-PRT have been described; the homo-hexameric long form, and the hetero-octameric short form. Lactococcus lactis possesses the short form ATP-PRT comprising four subunits of HisGS , the catalytic subunit, and four subunits of HisZ, a histidyl-tRNA synthetase paralogue. Previous studies have suggested that HisGS requires HisZ for catalysis. Here, we reveal that the dimeric HisGS does display ATP-PRT activity in the absence of HisZ. This result reflects the evolutionary relationship between the long and short form ATP-PRT, which acquired allosteric inhibition and enhanced catalysis via two divergent strategies.


Assuntos
ATP Fosforribosiltransferase/metabolismo , Aminoacil-tRNA Sintetases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Isoformas de Proteínas/metabolismo , ATP Fosforribosiltransferase/química , ATP Fosforribosiltransferase/genética , Sequência de Aminoácidos , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Catálise , Domínio Catalítico/genética , Histidina/química , Histidina/metabolismo , Lactococcus lactis/enzimologia , Proteínas de Transporte de Monossacarídeos/química , Proteínas de Transporte de Monossacarídeos/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética
8.
Protein Sci ; 25(8): 1492-506, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27191057

RESUMO

Adenosine triphosphate phosphoribosyltransferase (ATP-PRT) catalyzes the first committed step of the histidine biosynthesis in plants and microorganisms. Here, we present the functional and structural characterization of the ATP-PRT from the pathogenic ε-proteobacteria Campylobacter jejuni (CjeATP-PRT). This enzyme is a member of the long form (HisGL ) ATP-PRT and is allosterically inhibited by histidine, which binds to a remote regulatory domain, and competitively inhibited by AMP. In the crystalline form, CjeATP-PRT was found to adopt two distinctly different hexameric conformations, with an open homohexameric structure observed in the presence of substrate ATP, and a more compact closed form present when inhibitor histidine is bound. CjeATP-PRT was observed to adopt only a hexameric quaternary structure in solution, contradicting previous hypotheses favoring an allosteric mechanism driven by an oligomer equilibrium. Instead, this study supports the conclusion that the ATP-PRT long form hexamer is the active species; the tightening of this structure in response to remote histidine binding results in an inhibited enzyme.


Assuntos
ATP Fosforribosiltransferase/química , Monofosfato de Adenosina/química , Trifosfato de Adenosina/química , Proteínas de Bactérias/química , Campylobacter jejuni/química , Histidina/química , ATP Fosforribosiltransferase/genética , ATP Fosforribosiltransferase/metabolismo , Regulação Alostérica , Sítio Alostérico , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ligação Competitiva , Campylobacter jejuni/enzimologia , Campylobacter jejuni/genética , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Cinética , Modelos Moleculares , Mutação , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinâmica
9.
J Biotechnol ; 206: 26-37, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-25892668

RESUMO

L-Histidine biosynthesis in Corynebacterium glutamicum is mainly regulated by L-histidine feedback inhibition of the ATP-phosphoribosyltransferase HisG that catalyzes the first step of the pathway. The elimination of this feedback inhibition is the first and most important step in the development of an L-histidine production strain. For this purpose, a combined approach of random mutagenesis and rational enzyme redesign was performed. Mutants spontaneously resistant to the toxic L-histidine analog ß-(2-thiazolyl)-DL-alanine (2-TA) revealed novel and unpredicted mutations in the C-terminal regulatory domain of HisG resulting in increased feedback resistance. Moreover, deletion of the entire C-terminal regulatory domain in combination with the gain of function mutation S143F in the catalytic domain resulted in a HisG variant that is still highly active even at L-histidine concentrations close to the solubility limit. Notably, the S143F mutation on its own provokes feedback deregulation, revealing for the first time an amino acid residue in the catalytic domain of HisG that is involved in the feedback regulatory mechanism. In addition, we investigated the effect of hisG mutations for L-histidine production on different levels. This comprised the analysis of different expression systems, including plasmid- and chromosome-based overexpression, as well as the importance of codon choice for HisG mutations. The combination of domain deletions, single amino acid exchanges, codon choice, and chromosome-based overexpression resulted in production strains accumulating around 0.5 g l(-1) L-histidine, demonstrating the added value of the different approaches.


Assuntos
ATP Fosforribosiltransferase/metabolismo , Corynebacterium glutamicum/genética , Retroalimentação Fisiológica/fisiologia , Histidina/metabolismo , Engenharia Metabólica/métodos , ATP Fosforribosiltransferase/química , ATP Fosforribosiltransferase/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Corynebacterium glutamicum/enzimologia , Escherichia coli/genética , Redes e Vias Metabólicas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Mutação Silenciosa/genética , Mutação Silenciosa/fisiologia
10.
ACS Synth Biol ; 3(1): 21-9, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-23829416

RESUMO

Enzymes initiating the biosynthesis of cellular building blocks are frequently inhibited by the end-product of the respective pathway. Here we present an approach to rapidly generate sets of enzymes overriding this control. It is based on the in vivo detection of the desired end-product in single cells using a genetically encoded sensor. The sensor transmits intracellular product concentrations into a graded optical output, thus enabling ultrahigh-throughput screens by FACS. We randomly mutagenized plasmid-encoded ArgB of Corynebacterium glutamicum and screened the library in a strain carrying the sensor pSenLys-Spc, which detects l-lysine, l-arginine and l-histidine. Six of the resulting N-acetyl-l-glutamate kinase proteins were further developed and characterized and found to be at least 20-fold less sensitive toward l-arginine inhibition than the wild-type enzyme. Overexpression of the mutein ArgB-K47H-V65A in C. glutamicumΔargR led to the accumulation of 34 mM l-arginine in the culture medium. We also screened mutant libraries of lysC-encoded aspartate kinase and hisG-encoded ATP phosphoribosyltransferase. We isolated 11 LysC muteins, enabling up to 45 mM l-lysine accumulation, and 13 HisG muteins, enabling up to 17 mM l-histidine accumulation. These results demonstrate that in vivo screening of enzyme libraries by using metabolite sensors is extremely well suited to identify high-performance muteins required for overproduction.


Assuntos
Proteínas de Bactérias/metabolismo , Corynebacterium glutamicum/metabolismo , Fosfotransferases (Aceptor do Grupo Carboxila)/metabolismo , ATP Fosforribosiltransferase/genética , ATP Fosforribosiltransferase/metabolismo , Substituição de Aminoácidos , Arginina/química , Arginina/metabolismo , Aspartato Quinase/genética , Aspartato Quinase/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Corynebacterium glutamicum/enzimologia , Citometria de Fluxo , Histidina/química , Histidina/metabolismo , Cinética , Lisina/química , Lisina/metabolismo , Fosfotransferases (Aceptor do Grupo Carboxila)/química , Fosfotransferases (Aceptor do Grupo Carboxila)/genética , Plasmídeos/genética , Plasmídeos/metabolismo
11.
Curr Top Med Chem ; 13(22): 2866-84, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24111909

RESUMO

Worldwide, tuberculosis is the leading cause of morbidity and mortality due to a single bacterial pathogen, Mycobacterium tuberculosis (Mtb). The increasing prevalence of this disease, the emergence of multi-, extensively, and totally drug-resistant strains, complicated by co-infection with the human immunodeficiency virus, and the length of tuberculosis chemotherapy have led to an urgent and continued need for the development of new and more effective antitubercular drugs. Within this context, the L-histidine biosynthetic pathway, which converts 5-phosphoribosyl 1-pyrophosphate to L-histidine in ten enzymatic steps, has been reported as a promising target of antimicrobial agents. This pathway is found in bacteria, archaebacteria, lower eukaryotes, and plants but is absent in mammals, making these enzymes highly attractive targets for the drug design of new antimycobacterial compounds with selective toxicity. Moreover, the biosynthesis of L-histidine has been described as essential for Mtb growth in vitro. Accordingly, a comprehensive overview of Mycobacterium tuberculosis histidine pathway enzymes as attractive targets for the development of new antimycobacterial agents is provided, mainly summarizing the previously reported inhibition data for Mtb or orthologous proteins.


Assuntos
Antituberculosos/química , Antituberculosos/farmacologia , Enzimas/metabolismo , Histidina/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo , ATP Fosforribosiltransferase/química , ATP Fosforribosiltransferase/genética , ATP Fosforribosiltransferase/metabolismo , Aldose-Cetose Isomerases/genética , Aldose-Cetose Isomerases/metabolismo , Aminoidrolases/genética , Aminoidrolases/metabolismo , Desenho de Fármacos , Enzimas/genética , Terapia de Alvo Molecular , Mycobacterium tuberculosis/genética
12.
Prikl Biokhim Mikrobiol ; 49(2): 149-54, 2013.
Artigo em Russo | MEDLINE | ID: mdl-23795473

RESUMO

Strain MG 1655+hisGr hisL'-Delta, purR, which produces histidine with a weight yield of approximately 12% from glucose, was constructed through directed chromosomal modifications of the laboratory Escherichia coli strain MG 1655+, which has a known genome sequence. A feedback-resistant ATP-phosphoribosyl transferase encoded by the mutant hisGr (E271 K) was the main determinant of histidine production. A further increase in histidine production was achieved by the expression enhance of a mutant his operon containing hisGr through the deleting attenuator region (hisL'-Delta). An increase in the expression of the wildtype his operon did not result in histidine accumulation. Deletion of the transcriptional regulator gene purR increased the biomass produced and maintained the level of histidine production per cell under the fermentation conditions used.


Assuntos
ATP Fosforribosiltransferase/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Histidina/biossíntese , Proteoma/genética , ATP Fosforribosiltransferase/metabolismo , Sequência de Bases , Biomassa , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Fermentação , Glucose/metabolismo , Engenharia Metabólica , Dados de Sequência Molecular , Mutação , Óperon , Proteoma/metabolismo , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética , Deleção de Sequência
13.
Biotechnol Lett ; 35(5): 735-41, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23355034

RESUMO

Histidine biosynthesis in Corynebacterium glutamicum is regulated not only by feedback inhibition by the first enzyme in the pathway, but also by repression control of the synthesis of the histidine enzymes. C. glutamicum histidine genes are located and transcribed in two unlinked loci, hisEG and hisDCB-orf1-orf2-hisHA-impA-hisFI. We constructed plasmid pK18hisDPtac to replace the native hisD promoter with the tac promoter, and overexpressed phosphoribosyl-ATP-pyrophosphohydrolase, encoded by hisE, and ATP-phosphoribosyltransferase, encoded by hisG. The L-histidine titer at 0.85 g l(-1) was 80 % greater in the transformed bacterium and production of byproducts, L-alanine and L-tryptophan, was significantly decreased. However, accumulation of glutamic acid increased by 58 % (2.8 g l(-1)). This study represents the first attempt to substitute the histidine biosynthesis pathway promoter in the chromosome with a stronger promoter to increase histidine production.


Assuntos
Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Histidina/biossíntese , ATP Fosforribosiltransferase/genética , ATP Fosforribosiltransferase/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biotecnologia , Corynebacterium glutamicum/enzimologia , Fermentação , Histidina/genética , Redes e Vias Metabólicas , Plasmídeos/genética , Regiões Promotoras Genéticas
14.
Biochimie ; 94(3): 829-38, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22172596

RESUMO

ATP phosphoribosyltransferase (ATP-PRT) catalyzes the condensation of ATP and PRPP at the first step of histidine biosynthesis and is regulated by a feedback inhibition from product histidine. Here, we report the genetic and biochemical characterization of such an enzyme, HisG(Cg), from Corynebacterium glutamicum, including site-directed mutagenesis of the histidine-binding site for the first time. Gene disruption and complementation experiments showed that HisG(Cg) is essential for histidine biosynthesis. HisG(Cg) activity was noncompetitively inhibited by histidine and the α-amino group of histidine were found to play an important role for its binding to HisG(Cg). Homology-based modeling predicted that four residues (N215, L231, T235 and A270) in the C-terminal domain of HisG(Cg) may affect the histidine inhibition. Mutating these residues in HisG(Cg) did not cause significant change in the specific activities of the enzyme but resulted in the generation of mutant ones resistant to histidine inhibition. Our data identified that the mutant N215K/L231F/T235A resists to histidine inhibition the most with 37-fold increase in K(i) value. As expected, overexpressing a hisG(Cg) gene containing N215K/L231F/T235A mutations in vivo promoted histidine accumulation to a final concentration of 0.15 ± 0.01 mM. Our results demonstrated that the polarity change of electrostatic potential of mutant protein surface prevents histidine from binding to the C-terminal domain of HisG(Cg), resulting in the release of allosteric inhibition. Considering that these residues were highly conserved in ATP-PRTs from different genera of Gram-positive bacteria the mechanism by histidine inhibition as exhibited in Corynebacterium glutamicum probably represents a ubiquitously inhibitory mechanism of ATP-PRTs by histidine.


Assuntos
ATP Fosforribosiltransferase/metabolismo , Corynebacterium glutamicum/enzimologia , Histidina/metabolismo , Proteínas Mutantes/metabolismo , ATP Fosforribosiltransferase/genética , Mutagênese Sítio-Dirigida , Proteínas Mutantes/genética
15.
Can J Microbiol ; 57(7): 547-58, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21774583

RESUMO

Bacteria of the Geobacter clade possess two distinct ATP phosphoribosyltransferases encoded by hisG(L) and hisG(S)+hisZ to catalyze the first reaction of histidine biosynthesis. This very unusual redundancy was investigated by mutational analysis. The hisG(L), hisG(S), and hisZ genes of Geobacter sulfurreducens were deleted, effects on growth and histidine biosynthesis gene expression were evaluated, and deficiencies were complemented with plasmid-borne genes. Both hisG(L) and hisG(S)+hisZ encode functional ATP phosphoribosyltransferases. However, deletion of hisG(L) resulted in no growth defect, whereas deletion of hisG(S) delayed growth when histidine was not provided. Both deletions increased hisZ transcript abundance, and both ΔhisG(S) and ΔhisZ mutations increased hisG(L) transcript abundance. Growth with HisG(L) alone (due to deletion of either hisG(S) or hisZ) was better under nitrogen fixation conditions than when ammonium was provided. Deletion of hisZ caused growth defects under all conditions tested, with or without exogenous sources of histidine, with different patterns of histidine biosynthesis gene expression under each condition. Taken together, the data indicate that G. sulfurreducens depends primarily on the HisG(S)Z isozyme as an ATP phosphoribosyltransferase in histidine biosynthesis, and for other functions when histidine is available; however, HisG(L) also functions as ATP phosphoribosyltransferase, particularly during nitrogen fixation.


Assuntos
ATP Fosforribosiltransferase/fisiologia , Geobacter/enzimologia , Histidina/metabolismo , Fixação de Nitrogênio , ATP Fosforribosiltransferase/genética , ATP Fosforribosiltransferase/metabolismo , Deleção de Genes , Genes Bacterianos , Geobacter/genética , Geobacter/crescimento & desenvolvimento , Histidina/biossíntese , Isoenzimas/genética , Isoenzimas/metabolismo , Isoenzimas/fisiologia
16.
Plant Biotechnol J ; 7(6): 499-511, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19486323

RESUMO

Despite the functional importance of histidine (His) as an essential amino acid in proteins and as a metal-coordinating ligand, comparatively little is known about the regulation of its biosynthesis in plants and the potential for metabolic engineering of this pathway. To investigate the contribution of different steps in the pathway to overall control of His biosynthesis, nine His biosynthetic genes were individually over-expressed in Arabidopsis thaliana to determine their effects on free amino acid pools. Constitutive, CaMV 35S-driven over-expression of the cDNAs encoding either isoform of ATP-phosphoribosyltransferase (ATP-PRT), the first enzyme in the pathway, was sufficient to increase the pool of free His by up to 42-fold in shoot tissue of Arabidopsis, with negligible effect on any other amino acid. In contrast, over-expression of cDNAs for seven other enzymes in the biosynthetic pathway had no effect on His content, suggesting that control of the pool of free His resides largely with ATP-PRT activity. Over-expression of ATP-PRT and increased His content had a negative pleiotropic effect on plant biomass production in 35S:PRT1 lines, but this effect was not observed in 35S:PRT2 lines. In the presence of 100 microM Ni, which was inhibitory to wild-type plants, a strong positive correlation was observed between free His content and biomass production, indicating that the metabolic cost of His overproduction was outweighed by the benefit of increased tolerance to Ni. His-overproducing plants also displayed somewhat elevated tolerance to Co and Zn, but not to Cd or Cu, indicating chemical selectivity in intracellular metal binding by His.


Assuntos
ATP Fosforribosiltransferase/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Histidina/biossíntese , ATP Fosforribosiltransferase/genética , Aminoácidos/metabolismo , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , DNA Complementar/genética , Genes de Plantas , Metais/farmacologia , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética
17.
Biochemistry ; 45(50): 14933-43, 2006 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-17154531

RESUMO

Two families of ATP phosphoribosyl transferases (ATP-PRT) join ATP and 5-phosphoribosyl-1 pyrophosphate (PRPP) in the first reaction of histidine biosynthesis. These consist of a homohexameric form found in all three kingdoms and a hetero-octameric form largely restricted to bacteria. Hetero-octameric ATP-PRTs consist of four HisGS catalytic subunits related to periplasmic binding proteins and four HisZ regulatory subunits that resemble histidyl-tRNA synthetases. To clarify the relationship between the two families of ATP-PRTs and among phosphoribosyltransferases in general, we determined the steady state kinetics for the hetero-octameric form and characterized the active site by mutagenesis. The KmPRPP (18.4 +/- 3.5 microM) and kcat (2.7 +/- 0.3 s-1) values for the PRPP substrate are similar to those of hexameric ATP-PRTs, but the Km for ATP (2.7 +/- 0.3 mM) is 4-fold higher, suggestive of tighter regulation by energy charge. Histidine and AMP were determined to be noncompetitive (Ki = 81.1 microM) and competitive (Ki = 1.44 mM) inhibitors, respectively, with values that approximate their intracellular concentrations. Mutagenesis experiments aimed at investigating the side chains recognizing PRPP showed that 5'-phosphate contacts (T159A and T162A) had the largest (25- and 155-fold, respectively) decreases in kcat/Km, while smaller decreases were seen with mutants making cross subunit contacts (K50A and K8A) to the pyrophosphate moiety or contacts to the 2'-OH group. Despite their markedly different quaternary structures, hexameric and hetero-octameric ATRP-PRTs exhibit similar functional parameters and employ mechanistic strategies reminiscent of the broader PRT superfamily.


Assuntos
ATP Fosforribosiltransferase/química , Proteínas de Bactérias/química , Lactococcus lactis/enzimologia , Complexos Multiproteicos/química , ATP Fosforribosiltransferase/genética , ATP Fosforribosiltransferase/metabolismo , Monofosfato de Adenosina/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Domínio Catalítico/genética , Histidina/biossíntese , Histidina/química , Lactococcus lactis/genética , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutagênese Sítio-Dirigida , Fosforribosil Pirofosfato/química , Fosforribosil Pirofosfato/metabolismo , Ligação Proteica/genética , Estrutura Quaternária de Proteína/genética , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Especificidade por Substrato/genética
18.
Eur J Emerg Med ; 13(6): 349-51, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17091057

RESUMO

Diabetes mellitus is a heterogeneous disorder that may occur at any age. Neonatal diabetes mellitus, defined as hyperglycaemia presenting within the first 6 weeks of life in term infants, is a rare disorder that may result in permanent or transient diabetes mellitus. Although reported in paediatric diabetes literature, there are no reports of this condition in emergency medicine journals and these children may present to emergency departments with a picture mimicking sepsis. We report the case of a 5-week-old infant with diabetes mellitus who presented with diabetic ketoacidosis and review the literature surrounding this rare condition.


Assuntos
Diabetes Mellitus , Tratamento de Emergência/métodos , Terapia Intensiva Neonatal/métodos , ATP Fosforribosiltransferase/genética , Estado Terminal , Diabetes Mellitus/congênito , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/terapia , Cetoacidose Diabética/etiologia , Diagnóstico Diferencial , Hidratação/métodos , Doenças Genéticas Inatas/complicações , Glucoquinase/deficiência , Glucoquinase/genética , Proteínas de Homeodomínio/genética , Humanos , Hipoglicemiantes/uso terapêutico , Lactente , Insulina/uso terapêutico , Masculino , Mutação/genética , Doenças Raras , Sepse/diagnóstico , Transativadores/genética , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/complicações
19.
Plant Cell ; 17(7): 2089-106, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15923352

RESUMO

Plants that hyperaccumulate Ni exhibit an exceptional degree of Ni tolerance and the ability to translocate Ni in large amounts from root to shoot. In hyperaccumulator plants in the genus Alyssum, free His is an important Ni binding ligand that increases in the xylem proportionately to root Ni uptake. To determine the molecular basis of the His response and its contribution to Ni tolerance, transcripts representing seven of the eight enzymes involved in His biosynthesis were investigated in the hyperaccumulator species Alyssum lesbiacum by RNA gel blot analysis. None of the transcripts changed in abundance in either root or shoot tissue when plants were exposed to Ni, but transcript levels were constitutively higher in A. lesbiacum than in the congeneric nonaccumulator A. montanum, especially for the first enzyme in the biosynthetic pathway, ATP-phosphoribosyltransferase (ATP-PRT). Comparison with the weak hyperaccumulator A. serpyllifolium revealed a close correlation between Ni tolerance, root His concentration, and ATP-PRT transcript abundance. Overexpression of an A. lesbiacum ATP-PRT cDNA in transgenic Arabidopsis thaliana increased the pool of free His up to 15-fold in shoot tissue, without affecting the concentration of any other amino acid. His-overproducing lines also displayed elevated tolerance to Ni but did not exhibit increased Ni concentrations in either xylem sap or shoot tissue, suggesting that additional factors are necessary to recapitulate the complete hyperaccumulator phenotype. These results suggest that ATP-PRT expression plays a major role in regulating the pool of free His and contributes to the exceptional Ni tolerance of hyperaccumulator Alyssum species.


Assuntos
Brassicaceae/metabolismo , Resistência a Medicamentos/fisiologia , Histidina/biossíntese , Níquel/metabolismo , ATP Fosforribosiltransferase/genética , ATP Fosforribosiltransferase/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Sítios de Ligação/genética , Brassicaceae/efeitos dos fármacos , DNA Complementar/genética , Evolução Molecular , Dados de Sequência Molecular , Filogenia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , RNA de Plantas/genética , Especificidade da Espécie
20.
Mol Microbiol ; 55(3): 675-86, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15660995

RESUMO

The molecular structure of the ATP phosphoribosyl transferase from the hyperthermophile Thermotoga maritima is composed of a 220 kDa hetero-octameric complex comprising four catalytic subunits (HisGS) and four regulatory subunits (HisZ). Steady-state kinetics indicate that only the complete octameric complex is active and non-competitively inhibited by the pathway product histidine. The rationale for these findings is provided by the crystal structure revealing a total of eight histidine binding sites that are located within each of the four HisGS-HisZ subunit interfaces formed by the ATP phosphoribosyl transferase complex. While the structure of the catalytic HisGS subunit is related to the catalytic domain of another family of (HisGL)2 ATP phosphoribosyl transferases that is functional in the absence of additional regulatory subunits, the structure of the regulatory HisZ subunit is distantly related to class II aminoacyl-tRNA synthetases. However, neither the mode of the oligomeric subunit arrangement nor the type of histidine binding pockets is found in these structural relatives. Common ancestry of the regulatory HisZ subunit and class II aminoacyl-tRNA synthetase may reflect the balanced need of regulated amounts of a cognate amino acid (histidine) in the translation apparatus, ultimately linking amino acid biosynthesis and protein biosynthesis in terms of function, structure and evolution.


Assuntos
ATP Fosforribosiltransferase/genética , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Thermotoga maritima/enzimologia , ATP Fosforribosiltransferase/química , ATP Fosforribosiltransferase/metabolismo , Sequência de Aminoácidos , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Histidina/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Relação Estrutura-Atividade , Thermotoga maritima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA