Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.364
Filtrar
1.
Endocrinology ; 165(6)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38712392

RESUMO

Long-term ß-adrenoceptor (ß-AR) stimulation is a pathological mechanism associated with cardiovascular diseases resulting in endothelial and perivascular adipose tissue (PVAT) dysfunction. In this study, we aimed to identify whether ß-adrenergic signaling has a direct effect on PVAT. Thoracic aorta PVAT was obtained from male Wistar rats and cultured ex vivo with the ß-AR agonist isoproterenol (Iso; 1 µM) or vehicle for 24 hours. Conditioned culture medium (CCM) from Iso-treated PVAT induced a marked increase in aorta contractile response, induced oxidative stress, and reduced nitric oxide production in PVAT compared to vehicle. In addition, Iso-treated PVAT and PVAT-derived differentiated adipocytes exhibited higher corticosterone release and protein expression of 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1), an enzyme responsible for de novo synthesis of corticosterone. Macrophages exposed to Iso also exhibited increased corticosterone release in response to ß-AR stimulation. Incubation of Iso-treated PVAT and PVAT-derived differentiated adipocytes with ß3-AR antagonist restored aorta contractile function modulated by Iso-CCM and normalized 11ß-HSD1 protein expression. These results show that ß3-AR signaling leads to upregulation of 11ß-HSD1 in PVAT, thus increasing corticosterone release and contributing to impair the anticontractile function of this tissue.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1 , Corticosterona , Isoproterenol , Ratos Wistar , Animais , Masculino , Ratos , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , Isoproterenol/farmacologia , Corticosterona/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Tecido Adiposo/metabolismo , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/metabolismo , Adipócitos/metabolismo , Adipócitos/efeitos dos fármacos , Receptores Adrenérgicos beta/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Óxido Nítrico/metabolismo , Meios de Cultivo Condicionados/farmacologia
2.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732125

RESUMO

"Ganghwal" is a widely used herbal medicine in Republic of Korea, but it has not been reported as a treatment strategy for obesity and diabetes within adipocytes. In this study, we determined that Ostericum koreanum extract (OKE) exerts an anti-obesity effect by inhibiting adipogenesis and an anti-diabetic effect by increasing the expression of genes related to glucose uptake in adipocytes and inhibiting α-glucosidase activity. 3T3-L1 preadipocytes were differentiated for 8 days in methylisobutylxanthine, dexamethasone, and insulin medium, and the effect of OKE was confirmed by the addition of 50 and 100 µg/mL of OKE during the differentiation process. This resulted in a reduction in lipid accumulation and the expression of PPARγ (Peroxisome proliferator-activated receptor γ) and C/EBPα (CCAAT enhancer binding protein α). Significant activation of AMPK (AMP-activated protein kinase), increased expression of GLUT4 (Glucose Transporter Type 4), and inhibition of α-glucosidase activity were also observed. These findings provide the basis for the anti-obesity and anti-diabetic effects of OKE. In addition, OKE has a significant antioxidant effect. This study presents OKE as a potential natural product-derived material for the treatment of patients with metabolic diseases such as obesity- and obesity-induced diabetes.


Assuntos
Células 3T3-L1 , Adipócitos , Adipogenia , Fármacos Antiobesidade , Hipoglicemiantes , PPAR gama , Extratos Vegetais , Camundongos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Animais , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Adipogenia/efeitos dos fármacos , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , PPAR gama/metabolismo , PPAR gama/genética , Fármacos Antiobesidade/farmacologia , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Transportador de Glucose Tipo 4/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/genética , alfa-Glucosidases/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Antioxidantes/farmacologia , Inibidores de Glicosídeo Hidrolases/farmacologia , Crassulaceae/química , Metabolismo dos Lipídeos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos
3.
Nutrients ; 16(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38732509

RESUMO

Isoeugenol (IEG), a natural component of clove oil, possesses antioxidant, anti-inflammatory, and antibacterial properties. However, the effects of IEG on adipogenesis have not yet been elucidated. Here, we showed that IEG blocks adipogenesis in 3T3-L1 cells at an early stage. IEG inhibits lipid accumulation in adipocytes in a concentration-dependent manner and reduces the expression of mature adipocyte-related factors including PPARγ, C/EBPα, and FABP4. IEG treatment at different stages of adipogenesis showed that IEG inhibited adipocyte differentiation by suppressing the early stage, as confirmed by lipid accumulation and adipocyte-related biomarkers. The early stage stimulates growth-arrested preadipocytes to enter mitotic clonal expansion (MCE) and initiates their differentiation into adipocytes by regulating cell cycle-related factors. IEG arrested 3T3-L1 preadipocytes in the G0/G1 phase of the cell cycle and attenuated cell cycle-related factors including cyclinD1, CDK6, CDK2, and cyclinB1 during the MCE stage. Furthermore, IEG suppresses reactive oxygen species (ROS) production during MCE and inhibits ROS-related antioxidant enzymes, including superoxide dismutase1 (SOD1) and catalase. The expression of cell proliferation-related biomarkers, including pAKT and pERK1/2, was attenuated by the IEG treatment of 3T3-L1 preadipocytes. These findings suggest that it is a potential therapeutic agent for the treatment of obesity.


Assuntos
Células 3T3-L1 , Adipócitos , Adipogenia , Eugenol , Mitose , Espécies Reativas de Oxigênio , Animais , Adipogenia/efeitos dos fármacos , Camundongos , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Mitose/efeitos dos fármacos , Eugenol/farmacologia , Eugenol/análogos & derivados , Espécies Reativas de Oxigênio/metabolismo , Diferenciação Celular/efeitos dos fármacos , PPAR gama/metabolismo , Proliferação de Células/efeitos dos fármacos , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Metabolismo dos Lipídeos/efeitos dos fármacos , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Antioxidantes/farmacologia
4.
Sci Rep ; 14(1): 10053, 2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698047

RESUMO

Type 2 diabetes mellitus is a worldwide public health issue. In the globe, Egypt has the ninth-highest incidence of diabetes. Due to its crucial role in preserving cellular homeostasis, the autophagy process has drawn a lot of attention in recent years, Therefore, the purpose of this study was to evaluate the traditional medication metformin with the novel therapeutic effects of cinnamondehyde on adipocyte and hepatic autophagy in a model of high-fat diet/streptozotocin-diabetic rats. The study was conducted on 40 male albino rats, classified into 2 main groups, the control group and the diabetic group, which was subdivided into 4 subgroups (8 rats each): untreated diabetic rats, diabetic rats received oral cinnamaldehyde 40 mg/kg/day, diabetic rats received oral metformin 200 mg/kg/day and diabetic rats received a combination of both cinnamaldehyde and metformin daily for 4 weeks. The outcomes demonstrated that cinnamaldehyde enhanced the lipid profile and glucose homeostasis. Moreover, Cinnamaldehyde had the opposite effects on autophagy in both tissues; by altering the expression of genes that control autophagy, such as miRNA 30a and mammalian target of rapamycin (mTOR), it reduced autophagy in adipocytes and stimulated it in hepatic tissues. It may be inferred that by increasing the treatment efficacy of metformin and lowering its side effects, cinnamaldehyde could be utilized as an adjuvant therapy with metformin for the treatment of type 2 diabetes.


Assuntos
Acroleína , Acroleína/análogos & derivados , Adipócitos , Autofagia , Diabetes Mellitus Experimental , Fígado , Metformina , Animais , Acroleína/farmacologia , Acroleína/uso terapêutico , Autofagia/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Ratos , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Metformina/farmacologia , Dieta Hiperlipídica/efeitos adversos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , MicroRNAs/metabolismo , MicroRNAs/genética , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Estreptozocina , Glicemia/metabolismo , Serina-Treonina Quinases TOR/metabolismo
5.
World J Microbiol Biotechnol ; 40(7): 206, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38755297

RESUMO

The significance of microorganisms occurring in foods is predominantly targeted due to their application for identifying a novel range of the bacterial spectrum. Diverse microbial species are capable of exhibiting potential pharmacological activities like antimicrobial and anticancer. Microbial strains capable of reducing obesity-related syndromes have also been reported. In the present study, the hypocholesterolemic efficacy of Bacillus amyloliquefaciens isolated from dairy products was scrutinised by in vitro (3T3-L1 adipose cells) and in vivo (high-fat diet-induced obese Wistar albino rats) methods. Potential cholesterol-lowering isolates were screened using a plate assay method and optimised by physical parameters. Molecular identification of the topmost five cholesterol-lowering isolates was acquired by amplification of the 16 S rRNA gene region. Bacillus amyloliquefaciens strain KAVK1, followed by strains KAVK2, KAVK3, KAVK4, and KAVK5 were molecularly determined. Further, cholesterol-lowering strains degraded the spectral patterns determined by the side chain of a cholesterol molecule. The anti-lipase activity was demonstrated using the porcine pancreatic lipase inhibitory method and compared with the reference compound Atorvastatin. Lyophilised strain KAVK1 revealed maximum pancreatic lipase inhibition. Strain KAVK1 attenuated lipid accumulation in 3T3-L1 adipose cell line predicted by Oil Red O staining method. Significant reduction of body weight and change in lipid profile was recognised after the supplement of KAVK1 to obese rats. Histopathological changes in organs were predominantly marked. The result of this study implies that the cholesterol-lowering B. amyloliquefaciens KAVK1 strain was used to treat hypercholesterolemia.


Assuntos
Células 3T3-L1 , Anticolesterolemiantes , Bacillus amyloliquefaciens , Dieta Hiperlipídica , Metabolismo dos Lipídeos , Obesidade , RNA Ribossômico 16S , Ratos Wistar , Animais , Bacillus amyloliquefaciens/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos , Obesidade/microbiologia , Ratos , Anticolesterolemiantes/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , RNA Ribossômico 16S/genética , Masculino , Modelos Animais de Doenças , Colesterol/metabolismo , Lipase/metabolismo , Adipócitos/metabolismo , Adipócitos/efeitos dos fármacos
6.
Mol Biol Rep ; 51(1): 562, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644407

RESUMO

BACKGROUND: Obesity is associated with a wide variety of metabolic disorders that impose significant burdens on patients and society. The "browning" phenomenon in white adipose tissue (WAT) has emerged as a promising therapeutic strategy to combat metabolic disturbances. However, though the anti-diabetic drug dapagliflozin (DAPA) is thought to promote "browning," the specific mechanism of this was previously unclear. METHODS: In this study, C57BL/6 J male mice were used to establish an obesity model by high-fat diet feeding, and 3T3-L1 cells were used to induce mature adipocytes and to explore the role and mechanism of DAPA in "browning" through a combination of in vitro and in vivo experiments. RESULTS: The results show that DAPA promotes WAT "browning" and improves metabolic disorders. Furthermore, we discovered that DAPA activated "browning" through the fibroblast growth factor receptors 1-liver kinase B1-adenosine monophosphate-activated protein kinase signaling pathway. CONCLUSION: These findings provide a rational basis for the use of DAPA in treating obesity by promoting the browning of white adipose tissue.


Assuntos
Tecido Adiposo Branco , Compostos Benzidrílicos , Glucosídeos , Proteínas Serina-Treonina Quinases , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos , Transdução de Sinais , Animais , Masculino , Camundongos , Células 3T3-L1 , Adipócitos/metabolismo , Adipócitos/efeitos dos fármacos , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Compostos Benzidrílicos/farmacologia , Dieta Hiperlipídica , Glucosídeos/farmacologia , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Obesidade/tratamento farmacológico , Proteínas Serina-Treonina Quinases/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Transdução de Sinais/efeitos dos fármacos
7.
Endocrinology ; 165(6)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38648498

RESUMO

Hormonal contraceptives are widely prescribed due to their effectiveness and convenience and have become an integral part of family planning strategies worldwide. In the United States, approximately 65% of reproductive-aged women are estimated to be using contraceptive options, with approximately 33% using one or a combination of hormonal contraceptives. While these methods have undeniably contributed to improved reproductive health, recent studies have raised concerns regarding their potential effect on metabolic health. Despite widespread anecdotal reports, epidemiological research has been mixed as to whether hormonal contraceptives contribute to metabolic health effects. As such, the goals of this study were to assess the adipogenic activity of common hormonal contraceptive chemicals and their mixtures. Five different models of adipogenesis were used to provide a rigorous assessment of metabolism-disrupting effects. Interestingly, every individual contraceptive (both estrogens and progestins) and each mixture promoted significant adipogenesis (eg, triglyceride accumulation and/or preadipocyte proliferation). These effects appeared to be mediated in part through estrogen receptor signaling, particularly for the contraceptive mixtures, as cotreatment with fulvestrant acted to inhibit contraceptive-mediated proadipogenic effects on triglyceride accumulation. In conclusion, this research provides valuable insights into the complex interactions between hormonal contraceptives and adipocyte development. The results suggest that both progestins and estrogens within these contraceptives can influence adipogenesis, and the specific effects may vary based on the receptor disruption profiles. Further research is warranted to establish translation of these findings to in vivo models and to further assess causal mechanisms underlying these effects.


Assuntos
Adipogenia , Adipogenia/efeitos dos fármacos , Animais , Feminino , Camundongos , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Progestinas/farmacologia , Humanos , Células 3T3-L1 , Estrogênios/farmacologia , Anticoncepcionais Orais Hormonais/farmacologia
8.
Toxicol Appl Pharmacol ; 486: 116937, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38643950

RESUMO

Selective Serotonin Reuptake Inhibitors (SSRIs) are widely used medications for the treatment of major depressive disorder. However, long-term SSRI use has been associated with weight gain and altered lipid profiles. These findings suggest that SSRIs may have negative effects on metabolism. Exposure to certain chemicals called 'obesogens' is known to promote lipid accumulation and obesity by modulating adipogenesis. Here, we investigated whether citalopram (CIT) and sertraline (SER) interfere with the process of adipogenesis, using human mesenchymal stem cells (MSCs) in a 2D and a 3D model. Assessment of intracellular lipid accumulation by fluorescence staining was used as a measure for enhanced adipogenesis. To explore possible mechanisms behind SSRIs' effects, receptor mediated activity was studied using responsive cell lines for various nuclear receptors. Furthermore, RNA sequencing was performed in the 3D model, followed by differential gene expression and pathway analysis. A dose dependent increase in lipid accumulation was observed in both models with CIT and SER. For the 3D model, the effect was seen in a range close to reported steady-state plasma concentrations (0.065-0.65 µM for SER and 0.12-0.92 µM for CIT). Pathway analysis revealed unexpected results of downregulation in adipogenesis-related pathways and upregulation in phospholipids and lysosomal pathways. This was confirmed by an observed increase in lysosomes in the 2D model. Our findings suggest lysosomal dysfunction and disrupted lipid metabolism in mature adipocytes, leading to excessive phospholipid synthesis. Moreover, important adipogenic processes are inhibited, potentially leading to dysfunctional adipocytes, which might have implications in the maintenance of a healthy metabolic balance.


Assuntos
Adipogenia , Antidepressivos , Citalopram , Metabolismo dos Lipídeos , Células-Tronco Mesenquimais , Inibidores Seletivos de Recaptação de Serotonina , Sertralina , Adipogenia/efeitos dos fármacos , Sertralina/farmacologia , Sertralina/toxicidade , Humanos , Citalopram/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/toxicidade , Antidepressivos/farmacologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga
9.
Food Funct ; 15(10): 5300-5314, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38669145

RESUMO

Growing research has highlighted that the consumption of dairy products improves the metabolic health in obese individuals by functioning as regulatory modulators. However, the molecular basis of this effect remains largely unknown. Herein, we report a dairy-derived peptide, which we named Miltin, that activates the thermogenesis of brown adipocytes and increases white adipocyte browning. Previously, Miltin was merely identified for its antioxidant capacity, although it is commonly present in different dairy products. In this study, we revealed the effect of Miltin in modulating adipose thermogenesis and further explored its potential in treating obesity through in vivo and in vitro strategies. The administration of Miltin in mice fed with a high-fat diet resulted in enhanced thermogenesis, improved glucose homeostasis, and reduced body mass and lipid accumulation, indicating the anti-obesity effect of Miltin. Genomic analysis revealed that Miltin modulates thermogenesis by inducing the activation of the MAPK signaling pathway by preferentially interacting with GADD45γ to promote its stability. Together, our findings indicate that Miltin's role in initiating the thermogenesis of adipocytes makes it a potential anti-obesity therapy for future development.


Assuntos
Fármacos Antiobesidade , Camundongos Endogâmicos C57BL , Obesidade , Termogênese , Animais , Termogênese/efeitos dos fármacos , Camundongos , Fármacos Antiobesidade/farmacologia , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Masculino , Dieta Hiperlipídica , Células 3T3-L1 , Adipócitos Marrons/efeitos dos fármacos , Adipócitos Marrons/metabolismo , Peptídeos/farmacologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Humanos
10.
J Agric Food Chem ; 72(17): 9768-9781, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38629896

RESUMO

Lemon verbena has been shown to ameliorate obesity-related oxidative stress, but the intracellular final effectors underlying its antioxidant activity are still unknown. The purpose of this study was to correlate the antioxidant capacity of plasma metabolites of lemon verbena (verbascoside, isoverbascoside, hydroxytyrosol, caffeic acid, ferulic acid, homoprotocatechuic acid, and luteolin-7-diglucuronide) with their uptake and intracellular metabolism in hypertrophic adipocytes under glucotoxic conditions. To this end, intracellular ROS levels were measured, and the intracellular metabolites were identified and quantified by high-performance liquid chromatography with a diode array detector coupled to mass spectrometry (HPLC-DAD-MS). The results showed that the plasma metabolites of lemon verbena are absorbed by adipocytes and metabolized through phase II reactions and that the intracellular appearance of these metabolites correlates with the decrease in the level of glucotoxicity-induced oxidative stress. It is postulated that the biotransformation and accumulation of these metabolites in adipocytes contribute to the long-term antioxidant activity of the extract.


Assuntos
Adipócitos , Metaboloma , Estresse Oxidativo , Extratos Vegetais , Polifenóis , Verbena , Estresse Oxidativo/efeitos dos fármacos , Polifenóis/metabolismo , Polifenóis/química , Adipócitos/metabolismo , Adipócitos/efeitos dos fármacos , Extratos Vegetais/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Animais , Verbena/química , Verbena/metabolismo , Camundongos , Antioxidantes/metabolismo , Cromatografia Líquida de Alta Pressão , Masculino , Glucose/metabolismo , Espécies Reativas de Oxigênio/metabolismo
11.
Sci Rep ; 14(1): 9689, 2024 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678043

RESUMO

Today, probiotics are considered to be living microorganisms whose consumption has a certain number of beneficial effects on the consumer. The present study aimed to investigate the effect of a new probiotic extract (Lactobacillus delbrueckii subsp. lactis KUMS Y33) on the differentiation process of human adipose-derived stem cells (hADSCs) into adipocytes and osteocytes and, as a result, clarify its role in the prevention and treatment of bone age disease. Several bacteria were isolated from traditional yogurt. They were evaluated to characterize the probiotic's activity. Then, the isolated hADSCs were treated with the probiotic extract, and then osteogenesis and adipogenesis were induced. To evaluate the differentiation process, oil red O and alizarin red staining, a triglyceride content assay, an alkaline phosphatase (ALP) activity assay, as well as real-time PCR and western blot analysis of osteocyte- and adipocyte-specific genes, were performed. Ultimately, the new strain was sequenced and registered on NBCI. In the probiotic-treated group, the triglyceride content and the gene expression and protein levels of C/EBP-α and PPAR-γ2 (adipocyte-specific markers) were significantly decreased compared to the control group (P < 0.05), indicating an inhibited adipogenesis process. Furthermore, the probiotic extract caused a significant increase in the ALP activity, the expression levels of RUNX2 and osteocalcin, and the protein levels of collagen I and FGF-23 (osteocyte-specific markers) in comparison to the control group (P < 0.05), indicating an enhanced osteogenesis process. According to the results of the present study, the probiotic extract inhibits adipogenesis and significantly increases osteogenesis, suggesting a positive role in the prevention and treatment of osteoporosis and opening a new aspect for future in-vivo study.


Assuntos
Adipogenia , Diferenciação Celular , Lactobacillus delbrueckii , Células-Tronco Mesenquimais , Osteogênese , Probióticos , Humanos , Probióticos/farmacologia , Osteogênese/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Lactobacillus delbrueckii/metabolismo , Diferenciação Celular/efeitos dos fármacos , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Células Cultivadas , Adipócitos/metabolismo , Adipócitos/efeitos dos fármacos , Adipócitos/citologia
12.
Int J Mol Sci ; 25(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38673906

RESUMO

Air pollution poses a significant global health risk, with fine particulate matter (PM2.5) such as diesel exhaust particles (DEPs) being of particular concern due to their potential to drive systemic toxicities through bloodstream infiltration. The association between PM2.5 exposure and an increased prevalence of metabolic disorders, including obesity, metabolic syndrome, and type 2 diabetes mellitus (T2DM), is evident against a backdrop of rising global obesity and poor metabolic health. This paper examines the role of adipose tissue in mediating the effects of PM2.5 on metabolic health. Adipose tissue, beyond its energy storage function, is responsive to inhaled noxious stimuli, thus disrupting metabolic homeostasis and responding to particulate exposure with pro-inflammatory cytokine release, contributing to systemic inflammation. The purpose of this study was to characterize the metabolic response of adipose tissue in mice exposed to either DEPs or room air (RA), exploring both the adipokine profile and mitochondrial bioenergetics. In addition to a slight change in fat mass and a robust shift in adipocyte hypertrophy in the DEP-exposed animals, we found significant changes in adipose mitochondrial bioenergetics. Furthermore, the DEP-exposed animals had a significantly higher expression of adipose inflammatory markers compared with the adipose from RA-exposed mice. Despite the nearly exclusive focus on dietary factors in an effort to better understand metabolic health, these results highlight the novel role of environmental factors that may contribute to the growing global burden of poor metabolic health.


Assuntos
Tecido Adiposo , Inflamação , Mitocôndrias , Material Particulado , Emissões de Veículos , Animais , Emissões de Veículos/toxicidade , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Camundongos , Material Particulado/efeitos adversos , Material Particulado/toxicidade , Tecido Adiposo/metabolismo , Tecido Adiposo/efeitos dos fármacos , Inflamação/metabolismo , Inflamação/induzido quimicamente , Inflamação/patologia , Masculino , Camundongos Endogâmicos C57BL , Metabolismo Energético/efeitos dos fármacos , Adipocinas/metabolismo , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/toxicidade , Adipócitos/metabolismo , Adipócitos/efeitos dos fármacos
13.
Biomed Pharmacother ; 174: 116531, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574624

RESUMO

N-acylethanolamines (NAEs) are endogenous lipid-signalling molecules involved in inflammation and energy metabolism. The potential pharmacological effect of NAE association in managing inflammation-based metabolic disorders is unexplored. To date, targeting liver-adipose axis can be considered a therapeutic approach for the treatment of obesity and related dysfunctions. Here, we investigated the metabolic effect of OLALIAMID® (OLA), an olive oil-derived NAE mixture, in limiting liver and adipose tissue (AT) dysfunction of high-fat diet (HFD)-fed mice. OLA reduced body weight and fat mass in obese mice, decreasing insulin resistance (IR), as shown by homeostasis model assessment index, and leptin/adiponectin ratio, a marker of adipocyte dysfunction. OLA improved serum lipid and hepatic profile and the immune/inflammatory pattern of metainflammation. In liver of HFD mice, OLA treatment counteracted glucose and lipid dysmetabolism, restoring insulin signalling (phosphorylation of AKT and AMPK), and reducing mRNAs of key markers of fatty acid accumulation. Furthermore, OLA positively affected AT function deeply altered by HFD by reprogramming of genes involved in thermogenesis of interscapular brown AT (iBAT) and subcutaneous white AT (scWAT), and inducing the beigeing of scWAT. Notably, the NAE mixture reduced inflammation in iBAT and promoted M1-to-M2 macrophage shift in scWAT of obese mice. The tissue and systemic anti-inflammatory effects of OLA and the increased expression of glucose transporter 4 in scWAT contributed to the improvement of gluco-lipid toxicity and insulin sensitivity. In conclusion, we demonstrated that this olive oil-derived NAE mixture is a valid nutritional strategy to counteract IR and obesity acting on liver-AT crosstalk, restoring both hepatic and AT function and metabolism.


Assuntos
Adipócitos , Tecido Adiposo , Dieta Hiperlipídica , Etanolaminas , Resistência à Insulina , Fígado , Camundongos Endogâmicos C57BL , Obesidade , Animais , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Etanolaminas/farmacologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Camundongos , Dieta Hiperlipídica/efeitos adversos , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Camundongos Obesos , Metabolismo dos Lipídeos/efeitos dos fármacos
14.
Cell Death Dis ; 15(4): 285, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653969

RESUMO

Despite advances in the treatment and care of severe physical injuries, trauma remains one of the main reasons for disability-adjusted life years worldwide. Trauma patients often suffer from disturbances in energy utilization and metabolic dysfunction, including hyperglycemia and increased insulin resistance. White adipose tissue plays an essential role in the regulation of energy homeostasis and is frequently implicated in traumatic injury due to its ubiquitous body distribution but remains poorly studied. Initial triggers of the trauma response are mainly damage-associated molecular patterns (DAMPs) such as histones. We hypothesized that DAMP-induced adipose tissue inflammation contributes to metabolic dysfunction in trauma patients. Therefore, we investigated whether histone release during traumatic injury affects adipose tissue. Making use of a murine polytrauma model with hemorrhagic shock, we found increased serum levels of histones accompanied by an inflammatory response in white adipose tissue. In vitro, extracellular histones induced an inflammatory response in human adipocytes. On the molecular level, this inflammatory response was mediated via a MYD88-IRAK1-ERK signaling axis as demonstrated by pharmacological and genetic inhibition. Histones also induced lytic cell death executed independently of caspases and RIPK1 activity. Importantly, we detected increased histone levels in the bloodstream of patients after polytrauma. Such patients might benefit from a therapy consisting of activated protein C and the FDA-approved ERK inhibitor trametinib, as this combination effectively prevented histone-mediated effects on both, inflammatory gene activation and cell death in adipocytes. Preventing adipose tissue inflammation and adipocyte death in patients with polytrauma could help minimize posttraumatic metabolic dysfunction.


Assuntos
Adipócitos , Histonas , Inflamação , Fator 88 de Diferenciação Mieloide , Humanos , Animais , Histonas/metabolismo , Adipócitos/metabolismo , Adipócitos/efeitos dos fármacos , Inflamação/patologia , Inflamação/metabolismo , Camundongos , Fator 88 de Diferenciação Mieloide/metabolismo , Morte Celular/efeitos dos fármacos , Masculino , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Ferimentos e Lesões/complicações , Ferimentos e Lesões/metabolismo , Ferimentos e Lesões/patologia , Transdução de Sinais/efeitos dos fármacos
15.
Phytomedicine ; 128: 155551, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38569293

RESUMO

BACKGROUND: Because obesity is associated with a hyperplasia-mediated increase in adipose tissue, inhibiting cell proliferation during mitotic clonal expansion (MCE) is a leading strategy for preventing obesity. Although (-)-hydroxycitric acid (HCA) is used to control obesity, the molecular mechanisms underlying its effects on MCE are poorly understood. PURPOSE: This study aimed to investigate the potential effects of HCA on MCE and underlying molecular mechanisms affecting adipogenesis and obesity improvements. METHODS: Preadipocyte cell line, 3T3-L1, were treated with HCA; oil red O, cell proliferation, cell cycle, and related alterations in signaling pathways were examined. High-fat diet (HFD)-fed mice were administered HCA for 12 weeks; body and adipose tissues weights were evaluated, and the regulation of signaling pathways in epidydimal white adipose tissue were examined in vivo. RESULTS: Here, we report that during MCE, HCA attenuates the proliferation of the preadipocyte cell line, 3T3-L1, by arresting the cell cycle at the G0/G1 phase. In addition, HCA markedly inhibits Forkhead Box O1 (FoxO1) phosphorylation, thereby inducing the expression of cyclin-dependent kinase inhibitor 1B and suppressing the levels of cyclin-dependent kinase 2, cyclin E1, proliferating cell nuclear antigen, and phosphorylated retinoblastoma. Importantly, we found that ribosomal protein S6 kinase A1 (RPS6KA1) influences HCA-mediated inactivation of FoxO1 and its nuclear exclusion. An animal model of obesity revealed that HCA reduced high-fat diet-induced obesity by suppressing adipocyte numbers as well as epididymal and mesenteric white adipose tissue mass, which is attributed to the regulation of RPS6KA1, FoxO1, CDKN1B and PCNA that had been consistently identified in vitro. CONCLUSIONS: These findings provide novel insights into the mechanism by which HCA regulates adipogenesis and highlight the RPS6KA1/FoxO1 signaling axis as a therapeutic target for obesity.


Assuntos
Proliferação de Células , Citratos , Proteína Forkhead Box O1 , Obesidade , Proteínas Quinases S6 Ribossômicas 90-kDa , Animais , Camundongos , Células 3T3-L1/efeitos dos fármacos , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adipogenia/efeitos dos fármacos , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Proliferação de Células/efeitos dos fármacos , Citratos/farmacologia , Citratos/uso terapêutico , Dieta Hiperlipídica/efeitos adversos , Proteína Forkhead Box O1/antagonistas & inibidores , Proteína Forkhead Box O1/metabolismo , Camundongos Endogâmicos C57BL , Mitose/efeitos dos fármacos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Transdução de Sinais/efeitos dos fármacos
16.
Mol Cell Endocrinol ; 588: 112225, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38570133

RESUMO

Although Liraglutide (Lira) increases serum irisin levels in type 2 diabetes mellitus (T2DM), it is unclear whether it induces expression of uncoupling protein 1 (UCP1) of adipocytes via promoting irisin secretion from skeletal muscle. Male T2DM rats were treated with 0.4 mg/kg/d Lira twice a day for 8 weeks, and the protein expression of phosphorylated AMP kinase (p-AMPK), phosphorylated acetyl-CoA carboxylase 1 (p-ACC1) and UCP1 in white adipose tissues were detected. Differentiated C2C12 cells were treated with palmitic acid (PA) and Lira to detect the secretion of irisin. Differentiated 3T3-L1 cells were treated with irisin, supernatant from Lira-treated C2C12 cells, Compound C or siAMPKα1, the triglyceride (TG) content and the related gene expression were measured. The transcriptome in irisin-treated differentiated 3T3-L1 cells was analyzed. Lira elevated serum irisin levels, decreased the adipocyte size and increased the protein expression of UCP1, p-AMPK and p-ACC1 in WAT. Moreover, it promoted the expression of PGC1α and FNDC5, the secretion of irisin in PA-treated differentiated C2C12 cells. The irisin and supernatant decreased TG synthesis and promoted the expression of browning- and lipolysis-related genes in differentiated 3T3-L1 cells. While Compound C and siAMPKα1 blocked AMPK activities and expression, irisin partly reversed the pathway. Finally, the transcriptome analysis indicated that differently expressed genes are mainly involved in browning and lipid metabolism. Overall, our findings showed that Lira modulated muscle-to-adipose signaling pathways in diabetes via irisin-mediated AMPKα/ACC1/UCP1/PPARα pathway. Our results suggest a new mechanism for the treatment of T2DM by Lira.


Assuntos
Células 3T3-L1 , Adipócitos , Fibronectinas , Lipólise , Liraglutida , Proteína Desacopladora 1 , Animais , Fibronectinas/metabolismo , Fibronectinas/genética , Camundongos , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética , Masculino , Adipócitos/metabolismo , Adipócitos/efeitos dos fármacos , Lipólise/efeitos dos fármacos , Liraglutida/farmacologia , Ratos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Ratos Sprague-Dawley , Diferenciação Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos
17.
Biosci Biotechnol Biochem ; 88(6): 679-688, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38499443

RESUMO

Recently, it has been suggested that brown and beige adipocytes may ameliorate obesity because these adipocytes express uncoupling protein-1 (UCP-1), which generates heat by consuming lipid. However, obesity-induced inflammation suppresses the expression of UCP-1. To improve such conditions, food components with anti-inflammatory properties are attracting attention. In this study, we developed a modified system to evaluate only the indirect effects of anti-inflammatory food-derived compounds by optimizing the conventional experimental system using conditioned medium. We validated this new system using 6-shogaol and 6-gingerol, which have been reported to show the anti-inflammatory effects and to increase the basal expression of UCP-1 mRNA. In addition, we found that the acetone extract of Sarcodon aspratus, an edible mushroom, showed anti-inflammatory effects and rescued the inflammation-induced suppression of UCP-1 mRNA expression. These findings indicate that the system with conditioned medium is valuable for evaluation of food-derived compounds with anti-inflammatory effects on the inflammation-induced thermogenic adipocyte dysfunction.


Assuntos
Adipócitos , Anti-Inflamatórios , Inflamação , Macrófagos , RNA Mensageiro , Proteína Desacopladora 1 , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética , Animais , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Camundongos , Meios de Cultivo Condicionados/farmacologia , Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/genética , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos
18.
FEBS Lett ; 598(8): 945-955, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38472156

RESUMO

TG-interacting factor 1 (TGIF1) contributes to the differentiation of murine white preadipocyte and human adipose tissue-derived stem cells; however, its regulation is not well elucidated. Insulin is a component of the adipogenic cocktail that induces ERK signaling. TGIF1 phosphorylation and sustained stability in response to insulin were reduced through the use of specific MEK inhibitor U0126. Mutagenesis at T235 or T239 residue of TGIF1 in preadipocytes led to dephosphorylation of TGIF1. The reduced TGIF1 stability resulted in an increase in p27kip1 expression, a decrease in phosphorylated Rb expression and cellular proliferation, and a reduced accumulation of lipids compared to the TGIF1-overexpressed cells. These findings highlight that insulin/ERK-driven phosphorylation of the T235 or T239 residue at TGIF1 is crucial for adipocyte differentiation.


Assuntos
Células 3T3-L1 , Adipócitos , Adipogenia , Diferenciação Celular , Proteínas de Homeodomínio , Insulina , Animais , Camundongos , Fosforilação/efeitos dos fármacos , Insulina/metabolismo , Adipócitos/metabolismo , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Adipogenia/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Humanos , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética , Proliferação de Células/efeitos dos fármacos , Butadienos/farmacologia
19.
Sci Rep ; 13(1): 14556, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37666868

RESUMO

Deriving stem cells to regenerate full-thickness human skin is important for treating skin disorders without invasive surgical procedures. Our previous protocol to differentiate human induced pluripotent stem cells (iPSCs) into skin-derived precursor cells (SKPs) as a source of dermal stem cells employs mouse fibroblasts as feeder cells and is therefore unsuitable for clinical use. Herein, we report a feeder-free method for differentiating iPSCs into SKPs by customising culture substrates. We immunohistochemically screened for laminins expressed in dermal papillae (DP) and explored the conditions for inducing the differentiation of iPSCs into SKPs on recombinant laminin E8 (LM-E8) fragments with or without conjugation to domain I of perlecan (PDI), which binds to growth factors through heparan sulphate chains. Several LM-E8 fragments, including those of LM111, 121, 332, 421, 511, and 521, supported iPSC differentiation into SKPs without PDI conjugation. However, the SKP yield was significantly enhanced on PDI-conjugated LM-E8 fragments. SKPs induced on PDI-conjugated LM111-E8 fragments retained the gene expression patterns characteristic of SKPs, as well as the ability to differentiate into adipocytes, osteocytes, and Schwann cells. Thus, PDI-conjugated LM-E8 fragments are promising agents for inducing iPSC differentiation into SKPs in clinical settings.


Assuntos
Diferenciação Celular , Proteoglicanas de Heparan Sulfato , Células-Tronco Pluripotentes Induzidas , Peptídeos e Proteínas de Sinalização Intercelular , Laminina , Fragmentos de Peptídeos , Domínios Proteicos , Pele , Humanos , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proteoglicanas de Heparan Sulfato/química , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Laminina/química , Laminina/farmacologia , Osteócitos/citologia , Osteócitos/efeitos dos fármacos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Células de Schwann/citologia , Células de Schwann/efeitos dos fármacos , Pele/citologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/farmacologia
20.
J Clin Invest ; 133(19)2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37607030

RESUMO

Stimulation of adipocyte ß-adrenergic receptors (ß-ARs) induces expression of uncoupling protein 1 (UCP1), promoting nonshivering thermogenesis. Association of ß-ARs with a lysine-myristoylated form of A kinase-anchoring protein 12 (AKAP12, also known as gravin-α) is required for downstream signaling that culminates in UCP1 induction. Conversely, demyristoylation of gravin-α by histone deacetylase 11 (HDAC11) suppresses this pathway. Whether inhibition of HDAC11 in adipocytes is sufficient to drive UCP1 expression independently of ß-ARs is not known. Here, we demonstrate that adipocyte-specific deletion of HDAC11 in mice leads to robust induction of UCP1 in adipose tissue (AT), resulting in increased body temperature. These effects are mimicked by treating mice in vivo or human AT ex vivo with an HDAC11-selective inhibitor, FT895. FT895 triggers biphasic, gravin-α myristoylation-dependent induction of UCP1 protein expression, with a noncanonical acute response that is posttranscriptional and independent of protein kinase A (PKA), and a delayed response requiring PKA activity and new Ucp1 mRNA synthesis. Remarkably, HDAC11 inhibition promotes UCP1 expression even in models of adipocyte catecholamine resistance where ß-AR signaling is blocked. These findings define cell-autonomous, multimodal roles for HDAC11 as a suppressor of thermogenesis, and highlight the potential of inhibiting HDAC11 to therapeutically alter AT phenotype independently of ß-AR stimulation.


Assuntos
Adipócitos , Catecolaminas , Inibidores de Histona Desacetilases , Histona Desacetilases , Animais , Humanos , Camundongos , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo Marrom/metabolismo , Catecolaminas/farmacologia , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Termogênese/genética , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Inibidores de Histona Desacetilases/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA