Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
Nat Commun ; 14(1): 6461, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833253

RESUMO

The most prevalent genetic form of inherited arrhythmogenic cardiomyopathy (ACM) is caused by mutations in desmosomal plakophilin-2 (PKP2). By studying pathogenic deletion mutations in the desmosomal protein PKP2, here we identify a general mechanism by which PKP2 delocalization restricts actomyosin network organization and cardiac sarcomeric contraction in this untreatable disease. Computational modeling of PKP2 variants reveals that the carboxy-terminal (CT) domain is required for N-terminal domain stabilization, which determines PKP2 cortical localization and function. In mutant PKP2 cells the expression of the interacting protein MYH10 rescues actomyosin disorganization. Conversely, dominant-negative MYH10 mutant expression mimics the pathogenic CT-deletion PKP2 mutant causing actin network abnormalities and right ventricle systolic dysfunction. A chemical activator of non-muscle myosins, 4-hydroxyacetophenone (4-HAP), also restores normal contractility. Our findings demonstrate that activation of MYH10 corrects the deleterious effect of PKP2 mutant over systolic cardiac contraction, with potential implications for ACM therapy.


Assuntos
Displasia Arritmogênica Ventricular Direita , Cardiomiopatias , Humanos , Displasia Arritmogênica Ventricular Direita/genética , Displasia Arritmogênica Ventricular Direita/metabolismo , Actomiosina/genética , Mutação , Cardiomiopatias/genética , Placofilinas/genética , Placofilinas/metabolismo
2.
PLoS Genet ; 19(10): e1010984, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37782660

RESUMO

During C. elegans oocyte meiosis I cytokinesis and polar body extrusion, cortical actomyosin is locally remodeled to assemble a contractile ring that forms within and remains part of a much larger and actively contractile cortical actomyosin network. This network both mediates contractile ring dynamics and generates shallow ingressions throughout the oocyte cortex during polar body extrusion. Based on our analysis of requirements for CLS-2, a member of the CLASP family of proteins that stabilize microtubules, we recently proposed that a balance of actomyosin-mediated tension and microtubule-mediated stiffness limits membrane ingression throughout the oocyte during meiosis I polar body extrusion. Here, using live cell imaging and fluorescent protein fusions, we show that CLS-2 is part of a group of kinetochore proteins, including the scaffold KNL-1 and the kinase BUB-1, that also co-localize during meiosis I to structures called linear elements, which are present within the assembling oocyte spindle and also are distributed throughout the oocyte in proximity to, but appearing to underlie, the actomyosin cortex. We further show that KNL-1 and BUB-1, like CLS-2, promote the proper organization of sub-cortical microtubules and also limit membrane ingression throughout the oocyte. Moreover, nocodazole or taxol treatment to destabilize or stabilize oocyte microtubules leads to, respectively, excess or decreased membrane ingression throughout the oocyte. Furthermore, taxol treatment, and genetic backgrounds that elevate the levels of cortically associated microtubules, both suppress excess membrane ingression in cls-2 mutant oocytes. We propose that linear elements influence the organization of sub-cortical microtubules to generate a stiffness that limits cortical actomyosin-driven membrane ingression throughout the oocyte during meiosis I polar body extrusion. We discuss the possibility that this regulation of sub-cortical microtubule dynamics facilitates actomyosin contractile ring dynamics during C. elegans oocyte meiosis I cell division.


Assuntos
Actomiosina , Proteínas de Caenorhabditis elegans , Animais , Actomiosina/genética , Actomiosina/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Corpos Polares , Citocinese/genética , Fuso Acromático/genética , Fuso Acromático/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Microtúbulos/genética , Microtúbulos/metabolismo , Meiose/genética , Oócitos/metabolismo , Paclitaxel , Proteínas Associadas aos Microtúbulos/genética
3.
PLoS Genet ; 19(3): e1010319, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36976799

RESUMO

One of the most common cell shape changes driving morphogenesis in diverse animals is the constriction of the apical cell surface. Apical constriction depends on contraction of an actomyosin network in the apical cell cortex, but such actomyosin networks have been shown to undergo continual, conveyor belt-like contractions before the shrinking of an apical surface begins. This finding suggests that apical constriction is not necessarily triggered by the contraction of actomyosin networks, but rather can be triggered by unidentified, temporally-regulated mechanical links between actomyosin and junctions. Here, we used C. elegans gastrulation as a model to seek genes that contribute to such dynamic linkage. We found that α-catenin and ß-catenin initially failed to move centripetally with contracting cortical actomyosin networks, suggesting that linkage is regulated between intact cadherin-catenin complexes and actomyosin. We used proteomic and transcriptomic approaches to identify new players, including the candidate linkers AFD-1/afadin and ZYX-1/zyxin, as contributing to C. elegans gastrulation. We found that ZYX-1/zyxin is among a family of LIM domain proteins that have transcripts that become enriched in multiple cells just before they undergo apical constriction. We developed a semi-automated image analysis tool and used it to find that ZYX-1/zyxin contributes to cell-cell junctions' centripetal movement in concert with contracting actomyosin networks. These results identify several new genes that contribute to C. elegans gastrulation, and they identify zyxin as a key protein important for actomyosin networks to effectively pull cell-cell junctions inward during apical constriction. The transcriptional upregulation of ZYX-1/zyxin in specific cells in C. elegans points to one way that developmental patterning spatiotemporally regulates cell biological mechanisms in vivo. Because zyxin and related proteins contribute to membrane-cytoskeleton linkage in other systems, we anticipate that its roles in regulating apical constriction in this manner may be conserved.


Assuntos
Actomiosina , Caenorhabditis elegans , Animais , Actomiosina/genética , Actomiosina/metabolismo , Zixina/genética , Zixina/metabolismo , Caenorhabditis elegans/metabolismo , Constrição , Proteômica , Junções Intercelulares/genética , Junções Intercelulares/metabolismo , Morfogênese/genética
4.
Adv Sci (Weinh) ; 10(12): e2204388, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36825683

RESUMO

Chromatin bridges connecting the two segregating daughter nuclei arise from chromosome fusion or unresolved interchromosomal linkage. Persistent chromatin bridges are trapped in the cleavage plane, triggering cytokinesis delay. The trapped bridges occasionally break during cytokinesis, inducing DNA damage and chromosomal rearrangements. Recently, Caenorhabditis elegans LEM-3 and human TREX1 nucleases have been shown to process chromatin bridges. Here, it is shown that ANKLE1 endonuclease, the human ortholog of LEM-3, accumulates at the bulge-like structure of the midbody via its N-terminal ankyrin repeats. Importantly, ANKLE1-/- knockout cells display an elevated level of G1-specific 53BP1 nuclear bodies, prolonged activation of the DNA damage response, and replication stress. Increased DNA damage observed in ANKLE1-/- cells is rescued by inhibiting actin polymerization or reducing actomyosin contractility. ANKLE1 does not act in conjunction with structure-selective endonucleases, GEN1 and MUS81 in resolving recombination intermediates. Instead, ANKLE1 acts on chromatin bridges by priming TREX1 nucleolytic activity and cleaving bridge DNA to prevent the formation of micronuclei and cytosolic dsDNA that activate the cGAS-STING pathway. It is therefore proposed that ANKLE1 prevents DNA damage and autoimmunity by cleaving chromatin bridges to avoid catastrophic breakage mediated by actomyosin contractile forces.


Assuntos
Cromatina , Endonucleases , Animais , Humanos , Endonucleases/química , Endonucleases/genética , Endonucleases/metabolismo , Actomiosina/genética , Actomiosina/metabolismo , Núcleo Celular/metabolismo , DNA/metabolismo , Dano ao DNA , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo
5.
Curr Genet ; 69(1): 67-75, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36449086

RESUMO

The basis for commitment to cell division in late G1 phase, called Start in yeast, is a critical but still poorly understood aspect of eukaryotic cell proliferation. Most dividing cells accumulate mass and grow to a critical cell size before traversing the cell cycle. This size threshold couples cell growth to division and thereby establishes long-term size homeostasis. At present, mechanisms involved in cell size homeostasis in fungal pathogens are not well described. Our previous survey of the size phenome in Candida albicans focused on 279 unique mutants enriched mainly in kinases and transcription factors (Sellam et al. PLoS Genet 15:e1008052, 2019). To uncover novel size regulators in C. albicans and highlight potential innovation within cell size control in pathogenic fungi, we expanded our genetic survey of cell size to include 1301 strains from the GRACE (Gene Replacement and Conditional Expression) collection. The current investigation uncovered both known and novel biological processes required for cell size homeostasis in C. albicans. We also confirmed the plasticity of the size control network as few C. albicans size genes overlapped with those of the budding yeast Saccharomyces cerevisiae. Many new size genes of C. albicans were associated with biological processes that were not previously linked to cell size control and offer an opportunity for future investigation. Additional work is needed to understand if mitochondrial activity is a critical element of the metric that dictates cell size in C. albicans and whether modulation of the onset of actomyosin ring constriction is an additional size checkpoint.


Assuntos
Candida albicans , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Actomiosina/genética , Actomiosina/metabolismo , Citocinese , Tamanho Celular , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica
6.
Circulation ; 145(16): 1238-1253, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35384713

RESUMO

BACKGROUND: Familial hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disease and is typically caused by mutations in genes encoding sarcomeric proteins that regulate cardiac contractility. HCM manifestations include left ventricular hypertrophy and heart failure, arrythmias, and sudden cardiac death. How dysregulated sarcomeric force production is sensed and leads to pathological remodeling remains poorly understood in HCM, thereby inhibiting the efficient development of new therapeutics. METHODS: Our discovery was based on insights from a severe phenotype of an individual with HCM and a second genetic alteration in a sarcomeric mechanosensing protein. We derived cardiomyocytes from patient-specific induced pluripotent stem cells and developed robust engineered heart tissues by seeding induced pluripotent stem cell-derived cardiomyocytes into a laser-cut scaffold possessing native cardiac fiber alignment to study human cardiac mechanobiology at both the cellular and tissue levels. Coupled with computational modeling for muscle contraction and rescue of disease phenotype by gene editing and pharmacological interventions, we have identified a new mechanotransduction pathway in HCM, shown to be essential in modulating the phenotypic expression of HCM in 5 families bearing distinct sarcomeric mutations. RESULTS: Enhanced actomyosin crossbridge formation caused by sarcomeric mutations in cardiac myosin heavy chain (MYH7) led to increased force generation, which, when coupled with slower twitch relaxation, destabilized the MLP (muscle LIM protein) stretch-sensing complex at the Z-disc. Subsequent reduction in the sarcomeric muscle LIM protein level caused disinhibition of calcineurin-nuclear factor of activated T-cells signaling, which promoted cardiac hypertrophy. We demonstrate that the common muscle LIM protein-W4R variant is an important modifier, exacerbating the phenotypic expression of HCM, but alone may not be a disease-causing mutation. By mitigating enhanced actomyosin crossbridge formation through either genetic or pharmacological means, we alleviated stress at the Z-disc, preventing the development of hypertrophy associated with sarcomeric mutations. CONCLUSIONS: Our studies have uncovered a novel biomechanical mechanism through which dysregulated sarcomeric force production is sensed and leads to pathological signaling, remodeling, and hypertrophic responses. Together, these establish the foundation for developing innovative mechanism-based treatments for HCM that stabilize the Z-disc MLP-mechanosensory complex.


Assuntos
Cardiomiopatia Hipertrófica Familiar , Cardiomiopatia Hipertrófica , Actomiosina/genética , Humanos , Proteínas com Domínio LIM , Mecanotransdução Celular , Proteínas Musculares , Mutação , Miócitos Cardíacos
7.
Int J Mol Sci ; 22(22)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34829987

RESUMO

The simplification of alveoli leads to various lung pathologies such as bronchopulmonary dysplasia and emphysema. Deep insight into the process of emergence of the secondary septa during development and regeneration after pneumonectomy, and into the contribution of the drivers of alveologenesis and neo-alveolarization is required in an efficient search for therapeutic approaches. In this review, we describe the formation of the gas exchange units of the lung as a multifactorial process, which includes changes in the actomyosin cytoskeleton of alveocytes and myofibroblasts, elastogenesis, retinoic acid signaling, and the contribution of alveolar mesenchymal cells in secondary septation. Knowledge of the mechanistic context of alveologenesis remains incomplete. The characterization of the mechanisms that govern the emergence and depletion of αSMA will allow for an understanding of how the niche of fibroblasts is changing. Taking into account the intense studies that have been performed on the pool of lung mesenchymal cells, we present data on the typing of interstitial fibroblasts and their role in the formation and maintenance of alveoli. On the whole, when identifying cell subpopulations in lung mesenchyme, one has to consider the developmental context, the changing cellular functions, and the lability of gene signatures.


Assuntos
Actomiosina/genética , Pulmão/crescimento & desenvolvimento , Organogênese/genética , Alvéolos Pulmonares/crescimento & desenvolvimento , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/patologia , Linhagem da Célula/genética , Citoesqueleto/genética , Enfisema/genética , Enfisema/patologia , Gases/metabolismo , Humanos , Pulmão/patologia , Mesoderma/citologia , Mesoderma/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Tretinoína/metabolismo
8.
Development ; 148(22)2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34698814

RESUMO

Actomyosin contraction shapes the Drosophila eye's panoramic view. The convex curvature of the retinal epithelium, organized in ∼800 close-packed ommatidia, depends upon a fourfold condensation of the retinal floor mediated by contraction of actin stress fibers in the endfeet of interommatidial cells (IOCs). How these tensile forces are coordinated is not known. Here, we discover a previously unobserved phenomenon: Ca2+ waves regularly propagate across the IOC network in pupal and adult eyes. Genetic evidence demonstrates that IOC waves are independent of phototransduction, but require the inositol 1,4,5-triphosphate receptor (IP3R), suggesting that these waves are mediated by Ca2+ releases from endoplasmic reticulum stores. Removal of IP3R disrupts stress fibers in IOC endfeet and increases the basal retinal surface by ∼40%, linking IOC waves to facilitation of stress fiber contraction and floor morphogenesis. Furthermore, IP3R loss disrupts the organization of a collagen IV network underneath the IOC endfeet, implicating the extracellular matrix and its interaction with stress fibers in eye morphogenesis. We propose that coordinated cytosolic Ca2+ increases in IOC waves promote stress fiber contractions, ensuring an organized application of the planar tensile forces that condense the retinal floor. This article has an associated 'The people behind the papers' interview.


Assuntos
Actinas/genética , Cálcio/metabolismo , Morfogênese/genética , Fibras de Estresse/genética , Citoesqueleto de Actina/genética , Actinas/metabolismo , Actomiosina/genética , Actomiosina/metabolismo , Animais , Sinalização do Cálcio/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Retículo Endoplasmático/genética , Pupa , Retina/crescimento & desenvolvimento , Retina/metabolismo
9.
J Cell Biol ; 220(11)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34449835

RESUMO

The intrinsic genetic program of a cell is not sufficient to explain all of the cell's activities. External mechanical stimuli are increasingly recognized as determinants of cell behavior. In the epithelial folding event that constitutes the beginning of gastrulation in Drosophila, the genetic program of the future mesoderm leads to the establishment of a contractile actomyosin network that triggers apical constriction of cells and thereby tissue folding. However, some cells do not constrict but instead stretch, even though they share the same genetic program as their constricting neighbors. We show here that tissue-wide interactions force these cells to expand even when an otherwise sufficient amount of apical, active actomyosin is present. Models based on contractile forces and linear stress-strain responses do not reproduce experimental observations, but simulations in which cells behave as ductile materials with nonlinear mechanical properties do. Our models show that this behavior is a general emergent property of actomyosin networks in a supracellular context, in accordance with our experimental observations of actin reorganization within stretching cells.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Citoesqueleto de Actina/genética , Actinas/genética , Actomiosina/genética , Animais , Forma Celular/genética , Citoesqueleto/genética , Gastrulação/genética , Mesoderma/fisiologia
10.
Dev Cell ; 56(11): 1603-1616.e6, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34102104

RESUMO

Exocrine secretion commonly employs micron-scale vesicles that fuse to a limited apical surface, presenting an extreme challenge for maintaining membrane homeostasis. Using Drosophila melanogaster larval salivary glands, we show that the membranes of fused vesicles undergo actomyosin-mediated folding and retention, which prevents them from incorporating into the apical surface. In addition, the diffusion of proteins and lipids between the fused vesicle and the apical surface is limited. Actomyosin contraction and membrane crumpling are essential for recruiting clathrin-mediated endocytosis to clear the retained vesicular membrane. Finally, we also observe membrane crumpling in secretory vesicles of the mouse exocrine pancreas. We conclude that membrane sequestration by crumpling followed by targeted endocytosis of the vesicular membrane, represents a general mechanism of exocytosis that maintains membrane homeostasis in exocrine tissues that employ large secretory vesicles.


Assuntos
Citoesqueleto de Actina/genética , Actomiosina/genética , Exocitose/genética , Vesículas Secretórias/genética , Animais , Transporte Biológico/genética , Membrana Celular/genética , Clatrina/genética , Drosophila melanogaster/genética , Endocitose/genética , Glândulas Exócrinas/metabolismo , Homeostase/genética , Fusão de Membrana/genética , Camundongos , Glândulas Salivares/metabolismo , Glândulas Salivares/fisiologia
11.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33972425

RESUMO

Proper left-right symmetry breaking is essential for animal development, and in many cases, this process is actomyosin-dependent. In Caenorhabditis elegans embryos active torque generation in the actomyosin layer promotes left-right symmetry breaking by driving chiral counterrotating cortical flows. While both Formins and Myosins have been implicated in left-right symmetry breaking and both can rotate actin filaments in vitro, it remains unclear whether active torques in the actomyosin cortex are generated by Formins, Myosins, or both. We combined the strength of C. elegans genetics with quantitative imaging and thin film, chiral active fluid theory to show that, while Non-Muscle Myosin II activity drives cortical actomyosin flows, it is permissive for chiral counterrotation and dispensable for chiral symmetry breaking of cortical flows. Instead, we find that CYK-1/Formin activation in RhoA foci is instructive for chiral counterrotation and promotes in-plane, active torque generation in the actomyosin cortex. Notably, we observe that artificially generated large active RhoA patches undergo rotations with consistent handedness in a CYK-1/Formin-dependent manner. Altogether, we conclude that CYK-1/Formin-dependent active torque generation facilitates chiral symmetry breaking of actomyosin flows and drives organismal left-right symmetry breaking in the nematode worm.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Córtex Cerebral/metabolismo , Forminas/metabolismo , Transdução de Sinais/fisiologia , Proteína rhoA de Ligação ao GTP/metabolismo , Actomiosina/genética , Actomiosina/metabolismo , Animais , Animais Geneticamente Modificados , Blastômeros/citologia , Blastômeros/metabolismo , Padronização Corporal/genética , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Córtex Cerebral/embriologia , Embrião não Mamífero/citologia , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Forminas/genética , Lateralidade Funcional/genética , Lateralidade Funcional/fisiologia , Transdução de Sinais/genética , Torque , Proteína rhoA de Ligação ao GTP/genética
12.
Nat Commun ; 12(1): 2254, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33859190

RESUMO

One of the grand challenges of bottom-up synthetic biology is the development of minimal machineries for cell division. The mechanical transformation of large-scale compartments, such as Giant Unilamellar Vesicles (GUVs), requires the geometry-specific coordination of active elements, several orders of magnitude larger than the molecular scale. Of all cytoskeletal structures, large-scale actomyosin rings appear to be the most promising cellular elements to accomplish this task. Here, we have adopted advanced encapsulation methods to study bundled actin filaments in GUVs and compare our results with theoretical modeling. By changing few key parameters, actin polymerization can be differentiated to resemble various types of networks in living cells. Importantly, we find membrane binding to be crucial for the robust condensation into a single actin ring in spherical vesicles, as predicted by theoretical considerations. Upon force generation by ATP-driven myosin motors, these ring-like actin structures contract and locally constrict the vesicle, forming furrow-like deformations. On the other hand, cortex-like actin networks are shown to induce and stabilize deformations from spherical shapes.


Assuntos
Actomiosina/metabolismo , Divisão Celular/fisiologia , Modelos Biológicos , Biologia Sintética/métodos , Lipossomas Unilamelares/metabolismo , Actomiosina/genética , Actomiosina/isolamento & purificação , Animais , Linhagem Celular , Drosophila , Humanos , Microscopia Intravital , Microscopia Confocal , Modelos Moleculares , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
13.
Development ; 148(6)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33658222

RESUMO

The actomyosin complex plays crucial roles in various life processes by balancing the forces generated by cellular components. In addition to its physical function, the actomyosin complex participates in mechanotransduction. However, the exact role of actomyosin contractility in force transmission and the related transcriptional changes during morphogenesis are not fully understood. Here, we report a mechanogenetic role of the actomyosin complex in branching morphogenesis using an organotypic culture system of mouse embryonic submandibular glands. We dissected the physical factors arranged by characteristic actin structures in developing epithelial buds and identified the spatial distribution of forces that is essential for buckling mechanism to promote the branching process. Moreover, the crucial genes required for the distribution of epithelial progenitor cells were regulated by YAP and TAZ through a mechanotransduction process in epithelial organs. These findings are important for our understanding of the physical processes involved in the development of epithelial organs and provide a theoretical background for developing new approaches for organ regeneration.


Assuntos
Citoesqueleto de Actina/genética , Actomiosina/genética , Morfogênese/genética , Contração Muscular/genética , Citoesqueleto de Actina/ultraestrutura , Actinas/genética , Actinas/ultraestrutura , Actomiosina/ultraestrutura , Aciltransferases/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Células Epiteliais/metabolismo , Epitélio/crescimento & desenvolvimento , Epitélio/metabolismo , Humanos , Mecanotransdução Celular/genética , Camundongos , Regeneração/genética , Glândula Submandibular/metabolismo , Proteínas de Sinalização YAP
14.
Exp Cell Res ; 402(1): 112525, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33662366

RESUMO

Cells dividing in the plane of epithelial tissues proceed by polarized constriction of the actomyosin contractile ring, leading to asymmetric ingression of the plasma mem brane. Asymmetric cytokinesis results in the apical positioning of the actomyosin contractile ring and ultimately of the midbody. Studies have indicated that the contractile ring is associated with adherens junctions, whose role is to maintain epithelial tissue cohesion. However, it is yet unknown when the contractile ring becomes associated with adherens junctions in epithelial cells. Here, we examined contractile ring formation and activation in the epithelium of Xenopus embryos and explored the implication of adherens junctions in the contractile ring formation. We show that accumulation of proteins involved in contractile ring formation and activation is polarized, starting at apical cell-cell contacts at the presumptive division site and spreading within seconds towards the cell basal side. We also show that adherens junctions are involved in the kinetics of contractile ring formation. Our study reveals that the link between the adherens junctions and the contractile ring is established from the onset of cytokinesis.


Assuntos
Junções Aderentes/genética , Desenvolvimento Embrionário/genética , Células Epiteliais/metabolismo , Xenopus laevis/genética , Citoesqueleto de Actina/genética , Actomiosina/genética , Animais , Divisão Celular/genética , Polaridade Celular/genética , Proteínas Contráteis/genética , Citocinese/genética , Embrião não Mamífero , Células Epiteliais/citologia , Xenopus laevis/crescimento & desenvolvimento
15.
FEBS J ; 288(2): 360-381, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32530132

RESUMO

The discovery that apolipoprotein L1 (APOL1) is the trypanolytic factor of human serum raised interest about the function of APOLs, especially following the unexpected finding that in addition to their protective action against sleeping sickness, APOL1 C-terminal variants also cause kidney disease. Based on the analysis of the structure and trypanolytic activity of APOL1, it was proposed that APOLs could function as ion channels of intracellular membranes and be involved in mechanisms triggering programmed cell death. In this review, the recent finding that APOL1 and APOL3 inversely control the synthesis of phosphatidylinositol-4-phosphate (PI(4)P) by the Golgi PI(4)-kinase IIIB (PI4KB) is commented. APOL3 promotes Ca2+ -dependent activation of PI4KB, but due to their increased interaction with APOL3, APOL1 C-terminal variants can inactivate APOL3, leading to reduction of Golgi PI(4)P synthesis. The impact of APOLs on several pathological processes that depend on Golgi PI(4)P levels is discussed. I propose that through their effect on PI4KB activity, APOLs control not only actomyosin activities related to vesicular trafficking, but also the generation and elongation of autophagosomes induced by inflammation.


Assuntos
Apolipoproteína L1/genética , Apolipoproteínas L/genética , Transtorno Autístico/genética , Neoplasias/genética , Insuficiência Renal/genética , Esquizofrenia/genética , Viroses/genética , Actomiosina/genética , Actomiosina/metabolismo , Animais , Apolipoproteína L1/metabolismo , Apolipoproteínas L/metabolismo , Transtorno Autístico/metabolismo , Transtorno Autístico/patologia , Autofagossomos/metabolismo , Cálcio/metabolismo , Regulação da Expressão Gênica , Complexo de Golgi/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Fosfatos de Fosfatidilinositol/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Insuficiência Renal/metabolismo , Insuficiência Renal/patologia , Esquizofrenia/metabolismo , Esquizofrenia/patologia , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Africana/genética , Tripanossomíase Africana/metabolismo , Tripanossomíase Africana/parasitologia , Viroses/metabolismo , Viroses/patologia
16.
Structure ; 29(1): 50-60.e4, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33065066

RESUMO

Heart contraction depends on a complicated array of interactions between sarcomeric proteins required to convert chemical energy into mechanical force. Cyclic interactions between actin and myosin molecules, controlled by troponin and tropomyosin, generate the sliding force between the actin-based thin and myosin-based thick filaments. Alterations in this sophisticated system due to missense mutations can lead to cardiovascular diseases. Numerous structural studies proposed pathological mechanisms of missense mutations at the myosin-myosin, actin-tropomyosin, and tropomyosin-troponin interfaces. However, despite the central role of actomyosin interactions a detailed structural description of the cardiac actomyosin interface remained unknown. Here, we report a cryo-EM structure of a cardiac actomyosin complex at 3.8 Å resolution. The structure reveals the molecular basis of cardiac diseases caused by missense mutations in myosin and actin proteins.


Assuntos
Actomiosina/química , Miocárdio/química , Actinas/química , Actinas/genética , Actinas/metabolismo , Actomiosina/genética , Actomiosina/metabolismo , Animais , Microscopia Crioeletrônica/normas , Limite de Detecção , Simulação de Dinâmica Molecular , Mutação , Miocárdio/ultraestrutura , Miosinas/química , Miosinas/genética , Miosinas/metabolismo , Domínios Proteicos , Suínos
17.
Development ; 147(24)2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33361090

RESUMO

Ventral bending of the embryonic tail within the chorion is an evolutionarily conserved morphogenetic event in both invertebrates and vertebrates. However, the complexity of the anatomical structure of vertebrate embryos makes it difficult to experimentally identify the mechanisms underlying embryonic folding. This study investigated the mechanisms underlying embryonic tail bending in chordates. To further understand the mechanical role of each tissue, we also developed a physical model with experimentally measured parameters to simulate embryonic tail bending. Actomyosin asymmetrically accumulated at the ventral side of the notochord, and cell proliferation of the dorsal tail epidermis was faster than that in the ventral counterpart during embryonic tail bending. Genetic disruption of actomyosin activity and inhibition of cell proliferation dorsally caused abnormal tail bending, indicating that both asymmetrical actomyosin contractility in the notochord and the discrepancy of epidermis cell proliferation are required for tail bending. In addition, asymmetrical notochord contractility was sufficient to drive embryonic tail bending, whereas differential epidermis proliferation was a passive response to mechanical forces. These findings showed that asymmetrical notochord contractility coordinates with differential epidermis proliferation mechanisms to drive embryonic tail bending.This article has an associated 'The people behind the papers' interview.


Assuntos
Actomiosina/genética , Morfogênese/genética , Cauda/crescimento & desenvolvimento , Actomiosina/metabolismo , Animais , Proliferação de Células/genética , Ciona/embriologia , Ciona/genética , Ciona/crescimento & desenvolvimento , Células Epiteliais/metabolismo , Contração Muscular/fisiologia , Notocorda/embriologia , Notocorda/crescimento & desenvolvimento , Cauda/embriologia
18.
Int J Mol Sci ; 22(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374308

RESUMO

The actomyosin system generates mechanical work with the execution of the power stroke, an ATP-driven, two-step rotational swing of the myosin-neck that occurs post ATP hydrolysis during the transition from weakly to strongly actin-bound myosin states concomitant with Pi release and prior to ADP dissociation. The activating role of actin on product release and force generation is well documented; however, the communication paths associated with weak-to-strong transitions are poorly characterized. With the aid of mutant analyses based on kinetic investigations and simulations, we identified the W-helix as an important hub coupling the structural changes of switch elements during ATP hydrolysis to temporally controlled interactions with actin that are passed to the central transducer and converter. Disturbing the W-helix/transducer pathway increased actin-activated ATP turnover and reduced motor performance as a consequence of prolonged duration of the strongly actin-attached states. Actin-triggered Pi release was accelerated, while ADP release considerably decelerated, both limiting maximum ATPase, thus transforming myosin-2 into a high-duty-ratio motor. This kinetic signature of the mutant allowed us to define the fractional occupancies of intermediate states during the ATPase cycle providing evidence that myosin populates a cleft-closure state of strong actin interaction during the weak-to-strong transition with bound hydrolysis products before accomplishing the power stroke.


Assuntos
Actomiosina/química , Difosfato de Adenosina/química , Dictyostelium/química , Fosfatos/química , Proteínas de Protozoários/química , Actomiosina/genética , Trifosfato de Adenosina/química , Regulação Alostérica , Dictyostelium/genética , Proteínas de Protozoários/genética
19.
Elife ; 92020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-33103994

RESUMO

In fission yeast, the septation initiation network (SIN) ensures temporal coordination between actomyosin ring (CAR) constriction with membrane ingression and septum synthesis. However, questions remain about CAR regulation under stress conditions. We show that Rgf1p (Rho1p GEF), participates in a delay of cytokinesis under cell wall stress (blankophor, BP). BP did not interfere with CAR assembly or the rate of CAR constriction, but did delay the onset of constriction in the wild type cells but not in the rgf1Δ cells. This delay was also abolished in the absence of Pmk1p, the MAPK of the cell integrity pathway (CIP), leading to premature abscission and a multi-septated phenotype. Moreover, cytokinesis delay correlates with maintained SIN signaling and depends on the SIN to be achieved. Thus, we propose that the CIP participates in a checkpoint, capable of triggering a CAR constriction delay through the SIN pathway to ensure that cytokinesis terminates successfully.


Assuntos
Actomiosina/metabolismo , Schizosaccharomyces/citologia , Schizosaccharomyces/metabolismo , Actomiosina/genética , Citocinese , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
20.
Nat Commun ; 11(1): 5397, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-33106478

RESUMO

The migration of many cell types relies on the formation of actomyosin-dependent protrusions called blebs, but the mechanisms responsible for focusing this kind of protrusive activity to the cell front are largely unknown. Here, we employ zebrafish primordial germ cells (PGCs) as a model to study the role of cell-cell adhesion in bleb-driven single-cell migration in vivo. Utilizing a range of genetic, reverse genetic and mathematical tools, we define a previously unknown role for E-cadherin in confining bleb-type protrusions to the leading edge of the cell. We show that E-cadherin-mediated frictional forces impede the backwards flow of actomyosin-rich structures that define the domain where protrusions are preferentially generated. In this way, E-cadherin confines the bleb-forming region to a restricted area at the cell front and reinforces the front-rear axis of migrating cells. Accordingly, when E-cadherin activity is reduced, the bleb-forming area expands, thus compromising the directional persistence of the cells.


Assuntos
Actinas/metabolismo , Caderinas/metabolismo , Movimento Celular , Células Germinativas/citologia , Pseudópodes/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Actinas/genética , Actomiosina/genética , Actomiosina/metabolismo , Animais , Caderinas/genética , Feminino , Células Germinativas/metabolismo , Masculino , Pseudópodes/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA