Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biotechnol J ; 19(6): e2300529, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38896375

RESUMO

Industrial production of bacterial cellulose (BC) remains challenging due to significant production costs, including the choice of appropriate growth media. This research focuses on optimization of cheese whey (CW) based media for enhanced production of BC. Two modifications were made for CW medium for BC production with Komagataeibacter rhaeticus MSCL 1463. BC production in a medium of enzymatically hydrolyzed CW (final concentration of monosaccharides: glucose 0.13 g L-1, galactose 1.24 g L-1) was significantly enhanced, achieving a yield of 4.95 ± 0.25 g L-1, which markedly surpasses the yields obtained with the standard Hestrin-Schramm (HS) medium containing 20 g L-1 glucose and acid-hydrolyzed CW (final concentration of monosaccharides: glucose 1.15 g L-1, galactose 2.01 g L-1), which yielded 3.29 ± 0.12 g L-1 and 1.01 ± 0.14 g L-1, respectively. We explored the synergistic effects of combining CW with various agricultural by-products (corn steep liquor (CSL), apple juice, and sugar beet molasses). Notably, the supplementation with 15% corn steep liquor significantly enhanced BC productivity, achieving 6.97 ± 0.17 g L-1. A comprehensive analysis of the BC's physical and mechanical properties indicated significant alterations in fiber diameter (62-167 nm), crystallinity index (71.1-85.9%), and specific strength (35-82 MPa × cm3 g-1), as well as changes in the density (1.1-1.4 g cm-3). Hydrolyzed CW medium supplemented by CSL could be used for effective production of BC.


Assuntos
Acetobacteraceae , Celulose , Queijo , Meios de Cultura , Soro do Leite , Celulose/metabolismo , Soro do Leite/metabolismo , Queijo/microbiologia , Meios de Cultura/química , Hidrólise , Acetobacteraceae/metabolismo , Acetobacteraceae/crescimento & desenvolvimento , Fermentação , Zea mays/metabolismo , Glucose/metabolismo , Sucos de Frutas e Vegetais
2.
Sheng Wu Gong Cheng Xue Bao ; 40(6): 1856-1867, 2024 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-38914496

RESUMO

Bacterial cellulose (BC) is a biopolymer synthesized by bacteria, which possess excellent characteristics such as high water holding capacity, high crystallinity, and high purity. It is widely used in food, medical, cosmetics, and functional films. Komagataeibacter xylinus is a model strain used in BC synthesis research. In bacteria, motility-related genes are associated with BC synthesis, whereas in Komagataeibacter xylinus CGMCC 2955, the functions of motility-related genes and their effects on BC synthesis are not known. To address this gap, we used the λ Red recombinant system to individually knock out motA, motB, and mot2A respectively, and constructed the knockout strains K. x-ΔmotA, K. x-ΔmotB, and K. x-Δmot2A. Additionally, both motA and motB were disrupted to construct the K. x-ΔmotAB mutant. The results demonstrated that knockout strain K. x-ΔmotAB exhibited the highest BC yield, reaching (5.05±0.26) g/L, which represented an increase of approximately 24% compared to wild-type strains. Furthermore, the BC synthesized by this strain exhibited the lowest porosity, 54.35%, and displayed superior mechanical properties with a Young's modulus of up to 5.21 GPa. As knocking out motA and motB genes in K. xylinus CGMCC 2955 did not reduce BC yield; instead, it promoted BC synthesis. Consequently, this research further deepened our understanding of the relationship between motility and BC synthesis in acetic acid bacteria. The knockouts of motA and motB genes resulted in reduced BC porosity and improved mechanical properties, provides a reference for BC synthesis and membrane structure regulation modification.


Assuntos
Acetobacteraceae , Celulose , Celulose/biossíntese , Celulose/metabolismo , Acetobacteraceae/genética , Acetobacteraceae/metabolismo , Técnicas de Inativação de Genes , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Gluconacetobacter xylinus/genética , Gluconacetobacter xylinus/metabolismo , Genes Bacterianos
3.
Sci Rep ; 14(1): 10848, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740945

RESUMO

Bacterial cellulose (BC) is a natural polymer renowned for its unique physicochemical and mechanical attributes, including notable water-holding capacity, crystallinity, and a pristine fiber network structure. While BC has broad applications spanning agriculture, industry, and medicine, its industrial utilization is hindered by production costs and yield limitations. In this study, Rhizobium sp. was isolated from bean roots and systematically assessed for BC synthesis under optimal conditions, with a comparative analysis against BC produced by Komagataeibacter hansenii. The study revealed that Rhizobium sp. exhibited optimal BC synthesis when supplied with a 1.5% glucose carbon source and a 0.15% yeast extract nitrogen source. Under static conditions at 30 °C and pH 6.5, the most favorable conditions for growth and BC production (2.5 g/L) were identified. Modifications were introduced using nisin to enhance BC properties, and the resulting BC-nisin composites were comprehensively characterized through various techniques, including FE-SEM, FTIR, porosity, swelling, filtration, and antibacterial activity assessments. The results demonstrated that BC produced by Rhizobium sp. displayed properties comparable to K. hansenii-produced BC. Furthermore, the BC-nisin composites exhibited remarkable inhibitory activity against Escherichia coli and Pseudomonas aeruginosa. This study contributes valuable insights into BC's production, modification, and characterization utilizing Rhizobium sp., highlighting the exceptional properties that render it efficacious across diverse applications.


Assuntos
Celulose , Raízes de Plantas , Rhizobium , Celulose/biossíntese , Celulose/metabolismo , Raízes de Plantas/microbiologia , Rhizobium/metabolismo , Acetobacteraceae/metabolismo , Antibacterianos/farmacologia , Antibacterianos/biossíntese
4.
J Food Sci ; 89(5): 2921-2932, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38591324

RESUMO

It is crucial to clarify the stability of Kombucha in the manufacture and storage stages due to the extensive study on the fermented products of Kombucha and the increase in the use of bacterial cellulose (BC). This study aimed to evaluate the stability of Kombucha in different manufacturing and storage temperatures within a certain time period. The stability of microorganisms and BC in Kombucha was investigated through regular replacement with the tea media at 28 and 25°C for manufacture, and the storage temperature of Kombucha was at 25, 4, and -20°C. Morphological observations of the BC in Kombucha ended at 28 and 25°C for manufacture and storage were performed using atomic force microscopy (AFM) before inoculation. The viable cell counts and AFM results showed that the stability of Kombucha during manufacture was better at 28°C than at 25°C, with higher microbial viability and BC productivity in the former at the time of manufacture, whereas 25°C was more favorable for the stability of Kombucha during storage. At the same temperature of 25°C, the manufacturing practice improved the microbial viability and BC stability compared with storage; the pH value of Kombucha was lower, and the dry weight of BC was higher during storage compared with manufacture. The maximum BC water holding capacity (97.16%) was maintained by storage at 4°C on day 63, and the maximum BC swelling rate (56.92%) was observed after storage at -20°C on day 7. The research was conducted to provide reference information for applying Kombucha and its BC in food and development in other industries.


Assuntos
Celulose , Fermentação , Temperatura , Celulose/química , Armazenamento de Alimentos/métodos , Microbiologia de Alimentos , Chá de Kombucha/microbiologia , Concentração de Íons de Hidrogênio , Viabilidade Microbiana , Acetobacteraceae/metabolismo , Manipulação de Alimentos/métodos
5.
Biopolymers ; 115(4): e23577, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38526043

RESUMO

Bacterial nanocellulose (BNC) has various unique qualities, including high mechanical strength, crystallinity, and high water-holding capacity, which makes it appropriate for a wide range of industrial applications. But its lower yield coupled with its high production cost creates a barrier to its usage. In this study, we have demonstrated the better yield of BNC from an indigenous strain Komagataeibacter rhaeticus MCC-0157 using a rotary disc bioreactor (RDB) having a wooden disc. The RDB was optimized based on the type of disc material, distance between the disc, and rotation speed to get the highest yield of 13.0 g/L dry material using Hestrin-Schramm (H-S) medium. Further, the bioreactor was compared for the BNC production using reported medium, which is used for static condition; the RDB showed up to fivefold increase in comparison with the static condition reported. Komagataeibacter rhaeticus MCC-0157 was previously reported to be one of the highest BNC producing stains, with 8.37 g/L of dry yield in static condition in 15 days incubation. The designed RDB demonstrated 13.0 g/L dry yield of BNC in just 5 days. Other characteristics of BNC remain same as compared with static BNC production, although the difference in the crystallinity index was observed in RDB (84.44%) in comparison with static (89.74%). For the first time, wooden disc was used for rotary bioreactor approach, which demonstrated higher yield of BNC in lesser time and can be further used for sustainable production of BNC at the industrial level.


Assuntos
Acetobacteraceae , Reatores Biológicos , Celulose , Celulose/química , Celulose/biossíntese , Acetobacteraceae/metabolismo , Acetobacteraceae/química , Madeira/química , Biopolímeros/química , Biopolímeros/biossíntese , Nanoestruturas/química , Fermentação
6.
Appl Microbiol Biotechnol ; 107(9): 2947-2967, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36930278

RESUMO

Bacterial cellulose (BC) represents a renewable biomaterial with unique properties promising for biotechnology and biomedicine. Komagataeibacter hansenii ATCC 53,582 is a well-characterized high-yield producer of BC used in the industry. Its genome encodes three distinct cellulose synthases (CS), bcsAB1, bcsAB2, and bcsAB3, which together with genes for accessory proteins are organized in operons of different complexity. The genetic foundation of its high cellulose-producing phenotype was investigated by constructing chromosomal in-frame deletions of the CSs and of two predicted regulatory diguanylate cyclases (DGC), dgcA and dgcB. Proteomic characterization suggested that BcsAB1 was the decisive CS because of its high expression and its exclusive contribution to the formation of microcrystalline cellulose. BcsAB2 showed a lower expression level but contributes significantly to the tensile strength of BC and alters fiber diameter significantly as judged by scanning electron microscopy. Nevertheless, no distinct extracellular polymeric substance (EPS) from this operon was identified after static cultivation. Although transcription of bcsAB3 was observed, expression of the protein was below the detection limit of proteome analysis. Alike BcsAB2, deletion of BcsAB3 resulted in a visible reduction of the cellulose fiber diameter. The high abundance of BcsD and the accessory proteins CmcAx, CcpAx, and BglxA emphasizes their importance for the proper formation of the cellulosic network. Characterization of deletion mutants lacking the DGC genes dgcA and dgcB suggests a new regulatory mechanism of cellulose synthesis and cell motility in K. hansenii ATCC 53,582. Our findings form the basis for rational tailoring of the characteristics of BC. KEY POINTS: • BcsAB1 induces formation of microcrystalline cellulose fibers. • Modifications by BcsAB2 and BcsAB3 alter diameter of cellulose fibers. • Complex regulatory network of DGCs on cellulose pellicle formation and motility.


Assuntos
Ácido Acético , Acetobacteraceae , Ácido Acético/metabolismo , Matriz Extracelular de Substâncias Poliméricas , Proteômica , Acetobacteraceae/genética , Acetobacteraceae/metabolismo , Celulose/metabolismo
7.
PLoS One ; 17(9): e0273568, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36048823

RESUMO

Mosquitoes transmit many pathogens responsible for human diseases, such as malaria which is caused by parasites in the genus Plasmodium. Current strategies to control vector-transmitted diseases are increasingly undermined by mosquito and pathogen resistance, so additional methods of control are required. Paratransgenesis is a method whereby symbiotic bacteria are genetically modified to affect the mosquito's phenotype by engineering them to deliver effector molecules into the midgut to kill parasites. One paratransgenesis candidate is Asaia bogorensis, a Gram-negative bacterium colonizing the midgut, ovaries, and salivary glands of Anopheles sp. mosquitoes. Previously, engineered Asaia strains using native signals to drive the release of the antimicrobial peptide, scorpine, fused to alkaline phosphatase were successful in significantly suppressing the number of oocysts formed after a blood meal containing P. berghei. However, these strains saw high fitness costs associated with the production of the recombinant protein. Here, we report evaluation of five different partner proteins fused to scorpine that were evaluated for effects on the growth and fitness of the transgenic bacteria. Three of the new partner proteins resulted in significant levels of protein released from the Asaia bacterium while also significantly reducing the prevalence of mosquitoes infected with P. berghei. Two partners performed as well as the previously tested Asaia strain that used alkaline phosphatase in the fitness analyses, but neither exceeded it. It may be that there is a maximum level of fitness and parasite inhibition that can be achieved with scorpine being driven constitutively, and that use of a Plasmodium specific effector molecule in place of scorpine would help to mitigate the stress on the symbionts.


Assuntos
Acetobacteraceae , Agentes de Controle Biológico , Mosquitos Vetores , Plasmodium , Acetobacteraceae/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Agentes de Controle Biológico/metabolismo , Defensinas , Malária/prevenção & controle , Mosquitos Vetores/parasitologia , Plasmodium/microbiologia , Plasmodium/fisiologia , Proteínas Recombinantes/metabolismo
8.
Int J Mol Sci ; 23(14)2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35887199

RESUMO

Bacterial cellulose is a natural polymer with an expanding array of applications. Because of this, the main cellulose producers of the Komagataeibacter genus have been extensively studied with the aim to increase its synthesis or to customize its physicochemical features. Up to now, the genetic studies in Komagataeibacter have focused on the first cellulose synthase operon (bcsI) encoding the main enzyme complex. However, the role of other accessory cellulose operons has been understudied. Here we aimed to fill this gap by performing a detailed analysis of the second cellulose synthase operon (bcsII), which is putatively linked with cellulose acylation. In this study we harnessed the genome sequence, gene expression and protein structure information of K. xylinus E25 and other Komagataeibacter species to discuss the probable features of bcsII and the biochemical function of its main protein products. The results of our study support the previous hypothesis that bcsII is involved in the synthesis of the acylated polymer and expand it by presenting the evidence that it may also function in the regulation of its attachment to the cell surface and to the crystalline cellulose fibers.


Assuntos
Acetobacteraceae , Gluconacetobacter xylinus , Acetobacteraceae/metabolismo , Celulose/química , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Óperon
9.
Bioengineered ; 13(4): 10010-10025, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35416127

RESUMO

Agricultural residues are constantly increasing with increased farming processes, and improper disposal is detrimental to the environment. Majority of these waste residues are rich in lignocellulose, which makes them suitable substrate for bacterial fermentation in the production of value-added products. In this study, bacterial cellulose (BC), a purer and better form of cellulose, was produced by two Komagataeibacter sp. isolated from rotten banana and kombucha drink using corncob (CC) and sugarcane bagasse (SCB) enzymatic hydrolyzate, under different fermentation conditions, that is, static, continuous, and intermittent agitation. The physicochemical and mechanical properties of the BC films were then investigated by Fourier Transformed Infrared Spectroscopy (FTIR), Thermogravimetry analysis, Field Emission Scanning Electron Microscopy (FE-SEM), and Dynamic mechanical analysis. Agitation gave a higher BC yield, with Komagataeibacter sp. CCUG73629 producing BC from CC with a dry weight of 1.6 g/L and 1.4 g/L under continuous and intermittent agitation, respectively, compared with that of 0.9 g/L in HS medium. While BC yield of dry weight up to 1.2 g/L was obtained from SCB by Komagataeibacter sp. CCUG73630 under continuous agitation compared to that of 0.3 g/L in HS medium. FTIR analysis showed BC bands associated with cellulose I, with high thermal stability. The FE-SEM analysis showed that BC fibers were highly ordered and densely packed. Although the BC produced by both strains showed similar physicochemical and morphological properties, the BC produced by the Komagataeibacter sp. CCUG73630 in CC under intermittent agitation had the best modulus of elasticity, 10.8 GPa and tensile strength, 70.9 MPa.


Assuntos
Acetobacteraceae , Saccharum , Acetobacteraceae/química , Acetobacteraceae/metabolismo , Agricultura , Celulose/metabolismo , Meios de Cultura/química , Fermentação , Saccharum/metabolismo
10.
ACS Appl Mater Interfaces ; 13(46): 55569-55576, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34766498

RESUMO

Actuated structures are becoming relevant in medical fields; however, they call for flexible/soft-base materials that comply with biological tissues and can be synthesized in simple fabrication steps. In this work, we extend the palette of techniques to afford soft, actuable spherical structures taking advantage of the biosynthesis process of bacterial cellulose. Bacterial cellulose spheres (BCS) with localized magnetic nanoparticles (NPs) have been biosynthesized using two different one-pot processes: in agitation and on hydrophobic surface-supported static culture, achieving core-shell or hollow spheres, respectively. Magnetic actuability is conferred by superparamagnetic iron oxide NPs (SPIONs), and their location within the structure was finely tuned with high precision. The size, structure, flexibility and magnetic response of the spheres have been characterized. In addition, the versatility of the methodology allows us to produce actuated spherical structures adding other NPs (Au and Pt) in specific locations, creating Janus structures. The combination of Pt NPs and SPIONs provides moving composite structures driven both by a magnetic field and a H2O2 oxidation reaction. Janus Pt/SPIONs increased by five times the directionality and movement of these structures in comparison to the controls.


Assuntos
Acetobacteraceae/química , Celulose/biossíntese , Nanopartículas de Magnetita/química , Acetobacteraceae/metabolismo , Celulose/química , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Campos Magnéticos , Oxirredução , Tamanho da Partícula , Propriedades de Superfície
11.
Microbiol Spectr ; 9(2): e0015721, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34668745

RESUMO

Insecticide resistance among mosquito species is now a pervasive phenomenon that threatens to jeopardize global malaria vector control efforts. Evidence of links between the mosquito microbiota and insecticide resistance is emerging, with significant enrichment of insecticide degrading bacteria and enzymes in resistant populations. Using 16S rRNA amplicon sequencing, we characterized and compared the microbiota of Anopheles coluzzii in relation to their deltamethrin resistance and exposure profiles. Comparisons between 2- and 3-day-old deltamethrin-resistant and -susceptible mosquitoes demonstrated significant differences in microbiota diversity. Ochrobactrum, Lysinibacillus, and Stenotrophomonas genera, each of which comprised insecticide-degrading species, were significantly enriched in resistant mosquitoes. Susceptible mosquitoes had a significant reduction in alpha diversity compared to resistant individuals, with Asaia and Serratia dominating microbial profiles. There was no significant difference in deltamethrin-exposed and -unexposed 5- to 6-day-old individuals, suggesting that insecticide exposure had minimal impact on microbial composition. Serratia and Asaia were also dominant in 5- to 6-day-old mosquitoes, which had reduced microbial diversity compared to 2- to 3-day-old mosquitoes. Our findings revealed significant alterations of Anopheles coluzzii microbiota associated with deltamethrin resistance, highlighting the potential for identification of novel microbial markers for insecticide resistance surveillance. qPCR detection of Serratia and Asaia was consistent with 16S rRNA sequencing, suggesting that population-level field screening of bacterial microbiota may be feasibly integrated into wider resistance monitoring, if reliable and reproducible markers associated with phenotype can be identified. IMPORTANCE Control of insecticide-resistant vector populations remains a significant challenge to global malaria control and while substantial progress has been made elucidating key target site mutations, overexpressed detoxification enzymes and alternate gene families, the contribution of the mosquito microbiota to phenotypic insecticide resistance has been largely overlooked. We focused on determining the effects of deltamethrin resistance intensity on Anopheles coluzzii microbiota and identifying any microbial taxa associated with phenotype. We demonstrated a significant reduction in microbial diversity between deltamethrin-resistant and -susceptible mosquitoes. Insecticide degrading bacterial species belonging to Ochrobactrum, Lysinibacillus, and Stenotrophomonas genera were significantly enriched in resistant mosquitoes, while Asaia and Serratia dominated microbial profiles of susceptible individuals. Our results revealed significant alterations of Anopheles coluzzii microbiota associated with deltamethrin resistance, highlighting the potential for identification of novel microbial markers for surveillance and opportunities for designing innovative control techniques to prevent the further evolution and spread of insecticide resistance.


Assuntos
Acetobacteraceae/metabolismo , Anopheles/efeitos dos fármacos , Anopheles/microbiologia , Resistência a Inseticidas/fisiologia , Inseticidas/farmacologia , Nitrilas/farmacologia , Piretrinas/farmacologia , Serratia/metabolismo , Animais , Côte d'Ivoire , Malária/prevenção & controle , Microbiota/genética , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/microbiologia , RNA Ribossômico 16S/genética
12.
Int J Biol Macromol ; 193(Pt A): 269-275, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34695495

RESUMO

Bacterial nanocellulose (BNC) is characterized by high purity and excellent mechanical properties; however, its production is constrained by low yield. Therefore, efforts aimed at improving its yield and material properties are imperative. This study investigated the effect of adding different concentrations (0%, 0.5%, and 1.0%) of cellulose nanocrystal (CNC) in Hestrin-Schramm modified medium on the yield and properties of BNC produced by Komagataeibacter sp. SFCB22-18. The BNC yield increased as following an increase in added CNC concentration. Also, the morphology, structure, crystallinity, thermal stability, and mechanical properties of BNC improved after CNC incorporation. A low CNC concentration (0.1%) favored mechanical strength, whereas 0.5% gave the optimum morphology, structural, and thermal stability. These results showed that modifying BNC with CNC could help increase yield and improve its properties, and thus; the potentiality of BNC in various applications would be much enhanced.


Assuntos
Acetobacteraceae/metabolismo , Celulose/biossíntese , Nanopartículas/química , Nanoestruturas/química
13.
Carbohydr Polym ; 274: 118403, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34702445

RESUMO

Topical approaches to oral diseases require frequent dosing due to limited retention time. A mucoadhesive drug delivery platform with extended soft tissue adhesion capability of up to 7 days is proposed for on-site management of oral wound. Bacterial cellulose (BC) and photoactivated carbene-based bioadhesives (PDz) are combined to yield flexible film platform for interfacing soft tissues in dynamic, wet environments. Structure-activity relationships evaluate UV dose and hydration state with respect to adhesive strength on soft tissue mimics. The bioadhesive composite has an adhesion strength ranging from 7 to 17 kPa and duration exceeding 48 h in wet conditions under sustained shear forces, while other mucoadhesives based on hydrophilic macromolecules exhibit adhesion strength of 0.5-5 kPa and last only a few hours. The work highlights the first evaluation of BC composites for mucoadhesive treatments in the buccal cavity.


Assuntos
Adesivos/química , Celulose/química , Sistemas de Liberação de Medicamentos/métodos , Boca , Acetobacteraceae/metabolismo , Boca/química , Boca/microbiologia , Preparações Farmacêuticas Odontológicas/administração & dosagem
14.
Sci Rep ; 11(1): 19311, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34588564

RESUMO

In this study, a medical device made of surface microstructured bacterial cellulose was produced using cellulose-producing acetic acid bacteria wild-type strains in combination with guided assembly-based biolithography. The medical device aims at interfering with the cell's focal adhesion establishment and maturation around implantable devices placed in soft tissues by the symmetrical array on its surface. A total of 25 Komagataeibacter strains was evaluated over a three-step selection. In the first step, the ability of strains to produce a suitable bacterial cellulose layer with high production yield was examined, then nine strains, with a uniform and smooth layer of bacterial cellulose, were cultured in a custom-made silicone bioreactor and finally the characteristics of the symmetrical array of topographic features on the surface were analysed. Selected strains showed high inter and intra species variability in bacterial cellulose production. The devices obtained by K2G30, K1G4, DSM 46590 (Komagataeibacter xylinus), K2A8 (Komagataeibacter sp.) and DSM 15973T (Komagataeibacter sucrofermentas) strains were pouched-formed with hexagonal surface pattern required for reducing the formation of fibrotic tissue around devices, once they are implanted in soft tissues. Our findings revealed the effectiveness of the selected Komagataeibacter wild-type strains in producing surface microstructured bacterial cellulose pouches for making biomedical devices.


Assuntos
Acetobacteraceae/metabolismo , Bioimpressão/métodos , Equipamentos e Provisões , Impressão Tridimensional , Celulose/metabolismo
15.
Pol J Microbiol ; 70(3): 305-313, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34584524

RESUMO

In the industrial production of high-acidity vinegar, the initial ethanol and acetic acid concentrations are limiting factors that will affect acetic acid fermentation. In this study, Komagataeibacter europaeus CGMCC 20445 was used for acetic acid shake flask fermentation at an initial ethanol concentration of 4.3% (v/v). We conducted transcriptome analysis of K. europaeus CGMCC 20445 samples under different acidity conditions to elucidate the changes in differentially expressed genes throughout the fermentation process. We also analyzed the expression of genes associated with acid-resistance mechanisms. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that the differentially expressed genes were enriched in ribosomes, citrate cycle, butanoate metabolism, oxidative phosphorylation, pentose phosphate, and the fatty acid biosynthetic pathways. In addition, this study found that K. europaeus CGMCC 20445 regulates the gene expression levels of cell envelope proteins and stress-responsive proteins to adapt to the gradual increase in acidity during acetic acid fermentation. This study improved the understanding of the acid resistance mechanism of K. europaeus and provided relevant reference information for the further genetic engineering of this bacterium.


Assuntos
Ácido Acético/metabolismo , Acetobacteraceae/genética , Acetobacteraceae/metabolismo , Fermentação , Transcriptoma , Perfilação da Expressão Gênica
16.
Int J Biol Macromol ; 191: 211-221, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34547311

RESUMO

A cellulose-producing bacterium Komagataeibacter rhaeticus K15 was isolated from kombucha tea, and its metabolic pathways and cellulose synthesis operon were analyzed by genome sequencing. Different from the reported K. rhaeticus, the K15 produced little gluconic acid (2.26 g/L) when glucose was the sole carbon source and has the capacity for high cellulose production (4.76 g/L) with other carbon sources. Furthermore, six nitrogen-fixing genes were found to be responsible for the survival of K15 on a nitrogen-free medium. Based on its fermentation characteristics, K15 was cultured in a kitchen waste medium as a strategy for green and sustainable bacterial cellulose production. The SEM, XRD, and FTIR results indicated that synthesized cellulose has a mean diameter of 40-50 nm nanofiber, good crystallinity, and the same chemical structure. The K15 strain provides a highly viable alternative strategy to reduce the costs of bacterial cellulose production using agro-industrial residues as nutrient sources.


Assuntos
Acetobacteraceae/metabolismo , Celulose/biossíntese , Fermentação , Genes Bacterianos , Microbiologia Industrial/métodos , Eliminação de Resíduos/métodos , Acetobacteraceae/genética , Culinária , Fixação de Nitrogênio/genética , Resíduos
17.
Int J Biol Macromol ; 191: 299-304, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34530037

RESUMO

Nanocellulose derived from microorganism is crucial bio-based products due to its unique physicochemical and mechanical properties for material science. Thus, optimizing bacterial cellulose (BNC) production is essential to widen applications and reduce production cost. Using various carbon sources derive from fruits as alternatives for synthesizing BNC could produce a low-cost BNC with comparable properties. Although Komagataeibacter xylinus grown in different natural juices, including clarified juice (CJ), sugarcane juice (SC) and coconut juice (CN) demonstrated a lower yield than that of control medium (HS), FTIR confirmed no change in chemical functional groups of BNCs. Similarly, different sugar sources have slightly effects on mechanical and thermal properties of BNC. However, the internal morphology illustrated the pore structure in oval shape for HS and CN while CJ and SC resulted in irregular pores which could lead to the highest crystallinity index value for BNC from HS compared to that from alternative media.


Assuntos
Acetobacteraceae/metabolismo , Celulose/biossíntese , Microbiologia Industrial/métodos , Açúcares/metabolismo , Carbono/metabolismo , Cocos/química , Frutas/química , Nanoestruturas/química , Nanoestruturas/microbiologia , Saccharum/química
18.
Bioengineered ; 12(1): 6793-6807, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34519629

RESUMO

Bacterial cellulose (BC) is higher in demand due to its excellent properties which is attributed to its purity and nano size. Komagataeibacter xylinum is a model organism where BC production has been studied in detail because of its higher cellulose production capacity. BC production mechanism shows involvement of a series of sequential reactions with enzymes for biosynthesis of cellulose. It is necessary to know the mechanism to understand the involvement of regulatory proteins which could be the probable targets for genetic modification to enhance or regulate yield of BC and to alter BC properties as well. For the industrial production of BC, controlled synthesis is desired so as to save energy, hence genetic manipulation opens up avenues for upregulating or controlling the cellulose synthesis in the bacterium by targeting genes involved in cellulose biosynthesis. In this review article genetic modification has been presented as a tool to introduce desired changes at genetic level resulting in improved yield or properties. There has been a lack of studies on genetic modification for BC production due to limited availability of information on whole genome and genetic toolkits; however, in last few years, the number of studies has been increased on this aspect as whole genome sequencing of several Komagataeibacter strains are being done. In this review article, we have presented the mechanisms and the targets for genetic modifications in order to achieve desired changes in the BC production titer as well as its characteristics.


Assuntos
Acetobacteraceae , Celulose , Engenharia Genética/métodos , Acetobacteraceae/química , Acetobacteraceae/metabolismo , Celulose/química , Celulose/metabolismo , Nanoestruturas/química
19.
J Biol Chem ; 297(3): 101029, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34339742

RESUMO

Understanding the mechanism by which cellulases from bacteria, fungi, and protozoans catalyze the digestion of lignocellulose is important for developing cost-effective strategies for bioethanol production. Cel7A from the fungus Trichoderma reesei is a model exoglucanase that degrades cellulose strands from their reducing ends by processively cleaving individual cellobiose units. Despite being one of the most studied cellulases, the binding and hydrolysis mechanisms of Cel7A are still debated. Here, we used single-molecule tracking to analyze the dynamics of 11,116 quantum dot-labeled TrCel7A molecules binding to and moving processively along immobilized cellulose. Individual enzyme molecules were localized with a spatial precision of a few nanometers and followed for hundreds of seconds. Most enzyme molecules bound to cellulose in a static state and dissociated without detectable movement, whereas a minority of molecules moved processively for an average distance of 39 nm at an average speed of 3.2 nm/s. These data were integrated into a three-state model in which TrCel7A molecules can bind from solution into either static or processive states and can reversibly switch between states before dissociating. From these results, we conclude that the rate-limiting step for cellulose degradation by Cel7A is the transition out of the static state, either by dissociation from the cellulose surface or by initiation of a processive run. Thus, accelerating the transition of Cel7A out of its static state is a potential avenue for improving cellulase efficiency.


Assuntos
Celulose 1,4-beta-Celobiosidase/metabolismo , Celulose/metabolismo , Proteínas Fúngicas/metabolismo , Hypocreales/enzimologia , Acetobacteraceae/metabolismo , Hidrólise , Microscopia de Força Atômica , Microscopia de Fluorescência , Pontos Quânticos , Especificidade por Substrato
20.
mSphere ; 6(4): e0053021, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34378983

RESUMO

Saccharibacteria (formerly TM7) have reduced genomes and a small cell size and appear to have a parasitic lifestyle dependent on a bacterial host. Although there are at least 6 major clades of Saccharibacteria inhabiting the human oral cavity, complete genomes of oral Saccharibacteria were previously limited to the G1 clade. In this study, nanopore sequencing was used to obtain three complete genome sequences from clade G6. Phylogenetic analysis suggested the presence of at least 3 to 5 distinct species within G6, with two discrete taxa represented by the 3 complete genomes. G6 Saccharibacteria were highly divergent from the more-well-studied clade G1 and had the smallest genomes and lowest GC content of all Saccharibacteria. Pangenome analysis showed that although 97% of shared pan-Saccharibacteria core genes and 89% of G1-specific core genes had putative functions, only 50% of the 244 G6-specific core genes had putative functions, highlighting the novelty of this group. Compared to G1, G6 harbored divergent metabolic pathways. G6 genomes lacked an F1Fo ATPase, the pentose phosphate pathway, and several genes involved in nucleotide metabolism, which were all core genes for G1. G6 genomes were also unique compared to that of G1 in that they encoded d-lactate dehydrogenase, adenylate cyclase, limited glycerolipid metabolism, a homolog to a lipoarabinomannan biosynthesis enzyme, and the means to degrade starch. These differences at key metabolic steps suggest a distinct lifestyle and ecological niche for clade G6, possibly with alternative hosts and/or host dependencies, which would have significant ecological, evolutionary, and likely pathogenic implications. IMPORTANCESaccharibacteria are ultrasmall parasitic bacteria that are common members of the oral microbiota and have been increasingly linked to disease and inflammation. However, the lifestyle and impact on human health of Saccharibacteria remain poorly understood, especially for the clades with no complete genomes (G2 to G6) or cultured isolates (G2 and G4 to G6). Obtaining complete genomes is of particular importance for Saccharibacteria, because they lack many of the "essential" core genes used for determining draft genome completeness, and few references exist outside clade G1. In this study, complete genomes of 3 G6 strains, representing two candidate species, were obtained and analyzed. The G6 genomes were highly divergent from that of G1 and enigmatic, with 50% of the G6 core genes having no putative functions. The significant difference in encoded functional pathways is suggestive of a distinct lifestyle and ecological niche, probably with alternative hosts and/or host dependencies, which would have major implications in ecology, evolution, and pathogenesis.


Assuntos
Acetobacteraceae/classificação , Acetobacteraceae/genética , Genoma Bacteriano , Boca/microbiologia , Filogenia , Acetobacteraceae/metabolismo , Redes e Vias Metabólicas/genética , Microbiota , Análise de Sequência de DNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA