Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Microbiol ; 23(1): 499-511, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33283462

RESUMO

Acetobacterium woodii utilizes the Wood-Ljungdahl pathway for reductive synthesis of acetate from carbon dioxide. However, A. woodii can also perform non-acetogenic growth on 1,2-propanediol (1,2-PD) where instead of acetate, equal amounts of propionate and propanol are produced as metabolic end products. Metabolism of 1,2-PD occurs via encapsulated metabolic enzymes within large proteinaceous bodies called bacterial microcompartments. While the genome of A. woodii harbours 11 genes encoding putative alcohol dehydrogenases, the BMC-encapsulated propanol-generating alcohol dehydrogenase remains unidentified. Here, we show that Adh4 of A. woodii is the alcohol dehydrogenase required for propanol/ethanol formation within these microcompartments. It catalyses the NADH-dependent reduction of propionaldehyde or acetaldehyde to propanol or ethanol and primarily functions to recycle NADH within the BMC. Removal of adh4 gene from the A. woodii genome resulted in slow growth on 1,2-PD and the mutant displayed reduced propanol and enhanced propionate formation as a metabolic end product. In sum, the data suggest that Adh4 is responsible for propanol formation within the BMC and is involved in redox balancing in the acetogen, A. woodii.


Assuntos
Acetatos/metabolismo , Acetobacterium/enzimologia , Álcool Desidrogenase/metabolismo , Proteínas de Bactérias/metabolismo , 1-Propanol/metabolismo , Acetaldeído/metabolismo , Acetobacterium/genética , Acetobacterium/crescimento & desenvolvimento , Álcool Desidrogenase/genética , Aldeídos/metabolismo , Proteínas de Bactérias/genética , Dióxido de Carbono/metabolismo , Etanol/metabolismo , Genoma Bacteriano , NAD/metabolismo , Oxirredução
2.
Appl Microbiol Biotechnol ; 104(2): 687-699, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31807888

RESUMO

The advantage of using acetogens such as Acetobacterium woodii as biocatalysts converting the cheap substrate and greenhouse gas carbon dioxide (CO2) into value-added chemicals comes together with the disadvantage of a low overall ATP gain due to the bioenergetics associated with the Wood-Ljungdahl pathway. Expanding the product spectrum of recombinant A. woodii strains to compounds with high ATP-demanding biosynthesis is therefore challenging. As a least invasive strategy for improved ATP generation, the exploitation of the arginine deiminase pathway (ADI) was examined under native conditions and via using heterologously expressed genes in A. woodii. Several promoters were analyzed for application of different gene expression levels in A. woodii using ß-glucuronidase assays. Heterologous expression of the ADI pathway genes from Clostridium autoethanogenum was controlled using either the constitutive pta-ack promoter from Clostridium ljungdahlii or a tightly regulated tetracycline-inducible promoter Ptet. Unlike constitutive expression, only induced expression of the ADI pathway genes led to a 36% higher maximal OD600 when using arginine (OD600 3.4) as nitrogen source and a 52% lower acetate yield per biomass compared to cells growing with yeast extract as nitrogen source (OD600 2.5). In direct comparison, a 69% higher maximal OD600 and about 60% lower acetate yield per biomass in induced to non-induced recombinant A. woodii cells was noticed when using arginine. Our data suggests the application of the ADI pathway in A. woodii for expanding the product spectrum to compounds with high ATP-demanding biosynthesis.


Assuntos
Acetobacterium/enzimologia , Acetobacterium/crescimento & desenvolvimento , Expressão Gênica , Hidrolases/metabolismo , Engenharia Metabólica , Redes e Vias Metabólicas/genética , Proteínas Recombinantes/metabolismo , Acetatos/metabolismo , Acetobacterium/genética , Arginina/metabolismo , Clostridium/enzimologia , Clostridium/genética , Hidrolases/genética , Nitrogênio/metabolismo , Regiões Promotoras Genéticas , Proteínas Recombinantes/genética , Ativação Transcricional
3.
Environ Microbiol Rep ; 12(1): 58-62, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31715654

RESUMO

Acetogenic bacteria are a group of strictly anaerobic bacteria that may have been first life forms on Earth since they employ an ancient pathway for CO2 fixation into acetyl-CoA that is coupled to the synthesis of ATP, the Wood-Ljungdahl pathway. Electrons for CO2 reduction are derived from oxidation of H2 or CO and thus, these bacteria can grow lithotrophically on gases present on early Earth. Among the organic molecules present on early Earth is acetaldehyde, a highly volatile C2 compound. Here, we demonstrate that the acetogenic model bacterium Acetobacterium woodii grows on acetaldehyde. Acetaldehyde is dismutated to ethanol and acetyl-CoA, most likely by the bifunctional alcohol dehydrogenase AdhE. Acetyl-CoA is converted to acetate by two subsequent enzymes, phosphotransacetylase and acetate kinase, accompanied by the synthesis of ATP by substrate-level phosphorylation. Apparently, growth on acetaldehyde does not employ the Wood-Ljungdahl pathway. Our finding opens the possibility of a simple and ancient metabolic pathway with only three enzymes that allows for biomass (acetyl-CoA) and ATP formation on early Earth.


Assuntos
Acetaldeído/metabolismo , Acetatos/metabolismo , Acetobacterium/crescimento & desenvolvimento , Acetobacterium/metabolismo , Acetilcoenzima A/metabolismo , Dióxido de Carbono/metabolismo , Etanol/metabolismo , Redes e Vias Metabólicas , Oxirredução , Fosforilação
4.
Biotechnol Bioeng ; 116(2): 294-306, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30267586

RESUMO

Synthesis gas (syngas) fermentation via the Wood-Ljungdahl pathway is receiving growing attention as a possible platform for the fixation of CO2 and renewable production of fuels and chemicals. However, the pathway operates near the thermodynamic limit of life, resulting in minimal adenosine triphosphate (ATP) production and long doubling times. This calls into question the feasibility of producing high-energy compounds at industrially relevant levels. In this study, we investigated the possibility of co-utilizing nitrate as an inexpensive additional electron acceptor to enhance ATP production during H2 -dependent growth of Clostridium ljungdahlii, Moorella thermoacetica, and Acetobacterium woodii. In contrast to other acetogens tested, growth rate and final biomass titer were improved for C. ljungdahlii growing on a mixture of H2 and CO2 when supplemented with nitrate. Transcriptomic analysis, 13CO2 labeling, and an electron balance were used to understand how electron flux was partitioned between CO2 and nitrate. We further show that, with nitrate supplementation, the ATP/adenosine diphosphate (ADP) ratio and acetyl-CoA pools were increased by fivefold and threefold, respectively, suggesting that this strategy could be useful for the production of ATP-intensive heterologous products from acetyl-CoA. Finally, we propose a pathway for enhanced ATP production from nitrate and use this as a basis to calculate theoretical yields for a variety of products. This study demonstrates a viable strategy for the decoupling of ATP production from carbon dioxide fixation, which will serve to significantly improve the CO2 fixation rate and the production metrics of other chemicals from CO2 and H2 in this host.


Assuntos
Acetobacterium/metabolismo , Dióxido de Carbono/metabolismo , Clostridium/metabolismo , Hidrogênio/metabolismo , Moorella/metabolismo , Nitratos/metabolismo , Acetobacterium/crescimento & desenvolvimento , Trifosfato de Adenosina/biossíntese , Ciclo do Carbono , Clostridium/crescimento & desenvolvimento , Análise do Fluxo Metabólico , Moorella/crescimento & desenvolvimento
5.
Appl Environ Microbiol ; 84(23)2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30242008

RESUMO

Acetogenic bacteria are an ecophysiologically important group of strictly anaerobic bacteria that grow lithotrophically on H2 plus CO2 or on CO or heterotrophically on different substrates such as sugars, alcohols, aldehydes, or acids. Amino acids are rarely used. Here, we describe that the model acetogen Acetobacterium woodii can use alanine as the sole carbon and energy source, which is in contrast to the description of the type strain. The alanine degradation genes have been identified and characterized. A key to alanine degradation is an alanine dehydrogenase which has been characterized biochemically. The resulting pyruvate is further degraded to acetate by the known pathways involving the Wood-Ljungdahl pathway. Our studies culminate in a metabolic and bioenergetic scheme for alanine-dependent acetogenesis in A. woodiiIMPORTANCE Peptides and amino acids are widespread in nature, but there are only a few reports that demonstrated use of amino acids as carbon and energy sources by acetogenic bacteria, a central and important group in the anaerobic food web. Our finding that A. woodii can perform alanine oxidation coupled to reduction of carbon dioxide not only increases the number of substrates that can be used by this model acetogen but also raises the possibility that other acetogens may also be able to use alanine. Indeed, the alanine genes are also present in at least two more acetogens, for which growth on alanine has not been reported so far. Alanine may be a promising substrate for industrial fermentations, since acid formation goes along with the production of a base (NH3) and pH regulation is a minor issue.


Assuntos
Ácido Acético/metabolismo , Acetobacterium/crescimento & desenvolvimento , Acetobacterium/metabolismo , Alanina/metabolismo , Acetobacterium/genética , Dióxido de Carbono/metabolismo , Metabolismo Energético , Processos Heterotróficos
6.
Environ Microbiol ; 19(11): 4784-4796, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28967177

RESUMO

The microbial mixed culture RM grows with dichloromethane (DCM) as the sole energy source generating acetate, methane, chloride and biomass as products. Chloromethane (CM) was not an intermediate during DCM utilization consistent with the observation that CM could not replace DCM as a growth substrate. Interestingly, cultures that received DCM and CM together degraded both compounds concomitantly. Transient hydrogen (H2 ) formation reaching a maximum concentration of 205 ± 13 ppmv was observed in cultures growing with DCM, and the addition of exogenous H2 at concentrations exceeding 3000 ppmv impeded DCM degradation. In contrast, CM degradation in culture RM had a strict requirement for H2 . Following five consecutive transfers on CM and H2 , Acetobacterium 16S rRNA gene sequences dominated the culture and the DCM-degrader Candidatus Dichloromethanomonas elyunquensis was eliminated, consistent with the observation that the culture lost the ability to degrade DCM. These findings demonstrate that culture RM harbours different populations responsible for anaerobic DCM and CM metabolism, and further imply that the DCM and CM degradation pathways are mechanistically distinct. H2 generated during DCM degradation is consumed by the hydrogenotrophic CM degrader, or may fuel other hydrogenotrophic processes, including organohalide respiration, methanogenesis and H2 /CO2 reductive acetogenesis.


Assuntos
Acetobacterium/metabolismo , Cloreto de Metila/metabolismo , Cloreto de Metileno/metabolismo , Peptococcaceae/metabolismo , Simbiose/fisiologia , Ácido Acético/metabolismo , Acetobacterium/genética , Acetobacterium/crescimento & desenvolvimento , Anaerobiose/fisiologia , Hidrogênio/metabolismo , Metano/metabolismo , Peptococcaceae/genética , Peptococcaceae/crescimento & desenvolvimento , RNA Ribossômico 16S/genética
7.
ISME J ; 11(3): 704-714, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27801903

RESUMO

Microbial uptake of free cathodic electrons presents a poorly understood aspect of microbial physiology. Uptake of cathodic electrons is particularly important in microbial electrosynthesis of sustainable fuel and chemical precursors using only CO2 and electricity as carbon, electron and energy source. Typically, large overpotentials (200 to 400 mV) were reported to be required for cathodic electron uptake during electrosynthesis of, for example, methane and acetate, or low electrosynthesis rates were observed. To address these limitations and to explore conceptual alternatives, we studied defined co-cultures metabolizing cathodic electrons. The Fe(0)-corroding strain IS4 was used to catalyze the electron uptake reaction from the cathode forming molecular hydrogen as intermediate, and Methanococcus maripaludis and Acetobacterium woodii were used as model microorganisms for hydrogenotrophic synthesis of methane and acetate, respectively. The IS4-M. maripaludis co-cultures achieved electromethanogenesis rates of 0.1-0.14 µmol cm-2 h-1 at -400 mV vs standard hydrogen electrode and 0.6-0.9 µmol cm-2 h-1 at -500 mV. Co-cultures of strain IS4 and A. woodii formed acetate at rates of 0.21-0.23 µmol cm-2 h-1 at -400 mV and 0.57-0.74 µmol cm-2 h-1 at -500 mV. These data show that defined co-cultures coupling cathodic electron uptake with synthesis reactions via interspecies hydrogen transfer may lay the foundation for an engineering strategy for microbial electrosynthesis.


Assuntos
Acetobacterium/crescimento & desenvolvimento , Técnicas de Cocultura , Eletrodos/microbiologia , Elétrons , Mathanococcus/crescimento & desenvolvimento , Acetatos/metabolismo , Acetobacterium/classificação , Acetobacterium/metabolismo , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Catálise , Hidrogênio/metabolismo , Metano/biossíntese , Mathanococcus/classificação , Mathanococcus/metabolismo
8.
Appl Environ Microbiol ; 82(14): 4056-4069, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27208103

RESUMO

Acetogenic bacteria are a diverse group of strictly anaerobic bacteria that utilize the Wood-Ljungdahl pathway for CO2 fixation and energy conservation. These microorganisms play an important part in the global carbon cycle and are a key component of the anaerobic food web. Their most prominent metabolic feature is autotrophic growth with molecular hydrogen and carbon dioxide as the substrates. However, most members also show an outstanding metabolic flexibility for utilizing a vast variety of different substrates. In contrast to autotrophic growth, which is hardly competitive, metabolic flexibility is seen as a key ability of acetogens to compete in ecosystems and might explain the almost-ubiquitous distribution of acetogenic bacteria in anoxic environments. This review covers the latest findings with respect to the heterotrophic metabolism of acetogenic bacteria, including utilization of carbohydrates, lactate, and different alcohols, especially in the model acetogen Acetobacterium woodii Modularity of metabolism, a key concept of pathway design in synthetic biology, together with electron bifurcation, to overcome energetic barriers, appears to be the basis for the amazing substrate spectrum. At the same time, acetogens depend on only a relatively small number of enzymes to expand the substrate spectrum. We will discuss the energetic advantages of coupling CO2 reduction to fermentations that exploit otherwise-inaccessible substrates and the ecological advantages, as well as the biotechnological applications of the heterotrophic metabolism of acetogens.


Assuntos
Acetobacterium/metabolismo , Metabolismo Energético , Processos Heterotróficos , Acetobacterium/crescimento & desenvolvimento , Álcoois/metabolismo , Anaerobiose , Metabolismo dos Carboidratos , Dióxido de Carbono/metabolismo , Hidrogênio/metabolismo , Ácido Láctico/metabolismo
9.
Bioprocess Biosyst Eng ; 39(8): 1325-30, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27059835

RESUMO

Low aqueous solubility of the gases for autotrophic fermentations (e.g., hydrogen gas) results in low productivities in bioreactors. A frequently suggested approach to overcome mass transfer limitation is to increase the solubility of the limiting gas in the reaction medium by increasing the partial pressure in the gas phase. An increased inlet hydrogen partial pressure of up to 2.1 bar (total pressure of 3.5 bar) was applied for the autotrophic conversion of hydrogen and carbon dioxide with Acetobacterium woodii in a batch-operated stirred-tank bioreactor with continuous gas supply. Compared to the autotrophic batch process with an inlet hydrogen partial pressure of 0.4 bar (total pressure of 1.0 bar) the final acetate concentration after 3.1 days was reduced to 50 % (29.2 g L(-1) compared to 59.3 g L(-1)), but the final formate concentration was increased by a factor of 18 (7.3 g L(-1) compared to 0.4 g L(-1)). Applying recombinant A. woodii strains overexpressing either genes for enzymes in the methyl branch of the Wood-Ljungdahl pathway or the genes phosphotransacetylase and acetate kinase at an inlet hydrogen partial pressure of 1.4 bar reduced the final formate concentration by up to 40 % and increased the final dry cell mass and acetate concentrations compared to the wild type strain. Solely the overexpression of the two genes for ATP regeneration at the end of the Wood-Ljungdahl pathway resulted in an initial switch off of formate production at increased hydrogen partial pressure until the maximum of the hydrogen uptake rate was reached.


Assuntos
Acetobacterium/crescimento & desenvolvimento , Hidrogênio/química , Acetobacterium/metabolismo , Reatores Biológicos , Fermentação , Pressão
10.
J Biotechnol ; 212: 11-8, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26239230

RESUMO

Acetogenic bacteria like Acetobacterium woodii represent an ancient group of anaerobic microorganisms which use hydrogen and carbon dioxide to produce acetate. Cell concentrations and space-time yields are usually low in gas fermentations. A standard stirred­tank bioreactor with continuous gas supply was equipped with a customized submerged microfiltration unit. A. woodii showed similar growth behavior with an initial maximal growth rate of 1.2 d(-1) in continuous gas fermentations with full cell retention and varying dilution rates. A steady increase of cell mass concentrations was observed with the highest biomass formation at the highest dilution rate. By contrast the final acetate concentrations were lowest at the highest dilution rate. The highest final acetate space-time yield of 148 g l(-1) d(-1) was measured at the highest dilution rate (increase by factor 8 compared to a standard batch process or by factor 37 compared to published data). The highest reported cell concentration of A. woodii in gas fermentations of nearly 14 g l(-1) cell dry weight was achieved in the submerged membrane bioreactor with increased yeast extract concentrations in the feed medium. Product inhibition was observed when acetate concentrations exceeded 8-12 g l(-1) causing a steady decrease in cell mass specific acetate production rates.


Assuntos
Acetatos/metabolismo , Acetobacterium/metabolismo , Reatores Biológicos , Acetobacterium/crescimento & desenvolvimento , Biomassa , Dióxido de Carbono/metabolismo , Fermentação , Hidrogênio/metabolismo
11.
Appl Environ Microbiol ; 81(17): 5949-56, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26092462

RESUMO

The Wood-Ljungdahl pathway allows acetogenic bacteria to grow on a number of one-carbon substrates, such as carbon dioxide, formate, methyl groups, or even carbon monoxide. Since carbon monoxide alone or in combination with hydrogen and carbon dioxide (synthesis gas) is an increasingly important feedstock for third-generation biotechnology, we studied CO metabolism in the model acetogen Acetobacterium woodii. When cells grew on H2-CO2, addition of 5 to 15% CO led to higher final optical densities, indicating the utilization of CO as a cosubstrate. However, the growth rate was decreased by the presence of small amounts of CO, which correlated with an inhibition of H2 consumption. Experiments with resting cells revealed that the degree of inhibition of H2 consumption was a function of the CO concentration. Since the hydrogen-dependent CO2 reductase (HDCR) of A. woodii is known to be very sensitive to CO, we speculated that cells may be more tolerant toward CO when growing on formate, the product of the HDCR reaction. Indeed, addition of up to 25% CO did not influence growth rates on formate, while the final optical densities and the production of acetate increased. Higher concentrations (75 and 100%) led to a slight inhibition of growth and to decreasing rates of formate and CO consumption. Experiments with resting cells revealed that the HDCR is a site of CO inhibition. In contrast, A. woodii was not able to grow on CO as a sole carbon and energy source, and growth on fructose-CO or methanol-CO was not observed.


Assuntos
Acetobacterium/metabolismo , Monóxido de Carbono/metabolismo , Acetobacterium/enzimologia , Acetobacterium/genética , Acetobacterium/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Formiatos/metabolismo , Hidrogênio/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo
12.
Appl Environ Microbiol ; 81(14): 4711-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25934628

RESUMO

The acetogenic bacterium Acetobacterium woodii is able to reduce CO2 to acetate via the Wood-Ljungdahl pathway. Only recently we demonstrated that degradation of 1,2-propanediol by A. woodii was not dependent on acetogenesis, but that it is disproportionated to propanol and propionate. Here, we analyzed the metabolism of A. woodii on another diol, 2,3-butanediol. Experiments with growing and resting cells, metabolite analysis and enzymatic measurements revealed that 2,3-butanediol is oxidized in an NAD(+)-dependent manner to acetate via the intermediates acetoin, acetaldehyde, and acetyl coenzyme A. Ethanol was not detected as an end product, either in growing cultures or in cell suspensions. Apparently, all reducing equivalents originating from the oxidation of 2,3-butanediol were funneled into the Wood-Ljungdahl pathway to reduce CO2 to another acetate. Thus, the metabolism of 2,3-butanediol requires the Wood-Ljungdahl pathway.


Assuntos
Acetobacterium/metabolismo , Butileno Glicóis/metabolismo , Acetaldeído/metabolismo , Acetatos/metabolismo , Acetobacterium/enzimologia , Acetobacterium/genética , Acetobacterium/crescimento & desenvolvimento , Acetoína/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Dióxido de Carbono/metabolismo
13.
J Bacteriol ; 197(2): 382-91, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25384483

RESUMO

Acetogenic bacteria can grow by the oxidation of various substrates coupled to the reduction of CO2 in the Wood-Ljungdahl pathway. Here, we show that growth of the acetogen Acetobacterium woodii on 1,2-propanediol (1,2-PD) as the sole carbon and energy source is independent of acetogenesis. Enzymatic measurements and metabolite analysis revealed that 1,2-PD is dehydrated to propionaldehyde, which is further oxidized to propionyl coenzyme A (propionyl-CoA) with concomitant reduction of NAD. NADH is reoxidized by reducing propionaldehyde to propanol. The potential gene cluster coding for the responsible enzymes includes genes coding for shell proteins of bacterial microcompartments. Electron microscopy revealed the presence of microcompartments as well as storage granules in cells grown on 1,2-PD. Gene clusters coding for the 1,2-PD pathway can be found in other acetogens as well, but the distribution shows no relation to the phylogeny of the organisms.


Assuntos
Acetobacterium/crescimento & desenvolvimento , Acetobacterium/metabolismo , Propilenoglicol/metabolismo , Acetobacterium/ultraestrutura
14.
Environ Microbiol ; 17(3): 670-7, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24762045

RESUMO

Lactate is a common substrate for major groups of strictly anaerobic bacteria, but the biochemistry and bioenergetics of lactate oxidation is obscure. The high redox potential of the pyruvate/lactate pair of E0 ' = -190 mV excludes direct NAD(+) reduction (E0 ' = -320 mV). To identify the hitherto unknown electron acceptor, we have purified the lactate dehydrogenase (LDH) from the strictly anaerobic, acetogenic bacterium Acetobacterium woodii. The LDH forms a stable complex with an electron-transferring flavoprotein (Etf) that exhibited NAD(+) reduction only when reduced ferredoxin (Fd(2-) ) was present. Biochemical analyses revealed that the LDH/Etf complex of A. woodii uses flavin-based electron confurcation to drive endergonic lactate oxidation with NAD(+) as oxidant at the expense of simultaneous exergonic electron flow from reduced ferredoxin (E0 ' ≈ -500 mV) to NAD(+) according to: lactate + Fd(2-) + 2 NAD(+) → pyruvate + Fd + 2 NADH. The reduced Fd(2-) is regenerated from NADH by a sequence of events that involves conversion of chemical (ATP) to electrochemical ( Δ µ ˜ Na + ) and finally redox energy (Fd(2-) from NADH) via reversed electron transport catalysed by the Rnf complex. Inspection of genomes revealed that this metabolic scenario for lactate oxidation may also apply to many other anaerobes.


Assuntos
Acetobacterium/metabolismo , Bactérias Anaeróbias/metabolismo , Flavoproteínas Transferidoras de Elétrons/metabolismo , L-Lactato Desidrogenase/metabolismo , Ácido Láctico/metabolismo , Acetobacterium/enzimologia , Acetobacterium/crescimento & desenvolvimento , Catálise , Transporte de Elétrons , Elétrons , Metabolismo Energético , Ferredoxinas/metabolismo , NAD/metabolismo , Oxirredução , Sódio/metabolismo
15.
Bioresour Technol ; 159: 249-57, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24657755

RESUMO

This study investigated the potential of Acetobacterium woodii, a homoacetogen, in co-culture with common acetogens for acetate production during glucose fermentation. Three types of inocula, A. woodii (AW), heat-treated sludge (HTS) and co-culture of A. woodii and heat-treated sludge (AW-HTS) were investigated. Results showed that ∼ 150 mM of glucose was almost completely converted to biomass, gases and other products in co-culture. The addition of A. woodii induced homoacetogenic fermentation in AW-HTS during the first 3 days, as evidenced by the decreased hydrogen production and acetate dominance (>90%, corresponding to 1.19 mol acetate/mol glucose) in total soluble products. However, due to the unfavorable environmental conditions, metabolic pathway in AW-HTS treatment shifted towards butyrate type at the end of the experiment. Bacterial diversity analysis indicated that species supporting growth of A. woodii were dominant during the first several days and their abundance gradually decreased until the end of experiment.


Assuntos
Acetatos/metabolismo , Ácidos/metabolismo , Reatores Biológicos , Dióxido de Carbono/metabolismo , Hidrogênio/metabolismo , Acetobacter/metabolismo , Acetobacterium/crescimento & desenvolvimento , Acetobacterium/metabolismo , Anaerobiose , Biodegradação Ambiental , Eletroforese em Gel de Gradiente Desnaturante , Glucose/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Redes e Vias Metabólicas , Dados de Sequência Molecular , Filogenia , Esgotos/microbiologia , Solubilidade
16.
Huan Jing Ke Xue ; 31(7): 1554-60, 2010 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-20825025

RESUMO

The changes of pH, COD, volatile fatty acids (VFA) and microbial morphology of the acidification process in an anaerobic baffled reactor (ABR) were investigated. And the population succession process of the anaerobic microorganisms was quantitatively analyzed by using the Fluorescent In situ hybridization technology (FISH). The results show that the ABR reactor is acidified gradually from the front to the back. After the reactor is entirely acidified, the COD removal efficiency is only 30.9%, and the pH values are lowered by 1.0-2.2, while the VFA in effluent increases by 5.1 times. Additionally, the microbial morphology is significantly affected by the acidification process, in which not only the bacteria are deformed or died, but also the internal and external mass transfer of granular sludge becomes difficult. The quantitative analyses with FISH shows that in the acidification process the Archaea growth is inhibited but the Eubacteria growth is promoted, thus resulting in the sharp decrease of the three crucial microorganisms of the anaerobic digestion. The abundance of the butyrate-oxidizing acetogenic bacteria Syntrophomonas spp. reduces by 30.9%, the propionate-oxidizing acetogenic bacteria Syntrophobacter wolinii reduces by 85.5%, the homoacetogenic bacteria Acetobacterium species E. limosum reduces by 60.0%, and methanomicrobium Methanomicrobiales reduces by 54.3%. All these result in the upsetting of the mass transfer balances of different anaerobic microorganism populations.


Assuntos
Bactérias Anaeróbias/classificação , Reatores Biológicos/microbiologia , Eliminação de Resíduos Líquidos/métodos , Acetobacterium/crescimento & desenvolvimento , Ácidos , Anaerobiose , Concentração de Íons de Hidrogênio , Methanomicrobiaceae/crescimento & desenvolvimento , Dinâmica Populacional
17.
Appl Environ Microbiol ; 75(9): 2684-93, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19270140

RESUMO

Dehalobacter and "Dehalococcoides" spp. were previously shown to be involved in the biotransformation of 1,1,2-trichloroethane (1,1,2-TCA) and 1,2-dichloroethane (1,2-DCA) to ethene in a mixed anaerobic enrichment culture. Here we report the further enrichment and characterization of a Dehalobacter sp. from this mixed culture in coculture with an Acetobacterium sp. Through a series of serial transfers and dilutions with acetate, H(2), and 1,2-DCA, a stable coculture of Acetobacterium and Dehalobacter spp. was obtained, where Dehalobacter grew during dechlorination. The isolated Acetobacterium strain did not dechlorinate 1,2-DCA. Quantitative PCR with specific primers showed that Dehalobacter cells did not grow in the absence of a chlorinated electron acceptor and that the growth yield with 1,2-DCA was 6.9 (+/-0.7) x 10(7) 16S rRNA gene copies/mumol 1,2-DCA degraded. PCR with degenerate primers targeting reductive dehalogenase genes detected three distinct Dehalobacter/Desulfitobacterium-type sequences in the mixed-parent culture, but only one of these was present in the 1,2-DCA-H(2) coculture. Reverse transcriptase PCR revealed the transcription of this dehalogenase gene specifically during the dechlorination of 1,2-DCA. The 1,2-DCA-H(2) coculture could dechlorinate 1,2-DCA but not 1,1,2-TCA, nor could it dechlorinate chlorinated ethenes. As a collective, the genus Dehalobacter has been show to dechlorinate many diverse compounds, but individual species seem to each have a narrow substrate range.


Assuntos
Acetobacterium/metabolismo , Proteínas de Bactérias/genética , Dicloretos de Etileno/metabolismo , Etilenos/metabolismo , Hidrolases/genética , Peptococcaceae/metabolismo , Acetobacterium/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Técnicas de Cocultura , Contagem de Colônia Microbiana/métodos , DNA Bacteriano/química , DNA Bacteriano/genética , Hidrolases/metabolismo , Dados de Sequência Molecular , Peptococcaceae/crescimento & desenvolvimento , Análise de Sequência de DNA , Tricloroetanos/metabolismo
18.
Ann N Y Acad Sci ; 1125: 137-46, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18378592

RESUMO

Acetogens use the Wood-Ljungdahl pathway for reduction of carbon dioxide to acetate. This pathway not only allows reoxidation of reducing equivalents during heterotrophic growth but also supports chemolithoautotrophic growth on H(2) + CO(2). The latter argues for this pathway being a source for net energy conservation, but the mechanism involved remains unknown. In addition to CO(2), acetogens can use alternative electron acceptors, such as nitrate or caffeate. Caffeate respiration in the model acetogen Acetobacterium woodii is coupled to energy conservation via a chemiosmotic mechanism, with Na(+) as coupling ion. The pathway and its bioenergetics were solved in some detail very recently. This review focuses on the regulation of caffeate respiration, describes the enyzmes involved, summarizes the evidence for a potential Na(+)-translocating ferredoxin:NAD(+)-oxidoreductase (Rnf complex) as a new coupling site, and hypothesizes on the role of this Rnf complex in the Wood-Ljungdahl pathway.


Assuntos
Acetobacterium/enzimologia , Acetilcoenzima A/metabolismo , Oxirredutases/metabolismo , Acetobacterium/crescimento & desenvolvimento , Dióxido de Carbono/metabolismo , Transporte de Elétrons , Ferredoxinas/metabolismo , Hidrogênio/metabolismo , Cinética , NAD/metabolismo , Consumo de Oxigênio
19.
Anaerobe ; 14(1): 55-60, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18083050

RESUMO

Growth of Acetobacterium woodii and Clostridium sporogenes was studied in the presence of water-immiscible solvents. Nitrogen purging, vacuum distillation or distillation under nitrogen were all suitable as methods to remove oxygen from the solvents, since growth rates and yields of A. woodii were unaffected in the presence of tetradecane which had been degassed by these methods. Varying the solvent volume from 20% to 80% of the culture volume had little effect on growth rate of A. woodii. A.woodii was relatively sensitive to organic solvents since growth was inhibited by alkanes with logP(octanol/water) values below 7.1. C. sporogenes was less solvent sensitive, since it grew without inhibition when the logP of the solvent was > or = 6.6. Nevertheless, both A. woodii and C. sporogenes were more sensitive to solvent polarity than aerobic bacteria.


Assuntos
Acetobacterium/efeitos dos fármacos , Alcanos/toxicidade , Clostridium/efeitos dos fármacos , Solventes/toxicidade , Acetobacterium/crescimento & desenvolvimento , Reatores Biológicos , Clostridium/crescimento & desenvolvimento , Oxigênio/metabolismo
20.
FEMS Microbiol Lett ; 272(1): 48-54, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17456187

RESUMO

Cold-active acetogenic bacteria in the permanently cold sediments of Lake Fryxell, Antarctica were investigated using culture-based methods. Two psychrophilic, acetogenic strains were isolated and found to be physiologically and phylogenetically related to Acetobacterium bakii and Acetobacterium tundrae. However, the Antarctic isolates showed a lower growth temperature range than other species of Acetobacterium, with growth occurring from -2.5 to 25 degrees C and optimally at 19-21 degrees C. Cultures incubated at +5 and +1 degrees C grew with generation times of 7 and 9 days, respectively. The rapid growth of these strains at low temperatures suggests that acetogenesis may be an important anaerobic process in the sediments of Lake Fryxell.


Assuntos
Acetobacterium/classificação , Acetobacterium/isolamento & purificação , Temperatura Baixa , Água Doce/microbiologia , Sedimentos Geológicos/microbiologia , Ácido Acético/metabolismo , Acetobacterium/crescimento & desenvolvimento , Acetobacterium/metabolismo , Acetobacterium/ultraestrutura , Regiões Antárticas , Técnicas de Tipagem Bacteriana , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Camada de Gelo , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA