Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
2.
Nat Cardiovasc Res ; 3(9): 1049-1066, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39215106

RESUMO

Myocardial injury may ultimately lead to adverse ventricular remodeling and development of heart failure (HF), which is a major cause of morbidity and mortality worldwide. Given the slow pace and substantial costs of developing new therapeutics, drug repurposing is an attractive alternative. Studies of many organs, including the heart, highlight the importance of the immune system in modulating injury and repair outcomes. Glatiramer acetate (GA) is an immunomodulatory drug prescribed for patients with multiple sclerosis. Here, we report that short-term GA treatment improves cardiac function and reduces scar area in a mouse model of acute myocardial infarction and a rat model of ischemic HF. We provide mechanistic evidence indicating that, in addition to its immunomodulatory functions, GA exerts beneficial pleiotropic effects, including cardiomyocyte protection and enhanced angiogenesis. Overall, these findings highlight the potential repurposing of GA as a future therapy for a myriad of heart diseases.


Assuntos
Modelos Animais de Doenças , Reposicionamento de Medicamentos , Acetato de Glatiramer , Animais , Acetato de Glatiramer/uso terapêutico , Acetato de Glatiramer/farmacologia , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/patologia , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica/efeitos dos fármacos , Ratos , Camundongos , Insuficiência Cardíaca/tratamento farmacológico , Função Ventricular Esquerda/efeitos dos fármacos , Ratos Sprague-Dawley , Células Cultivadas , Remodelação Ventricular/efeitos dos fármacos
3.
Injury ; 55(10): 111719, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39003883

RESUMO

AIM: This study aimed to evaluate the effect of systemic/local use of melatonin and glatiramer acetate on regeneration in traumatic nerve injury models. MATERIALS AND METHODS: A total of 42 male Wistar albino rats were randomly divided into 6 groups: healthy control (Group 1), injured control (Group 2), local melatonin (Group 3), systemic melatonin (Group 4), local glatiramer acetate (Group 5), and systemic glatiramer acetate (Group 6). In all groups, electromyography recordings of the facial nerve were obtained after surgery and before sacrifice, and the damaged nerve region was histopathologically examined after sacrifice. RESULTS: In the electrophysiological evaluation, the control group had the greatest decrease in amplitude and extension in latency time following surgery than the treatment groups. Furthermore, a significant decrease in the degenerative axon count, edematous areas, and fibrotic areas as well as a significant increase in axonal surface areas was observed in all the treatment groups compared with the damage control group. CONCLUSIONS: Although both glatiramer acetate and melatonin are beneficial in regeneration in traumatic facial nerve injuries, it can be concluded that systemic use of melatonin can yield more positive results than glatiramer acetate and local use of both two drugs.


Assuntos
Eletromiografia , Traumatismos do Nervo Facial , Acetato de Glatiramer , Melatonina , Regeneração Nervosa , Ratos Wistar , Melatonina/farmacologia , Animais , Masculino , Ratos , Acetato de Glatiramer/farmacologia , Acetato de Glatiramer/uso terapêutico , Regeneração Nervosa/efeitos dos fármacos , Traumatismos do Nervo Facial/tratamento farmacológico , Traumatismos do Nervo Facial/patologia , Modelos Animais de Doenças , Nervo Facial/efeitos dos fármacos , Nervo Facial/patologia
4.
Neurochem Res ; 49(4): 1049-1060, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38252396

RESUMO

Chemotherapy-induced peripheral neuropathy (CIPN) is a major challenge for cancer patients who undergo chemotherapy with paclitaxel. Therefore, finding effective therapies for CIPN is crucial. Glatiramer acetate is used to treat multiple sclerosis that exerts neuroprotective properties in various studies. We hypothesized that glatiramer acetate could also improve the paclitaxel-induced peripheral neuropathy. We used a rat model of paclitaxel (2 mg/kg/every other day for 7 doses)-induced peripheral neuropathy. Rats were treated with either different doses of glatiramer acetate (1, 2, 4 mg/kg/day) or its vehicle for 14 days in separate groups. The mechanical and thermal sensitivity of the rats by using the Von Frey test and the Hot Plate test, respectively, were assessed during the study. The levels of oxidative stress (malondialdehyde and superoxide dismutase), inflammatory markers (TNF-α, IL-10, NF-kB), and nerve damage (H&E and S100B staining) in the sciatic nerves of the rats were also measured at the end of study. Glatiramer acetate (2 and 4 mg/kg) exerted beneficial effects on thermal and mechanical allodynia tests. It also modulated the inflammatory response by reducing TNF-α and NF-κB levels, enhancing IL-10 production, and improving the oxidative stress status by lowering malondialdehyde and increasing superoxide dismutase activity in the sciatic nerve of the rats. Furthermore, glatiramer acetate enhanced nerve conduction velocity in all treatment groups. Histological analysis revealed that glatiramer acetate (2 and 4 mg/kg) prevented paclitaxel-induced damage to the nerve structure. These results suggest that glatiramer acetate can alleviate the peripheral neuropathy induced by paclitaxel.


Assuntos
Paclitaxel , Doenças do Sistema Nervoso Periférico , Humanos , Ratos , Animais , Paclitaxel/toxicidade , Acetato de Glatiramer/uso terapêutico , Acetato de Glatiramer/farmacologia , Interleucina-10 , Citocinas/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/prevenção & controle , Estresse Oxidativo , Hiperalgesia/induzido quimicamente , Superóxido Dismutase/metabolismo , Malondialdeído/farmacologia
5.
Sci Rep ; 13(1): 5635, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024509

RESUMO

Endoplasmic reticulum (ER) stress and mitochondrial dysfunction are found in lesions of multiple sclerosis (MS) and animal models of MS such as experimental autoimmune encephalomyelitis (EAE), and may contribute to the neuronal loss that underlies permanent impairment. We investigated whether glatiramer acetate (GA) can reduce these changes in the spinal cords of chronic EAE mice by using routine histology, immunostaining, and electron microscopy. EAE spinal cord tissue exhibited increased inflammation, demyelination, mitochondrial dysfunction, ER stress, downregulation of NAD+ dependent pathways, and increased neuronal death. GA reversed these pathological changes, suggesting that immunomodulating therapy can indirectly induce neuroprotective effects in the CNS by mediating ER stress.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Camundongos , Animais , Acetato de Glatiramer/farmacologia , Acetato de Glatiramer/uso terapêutico , Peptídeos/farmacologia , Imunomodulação , Estresse do Retículo Endoplasmático , Mitocôndrias/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
6.
J Neurol Sci ; 444: 120501, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36481574

RESUMO

BACKGROUND AND PURPOSE: Cerebral gray matter (GM) atrophy is a proposed measure of neuroprotection in multiple sclerosis (MS). Glatiramer acetate (GA) limits clinical relapses, MRI lesions, and whole brain atrophy in relapsing-remitting MS (RRMS). The effect of GA on GM atrophy remains unclear. We assessed GM atrophy in patients with RRMS starting GA therapy in comparison to a cohort of patients with clinically benign RRMS (BMS). DESIGN/METHODS: We studied 14 patients at GA start [age (mean ± SD) 44.2 ± 7.0 years, disease duration (DD) 7.2 ± 6.4 years, Expanded Disability Status Scale score (EDSS) (median,IQR) 1.0,2.0] and 6 patients with BMS [age 43.0 ± 6.1 years, DD 18.1 ± 8.4 years, EDSS 0.5,1.0]. Brain MRI was obtained at baseline and one year later (both groups) and two years later in all patients in the GA group except one who was lost to follow-up. Semi-automated algorithms assessed cerebral T2 hyperintense lesion volume (T2LV), white matter fraction (WMF), GM fraction (GMF), and brain parenchymal fraction (BPF). The exact Wilcoxon-Mann-Whitney test compared the groups. The Wilcoxon signed rank test assessed longitudinal changes within groups. RESULTS: During the first year, MRI changes did not differ significantly between groups (p > 0.15). Within the BMS group, WMF and BPF decreased during the first year (p = 0.03). Within the GA group, there was no significant change in MRI measures during each annual period (p > 0.05). Over two years, the GA group had a significant increase in T2LV and decrease in WMF (p < 0.05), while GMF and BPF remained stable (p > 0.05). MRI changes in brain volumes (GMF or WMF) in the first year in the GA group were not significantly different from those in the BMS group (p > 0.5). CONCLUSIONS: In this pilot study with a small sample size, patients with RRMS started on GA did not show significant GM or whole brain atrophy over 2 years, resembling MS patients with a clinically benign disease course.


Assuntos
Substância Cinzenta , Esclerose Múltipla Recidivante-Remitente , Adulto , Humanos , Pessoa de Meia-Idade , Atrofia/tratamento farmacológico , Atrofia/patologia , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Acetato de Glatiramer/uso terapêutico , Acetato de Glatiramer/farmacologia , Fator de Maturação da Glia/farmacologia , Substância Cinzenta/efeitos dos fármacos , Substância Cinzenta/patologia , Imageamento por Ressonância Magnética , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/patologia , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/patologia , Projetos Piloto
7.
Metab Brain Dis ; 37(7): 2603-2613, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35922733

RESUMO

Multiple sclerosis (MS) is a chronic autoimmune disorder of central nervous system which is increasing worldwide. Although immunosuppressive agents are used for the treatment of MS disease, nevertheless the lack of non-toxic and efficient therapeutic method is perceptible. Hence, this study aims to evaluate the effect of Contactin-associated protein (Caspr) antibody-, poly ethylene glycol (PEG)- and exosome combined gold nanoparticles (GNPs) in comparison to Glatiramer acetate as a selective treatment of MS disease in the experimental autoimmune encephalomyelitis (EAE) mouse model. EAE was induced in female C57BL/6 mice and 25-day treatment with anti-Caspr-, PEG- and exosome combined GNPs was evaluated. Histopathological examination of spinal cord, regulatory T cells as well as inflammatory pathway including IFN-É£ and IL-17 and mir-326 were investigated. The results showed the severity of MS symptoms was significantly decreased in all treated groups. Histological examination of the spinal cord indicated the reduced demyelination and immune cell infiltration. Besides, regulatory T cells were significantly increased following all treatments. Remarkably, the cytokine levels of IFN-É£ and IL-17 as well as mir-326 is altered in treated groups. Taken together, the obtained findings demonstrate that the administration of anti-Caspr-, PEG- and exosome combined GNPs can be considered a potential treatment in MS disease.


Assuntos
Encefalomielite Autoimune Experimental , Nanopartículas Metálicas , Esclerose Múltipla , Animais , Feminino , Camundongos , Contactinas , Citocinas/metabolismo , Modelos Animais de Doenças , Etilenoglicóis , Acetato de Glatiramer/farmacologia , Acetato de Glatiramer/uso terapêutico , Ouro , Imunossupressores/farmacologia , Imunossupressores/uso terapêutico , Interleucina-17 , Nanopartículas Metálicas/uso terapêutico , Camundongos Endogâmicos C57BL , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/patologia
8.
Molecules ; 27(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35807462

RESUMO

Experimental autoimmune encephalomyelitis (EAE) is a relevant animal model of multiple sclerosis (MS). Oxidative stress and chronic inflammation play a major role in the pathogenesis of MS and EAE. Melatonin, a neurohormone, has potent anti-inflammatory properties. The aim of our study was to assess the therapeutic properties of melatonin alone or in combination with interferon ß-1b (IFNß-1b) or glatiramer acetate (GA) on EAE. EAE was induced in male Sprague-Dawley rats with an intraperitoneal injection of a homogenate of spinal cord and pig brain. At day 10 post immunization, rats were euthanized, and their brains were immediately excised and processed to measure oxidative stress markers and membrane fluidity. In addition, proinflammatory cytokines were quantified in plasma. Melatonin alone or in combination with GA and IFNß-1b inhibited the disease process of EAE and the synthesis of proinflammatory cytokines, caused a significant decrement in oxidative stress markers, and preserved the membrane fluidity in the motor cortex, midbrain, and spinal cord. The cumulative index score was significantly reduced in EAE rats treated with melatonin alone or in combination with GA and IFNß-1b. In conclusion, our findings provide preclinical evidence for the use of melatonin as an adjuvant therapeutic treatment for MS.


Assuntos
Encefalomielite Autoimune Experimental , Melatonina , Esclerose Múltipla , Animais , Biomarcadores , Citocinas , Encefalomielite Autoimune Experimental/patologia , Acetato de Glatiramer/farmacologia , Acetato de Glatiramer/uso terapêutico , Interferon beta-1b/uso terapêutico , Interferon beta , Masculino , Melatonina/farmacologia , Melatonina/uso terapêutico , Esclerose Múltipla/tratamento farmacológico , Ratos , Ratos Sprague-Dawley , Suínos
9.
Microbiol Spectr ; 10(4): e0081322, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35727066

RESUMO

Pseudomonas aeruginosa is the most common pathogen infecting the lungs of people with cystic fibrosis (CF), causing both acute and chronic infections. Intrinsic and acquired antibiotic resistance, coupled with the physical barriers resulting from desiccated CF sputum, allow P. aeruginosa to colonize and persist in spite of antibiotic treatment. As well as the specific difficulties in eradicating P. aeruginosa from CF lungs, P. aeruginosa is also subject to the wider, global issue of antimicrobial resistance. Glatiramer acetate (GA) is a peptide drug, used in the treatment of multiple sclerosis (MS), which has been shown to have moderate antipseudomonal activity. Other antimicrobial peptides (AMPs) have been shown to be antibiotic resistance breakers, potentiating the activities of antibiotics when given in combination, restoring and/or enhancing antibiotic efficacy. Growth, viability, MIC determinations, and synergy analysis showed that GA improved the efficacy of tobramycin (TOB) against reference strains of P. aeruginosa, reducing TOB MICs and synergizing with the aminoglycoside. This was also the case for clinical strains from people with CF. GA significantly reduced the MIC50 of TOB for viable cells from 1.69 mg/L (95% confidence interval [CI], 0.26 to 8.97) to 0.62 mg/L (95% CI, 0.15 to 3.94; P = 0.002) and the MIC90 for viable cells from 7.00 mg/L (95% CI, 1.18 to 26.50) to 2.20 mg/L (95% CI, 0.99 to 15.03; P = 0.001), compared to results with TOB only. Investigation of mechanisms of GA activity showed that GA resulted in significant disruption of outer membranes, depolarization of cytoplasmic membranes, and permeabilization of P. aeruginosa and was the only agent tested (including cationic AMPs) to significantly affect all three mechanisms. IMPORTANCE The antimicrobial resistance crisis urgently requires solutions to the lost efficacy of antibiotics. The repurposing of drugs already in clinical use, with strong safety profiles, as antibiotic adjuvants to restore the efficacy of antibiotics is an important avenue to alleviating the resistance crisis. This research shows that a clinically used drug from outside infection treatment, glatiramer acetate, reduces the concentration of tobramycin required to be effective in treating Pseudomonas aeruginosa, based on analyses of both reference and clinical respiratory isolates from people with cystic fibrosis. The two agents acted synergistically against P. aeruginosa, being more effective combined in vitro than predicted for their combination. As a peptide drug, glatiramer acetate functions similarly to many antimicrobial peptides, interacting with and disrupting the P. aeruginosa cell wall and permeabilizing bacterial cells, thereby allowing tobramycin to work. Our findings demonstrate that glatiramer acetate is a strong candidate for repurposing as an antibiotic resistance breaker of pathogenic P. aeruginosa.


Assuntos
Fibrose Cística , Infecções por Pseudomonas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Fibrose Cística/tratamento farmacológico , Fibrose Cística/microbiologia , Acetato de Glatiramer/farmacologia , Acetato de Glatiramer/uso terapêutico , Humanos , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa , Tobramicina/farmacologia , Tobramicina/uso terapêutico
10.
Cells ; 11(9)2022 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-35563884

RESUMO

Novel, neuroprotective uses of Copaxone (generic name: glatiramer acetate-GA) are being examined, primarily in neurological conditions involving cognitive decline. GA is a well-studied synthetic copolymer that is FDA-approved for immune-based treatment of relapsing remitting multiple sclerosis (RRMS). Clinical studies have explored the potential mechanism of action (MOA) and outcomes of GA immunization in patients. Furthermore, results from these and animal studies suggest that GA has a direct immunomodulatory effect on adaptive and innate immune cell phenotypes and responses. These MOAs have been postulated to have a common neuroprotective impact in several neuroinflammatory and neurodegenerative diseases. Notably, several clinical studies report that the use of GA mitigated MS-associated cognitive decline. Its propensity to ameliorate neuro-proinflammatory and degenerative processes ignites increased interest in potential alternate uses such as in age-related macular degeneration (AMD), amyotrophic lateral sclerosis (ALS), and Alzheimer's disease (AD). Preclinical studies are exploring less frequent subcutaneous administration of GA, such as once weekly or monthly or a single dosing regimen. Indeed, cognitive functions were found to be either preserved, reversed, or improved after the less frequent treatment regimens with GA in animal models of AD. In this systematic review, we examine the potential novel uses of GA across clinical and pre-clinical studies, with evidence for its beneficial impact on cognition. Future investigation in large-size, double-blind clinical trials is warranted to establish the impact of GA immunomodulation on neuroprotection and cognitive preservation in various neurological conditions.


Assuntos
Encefalomielite Autoimune Experimental , Neuroproteção , Animais , Cognição , Acetato de Glatiramer/farmacologia , Acetato de Glatiramer/uso terapêutico , Humanos , Imunomodulação , Ensaios Clínicos Controlados Aleatórios como Assunto
11.
Artigo em Inglês | MEDLINE | ID: mdl-35046083

RESUMO

BACKGROUND AND OBJECTIVES: To determine the effects of dimethyl fumarate (DMF) and glatiramer acetate on iron content in chronic active lesions in patients with multiple sclerosis (MS) and in human microglia in vitro. METHODS: This was a retrospective observational study of 34 patients with relapsing-remitting MS and clinically isolated syndrome treated with DMF or glatiramer acetate. Patients had lesions with hyperintense rims on quantitative susceptibility mapping, were treated with DMF or glatiramer acetate (GA), and had a minimum of 2 on-treatment scans. Changes in susceptibility in rim lesions were compared among treatment groups in a linear mixed effects model. In a separate in vitro study, induced pluripotent stem cell-derived human microglia were treated with DMF or GA, and treatment-induced changes in iron content and activation state of microglia were compared. RESULTS: Rim lesions in patients treated with DMF had on average a 2.77-unit reduction in susceptibility per year over rim lesions in patients treated with GA (bootstrapped 95% CI -5.87 to -0.01), holding all other variables constant. Moreover, DMF but not GA reduced inflammatory activation and concomitantly iron content in human microglia in vitro. DISCUSSION: Together, our data indicate that DMF-induced reduction of susceptibility in MS lesions is associated with a decreased activation state in microglial cells. We have demonstrated that a specific disease modifying therapy, DMF, decreases glial activity in chronic active lesions. Susceptibility changes in rim lesions provide an in vivo biomarker for the effect of DMF on microglial activity. CLASSIFICATION OF EVIDENCE: This study provided Class III evidence that DMF is superior to GA in the presence of iron as a marker of inflammation as measured by MRI quantitative susceptibility mapping.


Assuntos
Fumarato de Dimetilo/farmacologia , Acetato de Glatiramer/farmacologia , Imunossupressores/farmacologia , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Doenças Neuroinflamatórias/tratamento farmacológico , Adulto , Células Cultivadas , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas , Masculino , Microglia , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/patologia , Doenças Neuroinflamatórias/diagnóstico por imagem , Doenças Neuroinflamatórias/patologia , Estudos Retrospectivos
12.
Int J Mol Sci ; 22(24)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34948217

RESUMO

Axonal and neuronal pathologies are a central constituent of multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), induced by the myelin oligodendrocyte glycoprotein (MOG) 35-55 peptide. In this study, we investigated neurodegenerative manifestations in chronic MOG 35-55 induced EAE and the effect of glatiramer acetate (GA) treatment on these manifestations. We report that the neuronal loss seen in this model is not attributed to apoptotic neuronal cell death. In EAE-affected mice, axonal damage prevails from the early disease phase, as revealed by analysis of neurofilament light (NFL) leakage into the sera along the disease duration, as well as by immunohistological examination. Elevation of interstitial glutamate concentrations measured in the cerebrospinal fluid (CSF) implies that glutamate excess plays a role in the damage processes inflicted by this disease. GA applied as a therapeutic regimen to mice with apparent clinical symptoms significantly reduces the pathological manifestations, namely apoptotic cell death, NFL leakage, histological tissue damage, and glutamate excess, thus corroborating the neuroprotective consequences of this treatment.


Assuntos
Acetato de Glatiramer/farmacologia , Ácido Glutâmico/metabolismo , Filamentos Intermediários/metabolismo , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/metabolismo , Fármacos Neuroprotetores/farmacologia , Animais , Axônios/efeitos dos fármacos , Axônios/metabolismo , Líquido Cefalorraquidiano/efeitos dos fármacos , Líquido Cefalorraquidiano/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Glicoproteína Mielina-Oligodendrócito/metabolismo , Peptídeos/metabolismo
13.
Angew Chem Int Ed Engl ; 60(50): 26403-26408, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34618395

RESUMO

Glatiramer acetate (GA) is a random polypeptide drug used to treat multiple sclerosis (MS), a chronic autoimmune disease. With the aim of identifying a precisely defined alternative to GA, we synthesized a library of peptide dendrimers with an amino acid composition similar to GA. We then challenged the dendrimers to trigger the release of the anti-inflammatory cytokine interleukin-1 receptor antagonist (IL-1Ra) from human monocytes, which is one of the effects of GA on immune cells. Several of the largest dendrimers tested were as active as GA. Detailed profiling of the best hit showed that this dendrimer induces the differentiation of monocytes towards an M2 (anti-inflammatory) state as GA does, however with a distinct immune marker profile. Our peptide dendrimer might serve as starting point to develop a well-defined immunomodulatory analog of GA.


Assuntos
Dendrímeros/farmacologia , Acetato de Glatiramer/farmacologia , Imunossupressores/farmacologia , Monócitos/efeitos dos fármacos , Peptídeos/farmacologia , Receptores de Interleucina-1/antagonistas & inibidores , Diferenciação Celular/efeitos dos fármacos , Dendrímeros/síntese química , Dendrímeros/química , Acetato de Glatiramer/química , Humanos , Imunossupressores/síntese química , Imunossupressores/química , Peptídeos/síntese química , Peptídeos/química
14.
Psychopharmacology (Berl) ; 238(8): 2121-2132, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33797571

RESUMO

RATIONALE: Major depressive disorder (MDD) is a debilitating disorder with adverse effects on mood, memory, and quality of life. OBJECTIVES: In this study, the antidepressant potential of glatiramer acetate (GA), a drug used in the management of multiple sclerosis, was investigated in acute and chronic models of depression in male mice. The acute antidepressant screening was performed with the forced swim (FST) and tail suspension (TST) tests. In the chronic phase, post-weaning social isolation (SI) was used to induce depressive-/anxiety-like behaviors. METHODS: Mice were reared in two different groups of social (SG) and isolated (IG) for 4 weeks. IG mice were treated with 0.5, 1.0, and 2.0 mg/kg of GA for the last 2 weeks of the SI period. Animals were assessed by the behavioral tests of depression, anxiety, learning, and memory, and hippocampal brain-derived neurotrophic factor (BDNF) level was measured. RESULTS: The acute tests confirmed the antidepressant potential of GA. In the chronic phase, GA could reduce immobility time in FST (P < 0.05), increase exploration activity in open field test (P < 0.05), increase open arms duration (P < 0.05) and entries in elevated plus maze (P<0.001), and improve memory and learning in passive avoidance test (P < 0.05). The BDNF level was increased in IG mice and decreased in IG mice treated with GA. CONCLUSIONS: Our results showed that GA improved depressive-/anxiety-like behaviors and cognitive dysfunction of SI reared mice without increasing the BDNF level which may be associated with other mechanisms of actions of GA.


Assuntos
Antidepressivos/uso terapêutico , Ansiedade/tratamento farmacológico , Disfunção Cognitiva/tratamento farmacológico , Depressão/tratamento farmacológico , Acetato de Glatiramer/uso terapêutico , Isolamento Social , Animais , Antidepressivos/farmacologia , Ansiedade/psicologia , Aprendizagem da Esquiva/efeitos dos fármacos , Aprendizagem da Esquiva/fisiologia , Fator Neurotrófico Derivado do Encéfalo/agonistas , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Disfunção Cognitiva/psicologia , Depressão/psicologia , Relação Dose-Resposta a Droga , Acetato de Glatiramer/farmacologia , Elevação dos Membros Posteriores/efeitos adversos , Elevação dos Membros Posteriores/psicologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Camundongos , Isolamento Social/psicologia , Natação/psicologia , Desmame
15.
J Basic Clin Physiol Pharmacol ; 33(3): 317-326, 2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33559458

RESUMO

OBJECTIVES: Sepsis is a clinical crisis which has been considered as one of the important causes of mortality across the world. We hypothesized that modulation of hyper-inflammatory phase of sepsis pathophysiology can lead to protective effects on survival outcome. Glatiramer acetate (GA) is a neuroprotective drug commonly used in multiple sclerosis (MS). GA is characterized by immunom activity via regulation of innate and adaptive immunity. This study was designed to evaluate the acute treatment with GA on initial inflammatory response-induced mortality in septic mice. METHODS: Cecal ligation and puncture (CLP) model was operated on male mice as a model of Polymicrobial sepsis. GA was administrated intraperitoneally after the sepsis induction at doses of 0.5, 1, and 2 mg/kg in three treatment groups. To investigate the effect of GA on short-term survival, septic mice were observed during 72 h after CLP. Serum levels of TNF-α, IL-1ß, and IL-6 as pro-inflammatory cytokines and also IL-10 as a critical anti-inflammatory cytokine were analysed. To consider sepsis-induced acute kidney injury, renal functional biomarkers and histopathological changes was assessed. RESULTS: GA treatment significantly improved survival rate at doses of 1, and 2 mg/kg. Survival improvement was accompanied by remarkable reduction in the pro-inflammatory cytokines and enhanced production of IL-10. GA showed to have protective effects on renal function as well. CONCLUSIONS: Immunomodulatory and anti-inflammatory properties of GA resulted in increase in survival rate and decrease in inflammatory markers in mice model of cecal ligation and puncture-induced sepsis.


Assuntos
Interleucina-10 , Sepse , Animais , Anti-Inflamatórios/uso terapêutico , Biomarcadores , Citocinas , Modelos Animais de Doenças , Acetato de Glatiramer/farmacologia , Acetato de Glatiramer/uso terapêutico , Interleucina-10/uso terapêutico , Ligadura , Masculino , Camundongos , Punções , Sepse/complicações , Sepse/tratamento farmacológico
16.
Artigo em Inglês | MEDLINE | ID: mdl-33597189

RESUMO

OBJECTIVE: To investigate the association between disease-modifying therapies (DMTs) and the rate of progressive retinal ganglion cell (RGC) and nerve fiber loss in MS. METHODS: One hundred five relapsing-remitting patients with MS were followed annually for a median of 4.0 years using optical coherence tomography. Twenty-five healthy subjects were also included as normal controls. The rates of global peripapillary retinal nerve fiber layer (pRNFL), temporal RNFL (tRNFL), and ganglion cell inner plexiform layer (GCIPL) thinning were analyzed according to DMT type using a linear mixed-effects model. Optic radiation lesion volume was measured on brain MRI and included as a covariate to minimize the effects of retrograde transsynaptic degeneration. RESULTS: The annual rates of RNFL and GCIPL thinning were higher in patients treated with "platform" therapies (interferon-ß and glatiramer acetate) compared with DMTs of higher clinical efficacy (including fingolimod, dimethyl fumarate, natalizumab, alemtuzumab, rituximab, and ocrelizumab) (difference = -0.22 µm/y, p = 0.02 for pRNFL; difference = -0.34 µm/y, p = 0.009 for tRNFL; and difference = -0.16 µm/y, p = 0.005 for GCIPL). Based on an analysis of individual treatments (interferon-ß, glatiramer acetate, fingolimod, and natalizumab), interferon-ß was associated with inferior RGC preservation, relative to the other drugs. No effect difference was found between glatiramer acetate, fingolimod, and natalizumab. CONCLUSIONS: Progressive loss of RGCs in patients with MS is more pronounced in patients treated with interferon-ß than other DMTs. This finding may have implications for DMT selection in MS. CLASSIFICATION OF EVIDENCE: This study provides Class IV evidence that for patients with MS, treatment with interferon-ß compared with other DMTs leads to a more pronounced rate of retinal ganglion cell loss.


Assuntos
Interferon beta/farmacologia , Esclerose Múltipla Recidivante-Remitente/complicações , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Células Ganglionares da Retina/patologia , Adulto , Estudos de Coortes , Progressão da Doença , Feminino , Cloridrato de Fingolimode/farmacologia , Acetato de Glatiramer/farmacologia , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/patologia , Natalizumab/farmacologia
17.
Artigo em Inglês | MEDLINE | ID: mdl-32817203

RESUMO

OBJECTIVE: Infection with Epstein-Barr virus (EBV) has been associated with clinical activity and risk of developing MS. The purpose of this study is to investigate the impact of glatiramer acetate (GA) therapy on EBV-specific immune responses and disease course. METHODS: We characterized EBV-specific CD8 T lymphocytes and B cells during disease-modifying treatments in 2 groups of patients with MS. We designed a 2-pronged approach consisting of a cross-sectional study (39 untreated patients, 38 patients who had undergone 12 months of GA treatment, and 48 healthy donors compatible for age and sex with the patients with MS) and a 12-month longitudinal study (35 patients treated with GA). CD8 EBV-specific T cells and B lymphocytes were studied using pentamers and multiparametric flow cytometry. RESULTS: We find that treatment with GA enhances viral recognition by inducing an increased number of circulating virus-specific CD8 T cells (p = 0.0043) and by relieving their features of exhaustion (p = 0.0053) and senescence (p < 0.0001, p = 0.0001). B cells, phenotypically and numerically tracked along the 1-year follow-up study, show a steady decrease in memory B-cell frequencies (p = 0.025), paralleled by an increase of the naive B subset. CONCLUSION: GA therapy acts as a disease-modifying therapy restoring homeostasis in the immune system, including anti-EBV responses.


Assuntos
Linfócitos B/efeitos dos fármacos , Linfócitos T CD8-Positivos/efeitos dos fármacos , Acetato de Glatiramer/farmacologia , Herpesvirus Humano 4/imunologia , Fatores Imunológicos/farmacologia , Esclerose Múltipla Recidivante-Remitente/sangue , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Adulto , Idoso , Estudos Transversais , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Adulto Jovem
18.
J Neuroimmunol ; 345: 577281, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32534388

RESUMO

To identify the mechanisms relevant for the therapeutic effect of glatiramer acetate (GA), we studied T- and B- regulatory cells as well as GM-CSF expression in mice recovered from experimental autoimmune encephalomyelitis (EAE). Selective depletion of Tregs reduced but did not eliminate the ability of GA to ameliorate EAE, indicating a role for additional immune-subsets. The prevalence of Bregs in the periphery and the CNS of EAE-mice increased following GA-treatment. Furthermore, GA downregulated the pathological expression of GM-CSF, on both the protein and mRNA levels. These findings corroborate the broad immunomodulatory mechanism of action of GA in EAE/MS.


Assuntos
Linfócitos B Reguladores/metabolismo , Acetato de Glatiramer/farmacologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Imunossupressores/farmacologia , Esclerose Múltipla/metabolismo , Linfócitos T Reguladores/metabolismo , Animais , Linfócitos B Reguladores/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Acetato de Glatiramer/uso terapêutico , Fator Estimulador de Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Imunossupressores/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Esclerose Múltipla/tratamento farmacológico , Linfócitos T Reguladores/efeitos dos fármacos
19.
Neurology ; 94(22): e2373-e2383, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32430312

RESUMO

OBJECTIVE: Disease-modifying treatments (DMTs) are the gold standard for slowing disability progression in multiple sclerosis (MS), but their effects on cognitive impairment, a key symptom of the disease, are mostly unknown. We conducted a systematic review and meta-analysis to evaluate the differential effects of DMTs on cognitive test performance in relapsing-remitting MS (RRMS). METHODS: PubMed, Scopus, and Cochrane Library were searched for studies reporting longitudinal cognitive performance data related to all major DMTs. The standardized mean difference (Hedges g) between baseline and follow-up cognitive assessment was used as the main effect size measure. RESULTS: Forty-four studies, including 55 distinct MS patient samples, were found eligible for the systematic review. Twenty-five studies were related to platform therapies (mainly ß-interferon [n = 17] and glatiramer acetate [n = 4]), whereas 22 studies were related to escalation therapies (mainly natalizumab [n = 14] and fingolimod [n = 6]). Reported data were mostly confined to the cognitive domain processing speed. A meta-analysis including 41 studies and 7,131 patients revealed a small to moderate positive effect on cognitive test performance of DMTs in general (g = 0.27, 95% confidence interval [CI] = [0.21-0.33]), but no statistically significant differences between platform (g = 0.27, 95% CI = [0.18-0.35]) and escalation therapies (g = 0.28, 95% CI = [0.19-0.37]) or between any single DMT and ß-interferon. CONCLUSIONS: DMTs are effective in improving cognitive test performance in RRMS, but a treatment escalation mainly to amend cognition is not supported by the current evidence. Given the multitude of DMTs and their widespread use, the available data regarding differential treatment effects on cognitive impairment are remarkably scant. Clinical drug trials that use more extensive cognitive outcome measures are urgently needed.


Assuntos
Cognição/efeitos dos fármacos , Disfunção Cognitiva/tratamento farmacológico , Imunossupressores/uso terapêutico , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Cognição/fisiologia , Disfunção Cognitiva/epidemiologia , Disfunção Cognitiva/psicologia , Cloridrato de Fingolimode/farmacologia , Cloridrato de Fingolimode/uso terapêutico , Acetato de Glatiramer/farmacologia , Acetato de Glatiramer/uso terapêutico , Humanos , Fatores Imunológicos/farmacologia , Fatores Imunológicos/uso terapêutico , Imunossupressores/farmacologia , Interferon beta/farmacologia , Interferon beta/uso terapêutico , Esclerose Múltipla Recidivante-Remitente/epidemiologia , Esclerose Múltipla Recidivante-Remitente/psicologia , Natalizumab/farmacologia , Natalizumab/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto/métodos
20.
Artigo em Inglês | MEDLINE | ID: mdl-32184341

RESUMO

OBJECTIVE: We examined the effect of glatiramer acetate (GA) on B-cell maturation, differentiation, and antigen presentation in MS and experimental autoimmune encephalomyelitis (EAE). METHODS: A cross-sectional study of blood samples from 20 GA-treated and 18 untreated patients with MS was performed by flow cytometry; 6 GA-treated patients with MS were analyzed longitudinally. GA-mediated effects on B-cell antigen-presenting function were investigated in EAE, or, alternatively, B cells were treated with GA in vitro using vehicle as a control. RESULTS: In MS, GA diminished transitional B-cell and plasmablast frequency, downregulated CD69, CD25, and CD95 expression, and decreased TNF-α production, whereas IL-10 secretion and MHC Class II expression were increased. In EAE, we observed an equivalent dampening of proinflammatory B-cell properties and an enhanced expression of MHC Class II. When used as antigen-presenting cells for activation of naive T cells, GA-treated B cells promoted development of regulatory T cells, whereas proinflammatory T-cell differentiation was diminished. CONCLUSIONS: GA immune modulates B-cell function in EAE and MS and efficiently interferes with pathogenic B cell-T cell interaction.


Assuntos
Células Apresentadoras de Antígenos/efeitos dos fármacos , Linfócitos B/efeitos dos fármacos , Encefalomielite Autoimune Experimental/tratamento farmacológico , Acetato de Glatiramer/farmacologia , Fatores Imunológicos/farmacologia , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Adulto , Animais , Estudos Transversais , Encefalomielite Autoimune Experimental/sangue , Feminino , Citometria de Fluxo , Humanos , Estudos Longitudinais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA