Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.394
Filtrar
1.
Molecules ; 29(8)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38675602

RESUMO

Alzheimer's disease (AD) is a complex neurodegenerative disease that can lead to the loss of cognitive function. The progression of AD is regulated by multiple signaling pathways and their associated targets. Therefore, multitarget strategies theoretically have greater potential for treating AD. In this work, a series of new hybrids were designed and synthesized by the hybridization of tacrine (4, AChE: IC50 = 0.223 µM) with pyrimidone compound 5 (GSK-3ß: IC50 = 3 µM) using the cysteamine or cystamine group as the connector. The biological evaluation results demonstrated that most of the compounds exhibited moderate to good inhibitory activities against acetylcholinesterase (AChE) and glycogen synthase kinase 3ß (GSK-3ß). The optimal compound 18a possessed potent dual AChE/GSK-3ß inhibition (AChE: IC50 = 0.047 ± 0.002 µM, GSK-3ß: IC50 = 0.930 ± 0.080 µM). Further molecular docking and enzymatic kinetic studies revealed that this compound could occupy both the catalytic anionic site and the peripheral anionic site of AChE. The results also showed a lack of toxicity to SH-SY5Y neuroblastoma cells at concentrations of up to 25 µM. Collectively, this work explored the structure-activity relationships of novel tetrahydroacridin hybrids with sulfur-inserted linkers, providing a reference for the further research and development of new multitarget anti-AD drugs.


Assuntos
Acetilcolinesterase , Doença de Alzheimer , Inibidores da Colinesterase , Desenho de Fármacos , Glicogênio Sintase Quinase 3 beta , Simulação de Acoplamento Molecular , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Humanos , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Acetilcolinesterase/metabolismo , Acetilcolinesterase/química , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/metabolismo , Linhagem Celular Tumoral , Enxofre/química , Relação Estrutura-Atividade , Acridinas/química , Acridinas/farmacologia , Acridinas/síntese química , Tacrina/química , Tacrina/farmacologia , Tacrina/síntese química , Estrutura Molecular
2.
Chem Biodivers ; 21(5): e202301986, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38478727

RESUMO

In the present study, numerous acridine derivatives A1-A20 were synthesized via aromatic nucleophilic substitution (SNAr) reaction of 9-chloroacridine with carbonyl hydrazides, amines, or phenolic derivatives depending upon facile, novel, and eco-friendly approaches (Microwave and ultrasonication assisted synthesis). The structures of the new compounds were elucidated using spectroscopic methods. The title products were assessed for their antimicrobial, antioxidant, and antiproliferative activities using numerous assays. Promisingly, the investigated compounds mainstream revealed promising antibacterial and anticancer activities. Thereafter, the investigated compounds' expected mode of action was debated by using an array of in silico studies. Compounds A2 and A3 were the most promising antimicrobial agents, while compounds A2, A5, and A7 revealed the most cytotoxic activities. Accordingly, RMSD, RMSF, Rg, and SASA analyses of compounds A2 and A3 were performed, and MMPBSA was calculated. Lastly, the ADMET (absorption, distribution, metabolism, excretion, and toxicity) analyses of the novel acridine derivatives were investigated. The tested compounds' existing screening results afford an inspiring basis leading to developing new compelling antimicrobial and anticancer agents based on the acridine scaffold.


Assuntos
Acridinas , Antibacterianos , Antineoplásicos , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Acridinas/química , Acridinas/farmacologia , Acridinas/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Humanos , Proliferação de Células/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Simulação de Dinâmica Molecular , Relação Estrutura-Atividade , Estrutura Molecular , Linhagem Celular Tumoral , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/síntese química , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/síntese química , Relação Dose-Resposta a Droga , Bactérias Gram-Positivas/efeitos dos fármacos , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/síntese química
3.
Int J Biol Macromol ; 266(Pt 1): 131055, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522681

RESUMO

The B-MYB gene encodes a transcription factor (B-MYB) that regulates cell growth and survival. Abnormal expression of B-MYB is frequently observed in lung cancer and poses challenges for targeted drug therapy. Oncogenes often contain DNA structures called G-quadruplexes (G4s) in their promoter regions, and B-MYB is no exception. These G4s play roles in genetic regulation and are potential cancer treatment targets. In this study, a probe was designed to specifically identify a G4 within the promoter region of the B-MYB gene. This probe combines an acridine derivative ligand with a DNA segment complementary to the target sequence, enabling it to hybridize with the adjacent sequence of the G4 being investigated. Biophysical studies demonstrated that the acridine derivative ligands C5NH2 and C8NH2 not only effectively stabilized the G4 structure but also exhibited moderate affinity. They were capable of altering the G4 topology and exhibited enhanced fluorescence emission in the presence of this quadruplex. Additionally, these ligands increased the number of G4s observed in cellular studies. Through various biophysical studies, the target sequence was shown to form a G4 structure, even with an extra nucleotide tail added to its flanking region. Cellular studies confirmed the co-localization between the target sequence and the developed probe.


Assuntos
Proteínas de Ciclo Celular , Corantes Fluorescentes , Quadruplex G , Humanos , Corantes Fluorescentes/química , Regiões Promotoras Genéticas , Proto-Oncogene Mas , Ligantes , Transativadores/genética , Transativadores/metabolismo , Transativadores/química , Acridinas/química , Acridinas/farmacologia
4.
Comput Biol Chem ; 109: 108029, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387123

RESUMO

Cancer is a global public health problem characterized by deviations in the mechanisms that control cell proliferation, resulting in mutations and variations in the structure of DNA. The mechanisms of action of chemotherapeutic drugs are related to their interactions and binding with DNA; consequently, the development of antineoplastic agents that target DNA has extensively focused on use of acridine, a heterocyclic molecule that binds to deoxyribonucleic acid via intercalation, a process that modifies DNA and makes replication impossible. In this context, this study aimed to computationally investigate how acridine intercalators interact with DNA by evaluating the mechanism of interactions, binding, and interaction energies using quantum mechanics calculations. Molecular electrostatic potential (MEP) analysis revealed that acridine has well- distributed negative charges in the center of the molecule, indicative of a dominant electron-rich region. Acridine exhibits well-defined π orbitals (HOMO and LUMO) on the aromatic rings, suggesting that charge transfer occurs within the molecule and may be responsible for the pharmacological activity of the compound. Structural analysis revealed that acridine interacts with DNA mainly through hydrogen bonds between HAcridine… ODNA with bond lengths ranging from 2.370 Što 3.472 Å. The Binding energy (ΔEBind) showed that acridine interacts with DNA effectively for all complexes and the electronic energy results (E+ZPE) for complexes revealed that the complexes are more stable when the DNA-centered acridine molecule. The Laplacian-analysis topological QTAIM parameter (∇2ρ(r)) and total energy (H(r)) categorized the interactions as being non-covalent in nature. The RGD peak distribution in the NCI analysis reveals the presence of van der Waals interactions, predominantly between the intercalator and DNA. Accordingly, we confirm that acridine/DNA interactions are relevant for understanding how the intercalator acts within nucleic acids.


Assuntos
Antineoplásicos , Substâncias Intercalantes , Substâncias Intercalantes/farmacologia , Substâncias Intercalantes/química , Modelos Moleculares , Acridinas/farmacologia , DNA/química , Antineoplásicos/farmacologia
5.
Int J Biol Macromol ; 254(Pt 3): 127651, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37949265

RESUMO

Four new nitrogen-containing heterocyclic derivatives (acridine, quinoline, indole, pyridine) were synthesized and their biological properties were evaluated. The compounds showed affinity for DNA and HSA, with CAIC and CAAC displaying higher binding constants (Kb) of 9.54 × 104 and 1.06 × 106, respectively. The fluorescence quenching assay (Ksv) revealed suppression values ranging from 0.34 to 0.64 × 103 M-1 for ethidium bromide (EB) and 0.1 to 0.34 × 103 M-1 for acridine orange (AO). Molecular docking confirmed the competition of the derivatives with intercalation probes at the same binding site. At 10 µM concentrations, the derivatives inhibited topoisomerase IIα activity. In the antiproliferative assays, the compounds demonstrated activity against MCF-7 and T47-D tumor cells and nonhemolytic profile. Regarding toxicity, no acute effects were observed in the embryos. However, some compounds caused enzymatic and cardiac changes, particularly the CAIC, which increased SOD activity and altered heart rate compared to the control. These findings suggest potential antitumor action of the derivatives and indicate that substituting the acridine core with different cores does not interfere with their interaction and topoisomerase inhibition. Further investigations are required to assess possible toxicological effects, including reactive oxygen species generation.


Assuntos
Antineoplásicos , Inibidores da Topoisomerase , Inibidores da Topoisomerase/farmacologia , Inibidores da Topoisomerase/química , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Antineoplásicos/química , DNA/química , Substâncias Intercalantes/farmacologia , Acridinas/farmacologia , Acridinas/química , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular
7.
Bioconjug Chem ; 34(10): 1873-1881, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37813818

RESUMO

A synthetic platform has been developed that provides access to platinum(IV) prodrugs of highly cytotoxic platinum-acridine anticancer agents and allows them to be incorporated into conjugation-ready prodrug-payloads (PPLs). The PPLs can be conveniently assembled in highly efficient microscale reactions utilizing strain-promoted azide-alkyne cycloaddition chemistry. Model reactions were performed to study the stability of the PPLs in buffers and media and to assess their compatibility with cysteine-maleimide Michael addition chemistry. Amide coupling was a successful strategy to generate a conjugate containing integrin-targeted cyclo[RGDfK] peptide. Reactions with ascorbate were performed to mimic the reductive activation of the PPLs and the latter conjugate, and a cyanine (Cy5) fluorophore-labeled PPL was used to probe the reduction of platinum(IV) in cancer cells by confocal microscopy. The PPL concept introduced here should be evaluated for treating solid tumors with PAs using cancer-targeting vehicles, such as antibody-drug conjugates.


Assuntos
Antineoplásicos , Neoplasias , Pró-Fármacos , Humanos , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Platina/uso terapêutico , Acridinas/farmacologia , Acridinas/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico
8.
Molecules ; 28(18)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37764412

RESUMO

The synthesis of the first conjugates of acridine with cobalt bis(dicarbollide) are reported. A novel 9-azido derivative of acridine was prepared through the reaction of 9-methoxyacridine with N3CH2CH2NH2, and its solid-state molecular structure was determined via single-crystal X-ray diffraction. The azidoacridine was used in a copper (I)-catalyzed azide-alkyne cycloaddition reaction with cobalt bis(dicarbollide)-based terminal alkynes to give the target 1,2,3-triazoles. DNA interaction studies via absorbance spectroscopy showed the weak binding of the obtained conjugates with DNA. The antiproliferative activity (IC50) of the boronated conjugates against a series of human cell lines was evaluated through an MTT assay. The results suggested that acridine derivatives of cobalt bis(dicarbollide) might serve as a novel scaffold for the future development of new agents for boron neutron capture therapy (BNCT).


Assuntos
Acridinas , Boro , Humanos , Boro/química , Estrutura Molecular , Acridinas/farmacologia , Cobalto/química , DNA
9.
Alkaloids Chem Biol ; 90: 97-157, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37716797

RESUMO

The families of pyridoacridine, pyridoacridone, and pyrroloacridine alkaloids are fascinating classes of natural products that have attracted the attention of chemists for over 80 years. Since the first purification of a brightly colored molecule isolated from the sea anemone Calliactis parasitica in 1940, over 110 examples of these alkaloids have been reported from marine organisms. While the paucity of numbers of protons relative to carbons and nitrogens in these molecules presents challenges in structure solution, the chemist is rewarded by their bright pigmented colors and typically diverse biological activities. In the past, several authors have proposed biosynthetic relationships within the pyridoacridine family of alkaloids, formulating a family tree derived from the reaction of dopaminequinone and kynuramine to tie together over 75 alkaloids. Inclusion of two additional quinones, and one homologous diamine, building blocks, for which there is biomimetic synthesis support, is suggestive of a more expansive connected biogenesis that encompasses not only pyridoacridines, but also pyridoacridone, and pyrroloacridine alkaloids. This review covers the isolation, structure elucidation, and proposed biosynthesis and biogenesis of pyridoacridine, pyridoacridone and pyrroloacridine marine alkaloids published to the end of 2022. Biomimetic or bio-inspired syntheses of the compound classes are described and new biological activities reported since 2004 are updated.


Assuntos
Alcaloides , Produtos Biológicos , Acridinas/farmacologia , Alcaloides/farmacologia , Biomimética
10.
Eur J Med Chem ; 259: 115684, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37542989

RESUMO

Recently, histone lysine specific demethylase 1 (LSD1) has become an emerging and promising target for cancer immunotherapy. Herein, based on our previously reported LSD1 inhibitor DXJ-1 (also called 6x), a series of novel acridine-based LSD1 inhibitors were identified via structure optimizations. Among them, compound 5ac demonstrated significantly enhanced inhibitory activity against LSD1 with an IC50 value of 13 nM, about 4.6-fold more potent than DXJ-1 (IC50 = 73 nM). Molecular docking studies revealed that compound 5ac could dock well into the active site of LSD1. Further mechanism studies showed that compound 5ac inhibited the stemness and migration of gastric cancer cells, and reduced the expression of PD-L1 in BGC-823 and MFC cells. More importantly, BGC-823 cells were more sensitive to T cell killing when treated with compound 5ac. Besides, the tumor growth was also suppressed by compound 5ac in mice. Together, 5ac could serve as a promising candidate to enhance immune response in gastric cancer.


Assuntos
Antineoplásicos , Neoplasias Gástricas , Animais , Camundongos , Antineoplásicos/química , Relação Estrutura-Atividade , Neoplasias Gástricas/tratamento farmacológico , Simulação de Acoplamento Molecular , Acridinas/farmacologia , Linhagem Celular Tumoral , Imunidade , Histona Desmetilases , Inibidores Enzimáticos/farmacologia , Proliferação de Células
11.
Life Sci ; 330: 122000, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37541577

RESUMO

AIMS: Click Chemistry is providing valuable tools to biomedical research, but its direct use in therapies remains nearly unexplored. For cancer treatment, nucleoside analogues (NA) such as 5-vinyl-2'-deoxyuridine (VdU) can be metabolically incorporated into cancer cell DNA and subsequently "clicked" to form a toxic product. The inverse electron-demand Diels-Alder (IEDDA) reaction between VdU and an acridine-tetrazine conjugate (PINK) has previously been used to label cell nuclei of cultured cells. Here, we report tandem usage of VdU and PINK to induce cytotoxicity. MAIN METHODS: Cell lines were subsequently treated with VdU and PINK, and cell viability was measured via well confluency and 3D tumor spheroid assays. DNA damage and apoptosis were evaluated using Western Blotting and cell cycle analysis by flow cytometry. Double stranded DNA break (DSB) formation was measured using the comet assay. Apoptosis was assessed by fluorescent detection of externalized phosphatidylserine residues. KEY FINDINGS: We report that the combination of VdU and PINK synergistically induces cytotoxicity in cultured human cells. The combination of VdU and PINK strongly reduced cell viability in 2D and 3D cultured cancer cells. Mechanistically, the compounds induced DNA damage through DSB formation, which leads to S-phase accumulation and apoptosis. SIGNIFICANCE: The combination of VdU and PINK represents a novel and promising DNA-templated "click" approach for cancer treatment via selective induction of DNA damage.


Assuntos
Química Click , Neoplasias , Humanos , Acridinas/farmacologia , Dano ao DNA , DNA/química , Apoptose
12.
Eur J Med Chem ; 251: 115255, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-36913900

RESUMO

LSD1 is overexpressed in various cancers and promotes tumor cell proliferation, tumor expansion, and suppresses immune cells infiltration and is closely associated with immune checkpoint inhibitors therapy. Therefore, the inhibition of LSD1 has been recognized as a promising strategy for cancer therapy. In this study, we screened an in-house small-molecule library targeting LSD1, an FDA-approved drug amsacrine for acute leukemia and malignant lymphomas was found to exhibit moderate anti-LSD1 inhibitory activity (IC50 = 0.88 µM). Through further medicinal chemistry efforts, the most active compound 6x increased anti-LSD1 activity significantly (IC50 = 0.073 µM). Further mechanistic studies demonstrated that compound 6x inhibited the stemness and migration of gastric cancer cell, and decreased the expression of PD-L1 (programmed cell death-ligand 1) in BGC-823 and MFC cells. More importantly, BGC-823 cells are more susceptible to T-cell killing when treated with compound 6x. Moreover, tumor growth was also suppressed by compound 6x in mice. Altogether, our findings demonstrated that acridine-based novel LSD1 inhibitor 6x may be a lead compound for the development of activating T cell immune response in gastric cancer cells.


Assuntos
Antineoplásicos , Neoplasias Gástricas , Animais , Camundongos , Antineoplásicos/química , Inibidores Enzimáticos/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Acridinas/farmacologia , Acridinas/uso terapêutico , Linhagem Celular Tumoral , Histona Desmetilases , Proliferação de Células
13.
Curr Top Med Chem ; 23(13): 1260-1276, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36740790

RESUMO

Alzheimer's disease (AD) is drawing scientists' consideration, being one of the gravest diseases mankind will have to battle against in the near future. The number of people with AD is expected to triple in the next 40 years. It is a most common age-related multifactorial neurodegenerative disease and characterized by two histopathological hallmarks; the formation of senile plaques composed of the amyloid-ß (Aß) peptide and neurofibrillary tangles composed of hyperphosphorylated tau protein. Discovery and development of rationally designed multi-targeted ligands for the management of AD could be more beneficial than classical single targeted molecules. Acridine, a heterocyclic nucleus is a sole moiety in various existing drug molecules such as quinacrine (antimalarial), acriflavine and proflavine (antiseptics), ethacridine (abortifacient), amsacrine and nitracine (anticancer) and tacrine (anti-Alzheimer). It is proposed that acridine may combat the AD by acting on several targets like acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), dual specificity tyrosine kinase 1A (Dyrk 1A), amyloid and prion protein (PrPC) etc. involved in its pathogenesis. The main aim of this compilation is to review the most promising therapeutic developments within the vast research area dealing with acridine derivatives. Further research is required to evaluate the effectiveness of the acridine derivatives with various substitutions in the treatment of AD. In conclusion, our review will suggest the potentiality of the versatile acridine framework for drug designing and developing novel multi-target inhibitors for the Alzheimer's disease.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Acridinas/farmacologia , Butirilcolinesterase/metabolismo , Acetilcolinesterase/metabolismo , Peptídeos beta-Amiloides/metabolismo , Inibidores da Colinesterase/química
14.
Molecules ; 28(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36770975

RESUMO

A series of novel 3,9-disubstituted acridines were synthesized and their biological potential was investigated. The synthetic plan consists of eight reaction steps, which produce the final products, derivatives 17a-17j, in a moderate yield. The principles of cheminformatics and computational chemistry were applied in order to study the relationship between the physicochemical properties of the 3,9-disubstituted acridines and their biological activity at a cellular and molecular level. The selected 3,9-disubstituted acridine derivatives were studied in the presence of DNA using spectroscopic (UV-Vis, circular dichroism, and thermal denaturation) and electrophoretic (nuclease activity, relaxation and unwinding assays for topoisomerase I and decatenation assay for topoisomerase IIα) methods. Binding constants (2.81-9.03 × 104 M-1) were calculated for the derivatives from the results of the absorption titration spectra. The derivatives were found to have caused the inhibition of both topoisomerase I and topoisomerase IIα. Molecular docking simulations suggested a different way in which the acridines 17a-17j can interact with topoisomerase I versus topoisomerase IIα. A strong correlation between the lipophilicity of the derivatives and their ability to stabilize the intercalation complex was identified for all of the studied agents. Acridines 17a-17j were also subjected to in vitro screening conducted by the Developmental Therapeutic Program of the National Cancer Institute (NCI) against a panel of 60 cancer cell lines. The strongest biological activity was displayed by aniline acridine 17a (MCF7-GI50 18.6 nM) and N,N-dimethylaniline acridine 17b (SR-GI50 38.0 nM). The relationship between the cytostatic activity of the most active substances (derivatives 17a, 17b, and 17e-17h) and their values of KB, LogP, ΔS°, and δ was also investigated. Due to the fact that a significant correlation was only found in the case of charge density, δ, it is possible to assume that the cytostatic effect might be dependent upon the structural specificity of the acridine derivatives.


Assuntos
Antineoplásicos , Citostáticos , DNA Topoisomerases Tipo I/metabolismo , Simulação de Acoplamento Molecular , Acridinas/farmacologia , Acridinas/química , Citostáticos/farmacologia , DNA Topoisomerases Tipo II/metabolismo , Dicroísmo Circular , Antineoplásicos/química , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/farmacologia
15.
ChemMedChem ; 18(7): e202200666, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36734215

RESUMO

Synthesis of acridine derivatives that act as DNA-targeting anticancer agents is an evolving field and has resulted in the introduction of several drugs into clinical trials. Carboranes can be of importance in designing biologically active compounds due to their specific properties. Therefore, a series of novel acridine analogs modified with carborane clusters were synthesized. The DNA-binding ability of these analogs was evaluated on calf thymus DNA (ct-DNA). Results of these analyses showed that 9-[(1,7-dicarba-closo-dodecaborane-1-yl)propylamino]acridine (30) interacted strongly with ct-DNA, indicating its ability to intercalate into DNA, whereas 9-[(1,7-dicarba-closo-dodecaborane-1-yl)propanamido]acridine (29) changed the B-form of ct-DNA to the Z form. Compound 30 demonstrated cytotoxicity, was able to inhibit cell proliferation, arrest the cell cycle in the S phase in the HeLa cancer cell line, and induced the production of reactive oxygen species (ROS). In addition, it was specifically localized in lysosomes and was a weak inhibitor of Topo IIα.


Assuntos
Antineoplásicos , Boranos , Acridinas/farmacologia , Boranos/química , Antineoplásicos/farmacologia , DNA , Acridonas/farmacologia
16.
Acta Trop ; 239: 106824, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36610529

RESUMO

Pathogenic A. castellanii and N. fowleri are opportunistic free-living amoebae. Acanthamoeba spp. are the causative agents of granulomatous amebic encephalitis (GAE) and amebic keratitis (AK), whereas Naegleria fowleri causes a very rare but severe brain infection called primary amebic meningoencephalitis (PAM). Acridinone is an important heterocyclic scaffold and both synthetic and naturally occurring derivatives have shown various valuable biological properties. In the present study, ten synthetic Acridinone derivatives (I-X) were synthesized and assessed against both amoebae for anti-amoebic and cysticidal activities in vitro. In addition, excystation, encystation, cytotoxicity, host cell pathogenicity was also performed in-vitro. Furthermore, molecular docking studies of these compounds with three cathepsin B paralogous enzymes of N. fowleri were performed in order to predict the possible docking mode with pathogen. Compound VII showed potent anti-amoebic activity against A. castellanii with IC50 53.46 µg/mL, while compound IX showed strong activity against N. fowleri in vitro with IC50 72.41 µg/mL. Compounds II and VII showed a significant inhibition of phenotypic alteration of A. castellanii, while compound VIII significantly inhibited N. fowleri cysts. Cytotoxicity assessment showed that these compounds caused minimum damage to human keratinocyte cells (HaCaT cells) at 100 µg/mL, while also effectively reduced the cytopathogenicity of Acanthamoeba to HaCaT cells. Moreover, Cathepsin B protease was investigated in-silico as a new molecular therapeutic target for these compounds. All compounds showed potential interactions with the catalytic residues. These results showed that acridine-9(10H)-one derivatives, in particular compounds II, VII, VIII and IX hold promise in the development of therapeutic agents against these free-living amoebae.


Assuntos
Acanthamoeba , Amebíase , Amoeba , Naegleria fowleri , Humanos , Catepsina B/farmacologia , Acridinas/farmacologia , Acridinas/uso terapêutico , Simulação de Acoplamento Molecular , Amebíase/tratamento farmacológico , Encéfalo
17.
Int J Mol Sci ; 23(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36293123

RESUMO

This study was focused on investigating the antiproliferative effects of chalcone hybrids in melanoma cancer cells. Among seven chalcone hybrids, the chalcone-acridine hybrid 1C was the most potent and was selected for further antiproliferative mechanism studies. This in vitro study revealed the potent antiproliferative effect of 1C via cell cycle arrest and apoptosis induction. Cell cycle arrest at the G2/M phase was associated with modulation of expression or phosphorylation of specific cell cycle-associated proteins (cyclin B1, p21, and ChK1), tubulins, as well as with the activation of the DNA damage response pathway. Chalcone 1C also induced apoptosis accompanied by mitochondrial dysfunction evidenced by a decrease in mitochondrial membrane potential, increase in Bax/Bcl-xL ratio and cytochrome c release followed by caspase 3/7 activation. In addition, increased phosphorylation of MAP kinases (Erk1/2, p38 and JNK) was observed in chalcone 1C-treated melanoma cells. The strong antiproliferative activities of this chalcone-acridine hybrid suggest that it may be useful as an antimelanoma agent in humans.


Assuntos
Chalcona , Chalconas , Melanoma , Humanos , Chalcona/farmacologia , Ciclina B1/metabolismo , Chalconas/farmacologia , Fosforilação , Proteína X Associada a bcl-2/metabolismo , Caspase 3/metabolismo , Acridinas/farmacologia , Citocromos c/metabolismo , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular , Apoptose , Dano ao DNA , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Melanoma/tratamento farmacológico
18.
Molecules ; 27(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36014389

RESUMO

Oral squamous cell carcinoma (OSCC) is a global public health problem with high incidence and mortality. The chemotherapeutic agents used in the clinic, alone or in combination, usually lead to important side effects. Thus, the discovery and development of new antineoplastic drugs are essential to improve disease prognosis and reduce toxicity. In the present study, acridine-core naphthoquinone compounds were synthesized and evaluated for their antitumor activity in OSCC cells. The mechanism of action, pharmacokinetics, and toxicity parameters of the most promising compound was further analyzed using in silico, in vitro, and in vivo methods. Among the derivatives, compound 4e was highly cytotoxic (29.99 µM) and selective (SI 2.9) at levels comparable and generally superior to chemotherapeutic controls. Besides, compound 4e proved to be non-hemolytic, stable, and well tolerated in animals at all doses tested. Mechanistically, compound 4e promoted cell death by apoptosis in the OSCC cell, and molecular docking studies suggested this compound possibly targets enzymes important for tumor progression, such as RSK2, PKM2, and topoisomerase IIα. Importantly, compound 4e presented a pharmacological profile within desirable parameters for drug development, showing promise for future preclinical trials.


Assuntos
Antineoplásicos , Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Naftoquinonas , Acridinas/farmacologia , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Simulação de Acoplamento Molecular , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/patologia , Naftoquinonas/farmacologia , Naftoquinonas/uso terapêutico , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico
19.
J Med Chem ; 65(17): 11415-11432, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36018000

RESUMO

Acriflavine (ACF) has been known for years as an antibacterial drug. The identification of key oncogenic mechanisms has brought, in recent years, a significant increase in studies on ACF as a multipurpose drug that would improve the prognosis for cancer patients. ACF interferes with the expression of the hypoxia inducible factor, thus acting on metastatic niches of tumors and significantly enhancing the effects of other anticancer therapies. It has been recognized as the most potent HIF-1 inhibitor out of the 336 drugs approved by the FDA. This work presents up-to-date knowledge about the mechanisms of action of ACF and its related prodrug systems in the context of anticancer and SARS-CoV-2 inhibitory properties. It explains the multitask nature of this drug and suggests mechanisms of ACF's action on the coronavirus. Other recent reports on ACF-based systems as potential antibacterial and antiviral drugs are also described.


Assuntos
Tratamento Farmacológico da COVID-19 , Neoplasias , Acridinas/farmacologia , Acridinas/uso terapêutico , Acriflavina/farmacologia , Acriflavina/uso terapêutico , Antibacterianos , Humanos , Substâncias Intercalantes , SARS-CoV-2
20.
ChemMedChem ; 17(18): e202200331, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-35902361

RESUMO

NCI-60 growth inhibition and gene expression profiles were analyzed using Pearson correlation and functional enrichment computational tools to demonstrate critical mechanistic differences between a nucleolus-targeting platinum-acridine anticancer agent (PA) and other DNA-directed chemotherapies. The results support prior experimental data and are consistent with DNA being a major target of the hybrid agent based on the negative correlations observed between its potency and expression levels of genes implicated in DNA double-strand break (DSB) repair. Gene ontology terms related to RNA processing, including ribosome biogenesis, are also negatively enriched, suggesting a mechanism by which these processes render cancer cells more resistant to the highly cytotoxic agent. The opposite trend is observed for oxaliplatin and other DNA-targeted drugs. Significant functional interactions exist between genes/gene products involved in ribosome biogenesis and DSB repair, including the ribosomal protein (RPL5)-MDM2-p53 surveillance pathway, as a response to the nucleolar stress produced by PAs.


Assuntos
Antineoplásicos , Platina , Acridinas/farmacologia , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Nucléolo Celular/metabolismo , Citotoxinas/metabolismo , Citotoxinas/farmacologia , DNA/metabolismo , Expressão Gênica , Oxaliplatina/farmacologia , Platina/farmacologia , Proteínas Ribossômicas , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA