Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 797
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 324, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713211

RESUMO

Laccase, a copper-containing polyphenol oxidase, is an important green biocatalyst. In this study, Laccase Lcc5 was homologous recombinantly expressed in Coprinopsis cinerea and a novel strategy of silencing chitinase gene expression was used to enhance recombinant Lcc5 extracellular yield. Two critical chitinase genes, ChiEn1 and ChiE2, were selected by analyzing the transcriptome data of C. cinerea FA2222, and their silent expression was performed by RNA interference (RNAi). It was found that silencing either ChiEn1 or ChiE2 reduced sporulation and growth rate, and increased cell wall sensitivity, but had no significant effect on mycelial branching. Among them, the extracellular laccase activity of the ChiE2-silenced engineered strain Cclcc5-antiChiE2-5 and the control Cclcc5-13 reached the highest values (38.2 and 25.5 U/mL, respectively) at 250 and 150 rpm agitation speeds, corresponding to productivity of 0.35 and 0.19 U/mL·h, respectively, in a 3-L fermenter culture. Moreover, since Cclcc5-antiChiE2-5 could withstand greater shear forces, its extracellular laccase activity was 2.6-fold higher than that of Cclcc5-13 when the agitation speed was all at 250 rpm. To our knowledge, this is the first report of enhanced recombinant laccase production in C. cinerea by silencing the chitinase gene. This study will pave the way for laccase industrial production and accelerate the development of a C. cinerea high-expression system. KEY POINTS: • ChiEn1 and ChiE2 are critical chitinase genes in C. cinerea FA2222 genome. • Chitinase gene silencing enhanced the tolerance of C. cinerea to shear forces. • High homologous production of Lcc5 is achieved by fermentation in a 3-L fermenter.


Assuntos
Quitinases , Inativação Gênica , Lacase , Quitinases/genética , Quitinases/metabolismo , Quitinases/biossíntese , Lacase/genética , Lacase/metabolismo , Lacase/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Agaricales/genética , Agaricales/enzimologia , Fermentação , Interferência de RNA , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Micélio/genética , Micélio/crescimento & desenvolvimento , Micélio/enzimologia , Parede Celular/metabolismo , Parede Celular/genética
2.
Artigo em Inglês | MEDLINE | ID: mdl-38591772

RESUMO

Two yeast strains, designated as 19-39-3 and 19-40-2, obtained from the fruiting bodies of Trametes versicolor and Marasmius siccus collected in Yunwu Mountain Forest Park, PR China, have been identified as representing a novel asexual ascomycetous yeast species. From the results of phylogenetic analyses of the sequences of the D1/D2 domains of the large subunit (LSU) rRNA, small subunit (SSU) rRNA and translation elongation factor 1-α (TEF1) genes, it was determined that these strains represent a member of the genus Wickerhamomyces, with Wickerhamomyces alni and Candida ulmi as the closest relatives. The novel species exhibited 6.6 and 6.7% differences in the D1/D2 domains compared with W. alni and C. ulmi, respectively. Additionally, distinct biochemical and physiological differences were observed between the novel species and its related counterparts. No sexual reproduction was observed in these strains, leading to the proposal of the name Wickerhamomyces corioli f.a., sp. nov. for this newly discovered species.


Assuntos
Agaricales , Saccharomycetales , Filogenia , DNA Espaçador Ribossômico/genética , Agaricales/genética , Trametes/genética , Análise de Sequência de DNA , Composição de Bases , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Ácidos Graxos/química , Saccharomycetales/genética , DNA Fúngico/genética , Técnicas de Tipagem Micológica
3.
Sci Rep ; 14(1): 9298, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654032

RESUMO

Agaricales, Russulales and Boletales are dominant orders among the wild mushrooms in Basidiomycota. Boletaceae, one of the major functional elements in terrestrial ecosystem and mostly represented by ectomycorrhizal symbionts of trees in Indian Himalaya and adjoining hills, are extraordinarily diverse and represented by numerous genera and species which are unexplored or poorly known. Therefore, their hidden diversity is yet to be revealed. Extensive macrofungal exploration by the authors to different parts of Himalaya and surroundings, followed by through morphological studies and multigene molecular phylogeny lead to the discovery of five new species of wild mushrooms: Leccinellum bothii sp. nov., Phylloporus himalayanus sp. nov., Phylloporus smithii sp. nov., Porphyrellus uttarakhandae sp. nov., and Retiboletus pseudoater sp. nov. Present communication deals with morphological details coupled with illustrations and phylogenetic inferences. Besides, Leccinellum sinoaurantiacum and Xerocomus rugosellus are also reported for the first time from this country.


Assuntos
Agaricales , Filogenia , Índia , Agaricales/genética , Agaricales/classificação , DNA Fúngico/genética , Basidiomycota/genética , Basidiomycota/classificação
4.
Sci Rep ; 14(1): 9903, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38688964

RESUMO

The edible fungus industry is one of the pillar industries in the Yunnan-Guizhou Plateau, China. The expansion of the planting scale has led to the release of various mushroom residues, such as mushroom feet, and other wastes, which are not treated adequately, resulting in environmental pollution. This study investigated the ability of black soldier fly (Hermetia illucens L.) larvae (BSFL) to degrade mushroom waste. Moreover, this study analyzed changes in the intestinal bacterial community and gene expression of BSFL after feeding on mushroom waste. Under identical feeding conditions, the remaining amount of mushroom waste in Pleurotus ostreatus treatment group was reduced by 18.66%, whereas that in Flammulina velutipes treatment group was increased by 31.08%. Regarding gut microbial diversity, compared with wheat bran-treated control group, Dysgonomonas, Providencia, Enterococcus, Pseudochrobactrum, Actinomyces, Morganella, Ochrobactrum, Raoultella, and Ignatzschineria were the most abundant bacteria in the midgut of BSFL in F. velutipes treatment group. Furthermore, Dysgonomonas, Campylobacter, Providencia, Ignatzschineria, Actinomyces, Enterococcus, Morganella, Raoultella, and Pseudochrobactrum were the most abundant bacteria in the midgut of BSFL in P. ostreatus treatment group. Compared with wheat bran-treated control group, 501 upregulated and 285 downregulated genes were identified in F. velutipes treatment group, whereas 211 upregulated and 43 downregulated genes were identified in P. ostreatus treatment group. Using Kyoto Encyclopedia of Genes and Genomes and Gene Ontology enrichment analyses, we identified 14 differentially expressed genes (DEGs) related to amino sugar and nucleotide sugar metabolism in F. velutipes treatment group, followed by 12 DEGs related to protein digestion and absorption. Moreover, in P. ostreatus treatment group, two DEGs were detected for fructose and mannose metabolism, and two were noted for fatty acid metabolism. These results indicate that feeding on edible mushroom waste can alter the intestinal microbial community structure of BSFL; moreover, the larval intestine can generate a corresponding feedback. These changes contribute to the degradation of edible mushroom waste by BSFL and provide a reference for treating edible mushroom waste using BSFL.


Assuntos
Agaricales , Microbioma Gastrointestinal , Larva , Pleurotus , Animais , Larva/microbiologia , Pleurotus/metabolismo , Agaricales/metabolismo , Agaricales/genética , Biodegradação Ambiental , Dípteros/microbiologia , Dípteros/metabolismo , Flammulina/metabolismo , Flammulina/genética , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação
5.
Microbiol Res ; 284: 127736, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38663231

RESUMO

Blue light is an important signal for fungal development. In the mushroom-forming basidiomycete Schizophyllum commune, blue light is detected by the White Collar complex, which consists of WC-1 and WC-2. Most of our knowledge on this complex is derived from the ascomycete Neurospora crassa, where both WC-1 and WC-2 contain GATA zinc-finger transcription factor domains. In basidiomycetes, WC-1 is truncated and does not contain a transcription factor domain, but both WC-1 and WC-2 are still important for development. We show that dimerization of WC-1 and WC-2 happens independent of light in S. commune, but that induction by light is required for promoter binding by the White Collar complex. Furthermore, the White Collar complex is a promoter of transcription, but binding of the complex alone is not always sufficient to initiate transcription. For its function, the White Collar complex associates directly with the promoters of structural genes involved in mushroom development, like hydrophobins, but also promotes the expression of other transcription factors that play a role in mushroom development.


Assuntos
Proteínas Fúngicas , Regulação Fúngica da Expressão Gênica , Regiões Promotoras Genéticas , Schizophyllum , Fatores de Transcrição , Schizophyllum/metabolismo , Schizophyllum/genética , Schizophyllum/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Luz , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Redes Reguladoras de Genes , Ligação Proteica , Agaricales/genética , Agaricales/metabolismo , Agaricales/crescimento & desenvolvimento
6.
J Ethnopharmacol ; 328: 118073, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38513780

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Medicinal mushrooms belonging to the Lignosus spp., colloquially known as Tiger Milk mushrooms (TMMs), are used as traditional medicine by communities across various regions of China and Southeast Asia to enhance immunity and to treat various diseases. At present, three Lignosus species have been identified in Malaysia: L. rhinocerus, L. tigris, and L. cameronensis. Similarities in their macroscopic morphologies and the nearly indistinguishable appearance of their sclerotia often lead to interchangeability between them. Hence, substantiation of their traditional applications via identification of their individual bioactive properties is imperative in ensuring that they are safe for consumption. L. tigris was first identified in 2013. Thus far, studies on L. tigris cultivar sclerotia (Ligno TG-K) have shown that it possesses significant antioxidant activities and has greater antiproliferative action against selected cancer cells in vitro compared to its sister species, L. rhinocerus TM02®. Our previous genomics study also revealed significant genetic dissimilarities between them. Further omics investigations on Ligno TG-K hold immense potential in facilitating the identification of its bioactive compounds and their associated bioactivities. AIM OF STUDY: The overall aim of this study was to investigate the gene expression profile of Ligno TG-K via de novo RNA-seq and pathway analysis. We also aimed to identify highly expressed genes encoding compounds that contribute to its cytotoxic and antioxidant properties, as well as perform a comparative transcriptomics analysis between Ligno TG-K and its sister species, L. rhinocerus TM02®. MATERIALS AND METHODS: Total RNA from fresh 3-month-old cultivated L. tigris sclerotia (Ligno TG-K) was extracted and analyzed via de novo RNA sequencing. Expressed genes were analyzed using InterPro and NCBI-Nr databases for domain identification and homology search. Functional categorization based on gene functions and pathways was performed using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Clusters of Orthologous Genes (COG) databases. Selected genes were subsequently subjected to phylogenetic analysis. RESULTS: Our transcriptomics analysis of Ligno TG-K revealed that 68.06% of its genes are expressed in the sclerotium; 80.38% of these were coding transcripts. Our analysis identified highly expressed transcripts encoding proteins with prospective medicinal properties. These included serine proteases (FPKM = 7356.68), deoxyribonucleases (FPKM = 3777.98), lectins (FPKM = 3690.87), and fungal immunomodulatory proteins (FPKM = 2337.84), all of which have known associations with anticancer activities. Transcripts linked to proteins with antioxidant activities, such as superoxide dismutase (FPKM = 1161.69) and catalase (FPKM = 1905.83), were also highly expressed. Results of our sequence alignments revealed that these genes and their orthologs can be found in other mushrooms. They exhibit significant sequence similarities, suggesting possible parallels in their anticancer and antioxidant bioactivities. CONCLUSION: This study is the first to provide a reference transcriptome profile of genes expressed in the sclerotia of L. tigris. The current study also presents distinct COG profiles of highly expressed genes in Ligno TG-K and L. rhinocerus TM02®, highlighting that any distinctions uncovered may be attributed to their interspecies variations and inherent characteristics that are unique to each species. Our findings suggest that Ligno TG-K contains bioactive compounds with prospective medicinal properties that warrant further investigations. CLASSIFICATION: Systems biology and omics.


Assuntos
Agaricales , Polyporaceae , Antioxidantes/metabolismo , Transcriptoma , RNA-Seq , Agaricales/genética , Filogenia , Estudos Prospectivos , Polyporaceae/genética
7.
Microbiol Res ; 283: 127695, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38554651

RESUMO

Cap expansion in agaricoid mushroom species is an important event for sexual reproduction because meiosis occurs in basidia under the cap, and basidiospores can be released by opening the cap. However, molecular mechanisms underlying cap expansion in basidiomycetes remain poorly understood. We aimed to elucidate the molecular mechanisms of cap expansion in basidiomycetes by analyzing the unique cap-expansionless UV mutant #13 (exp2-1) in Coprinopsis cinerea. Linkage analysis and consequent genome sequence analysis revealed that the gene responsible for the mutant phenotypes encodes a putative transcription factor with two C2H2 zinc finger motifs. The mutant that was genome-edited to lack exp2 exhibited an expansionless phenotype. Some of the genes encoding cell wall degradation-related enzymes showed decreased expression during cap expansion and autolysis in the exp2 UV and genome-edited mutant. The exp2 gene is widely conserved in Agaricomycetes, suggesting that Exp2 homologs regulate fruiting body maturation in Agaricomycetes, especially cap expansion in Agaricoid-type mushroom-forming fungi. Therefore, exp2 homologs could be a target for mushroom breeding to maintain shape after harvest for some cultivating mushrooms, presenting a promising avenue for further research in breeding techniques.


Assuntos
Agaricales , Basidiomycota , Carpóforos/genética , Agaricales/genética , Dedos de Zinco/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
8.
Nat Commun ; 15(1): 2709, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548735

RESUMO

Psilocybin, the natural hallucinogen produced by Psilocybe ("magic") mushrooms, holds great promise for the treatment of depression and several other mental health conditions. The final step in the psilocybin biosynthetic pathway, dimethylation of the tryptophan-derived intermediate norbaeocystin, is catalysed by PsiM. Here we present atomic resolution (0.9 Å) crystal structures of PsiM trapped at various stages of its reaction cycle, providing detailed insight into the SAM-dependent methylation mechanism. Structural and phylogenetic analyses suggest that PsiM derives from epitranscriptomic N6-methyladenosine writers of the METTL16 family, which is further supported by the observation that bound substrates physicochemically mimic RNA. Inherent limitations of the ancestral monomethyltransferase scaffold hamper the efficiency of psilocybin assembly and leave PsiM incapable of catalysing trimethylation to aeruginascin. The results of our study will support bioengineering efforts aiming to create novel variants of psilocybin with improved therapeutic properties.


Assuntos
Agaricales , Alucinógenos , Psilocybe , Psilocibina/química , Filogenia , Agaricales/genética , Psilocybe/genética
9.
Mycologia ; 116(3): 392-408, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38551379

RESUMO

The porcini mushroom family Boletaceae is a diverse, widespread group of ectomycorrhizal (ECM) mushroom-forming fungi that so far has eluded intrafamilial phylogenetic resolution based on morphology and multilocus data sets. In this study, we present a genome-wide molecular data set of 1764 single-copy gene families from a global sampling of 418 Boletaceae specimens. The resulting phylogenetic analysis has strong statistical support for most branches of the tree, including the first statistically robust backbone. The enigmatic Phylloboletellus chloephorus from non-ECM Argentinian subtropical forests was recovered as a new subfamily sister to the core Boletaceae. Time-calibrated branch lengths estimate that the family first arose in the early to mid-Cretaceous and underwent a rapid radiation in the Eocene, possibly when the ECM nutritional mode arose with the emergence and diversification of ECM angiosperms. Biogeographic reconstructions reveal a complex history of vicariance and episodic long-distance dispersal correlated with historical geologic events, including Gondwanan origins and inferred vicariance associated with its disarticulation. Together, this study represents the most comprehensively sampled, data-rich molecular phylogeny of the Boletaceae to date, establishing a foundation for future robust inferences of biogeography in the group.


Assuntos
Agaricales , Genoma Fúngico , Filogenia , Agaricales/genética , Agaricales/classificação , Agaricales/isolamento & purificação , Sequenciamento Completo do Genoma , Micorrizas/genética , Micorrizas/classificação , Filogeografia
10.
Appl Microbiol Biotechnol ; 108(1): 217, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38372792

RESUMO

Pleurotus ostreatus, also known as the oyster mushroom, is a popular edible mushroom cultivated worldwide. This review aims to survey recent progress in the molecular genetics of this fungus and demonstrate its potential as a model mushroom for future research. The development of modern molecular genetic techniques and genome sequencing technologies has resulted in breakthroughs in mushroom science. With efficient transformation protocols and multiple selection markers, a powerful toolbox, including techniques such as gene knockout and genome editing, has been developed, and numerous new findings are accumulating in P. ostreatus. These include molecular mechanisms of wood component degradation, sexual development, protein secretion systems, and cell wall structure. Furthermore, these techniques enable the identification of new horizons in enzymology, biochemistry, cell biology, and material science through protein engineering, fluorescence microscopy, and molecular breeding. KEY POINTS: • Various genetic techniques are available in Pleurotus ostreatus. • P. ostreatus can be used as an alternative model mushroom in genetic analyses. • New frontiers in mushroom science are being developed using the fungus.


Assuntos
Agaricales , Pleurotus , Pleurotus/genética , Agaricales/genética , Ciência dos Materiais , Parede Celular , Embaralhamento de DNA
12.
mSystems ; 9(3): e0120823, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38334416

RESUMO

The morphogenesis of sexual fruiting bodies of fungi is a complex process determined by a genetically encoded program. Fruiting bodies reached the highest complexity levels in the Agaricomycetes; yet, the underlying genetics is currently poorly known. In this work, we functionally characterized a highly conserved gene termed snb1, whose expression level increases rapidly during fruiting body initiation. According to phylogenetic analyses, orthologs of snb1 are present in almost all agaricomycetes and may represent a novel conserved gene family that plays a substantial role in fruiting body development. We disrupted snb1 using CRISPR/Cas9 in the agaricomycete model organism Coprinopsis cinerea. snb1 deletion mutants formed unique, snowball-shaped, rudimentary fruiting bodies that could not differentiate caps, stipes, and lamellae. We took advantage of this phenotype to study fruiting body differentiation using RNA-Seq analyses. This revealed differentially regulated genes and gene families that, based on wild-type RNA-Seq data, were upregulated early during development and showed tissue-specific expression, suggesting a potential role in differentiation. Taken together, the novel gene family of snb1 and the differentially expressed genes in the snb1 mutants provide valuable insights into the complex mechanisms underlying developmental patterning in the Agaricomycetes. IMPORTANCE: Fruiting bodies of mushroom-forming fungi (Agaricomycetes) are complex multicellular structures, with a spatially and temporally integrated developmental program that is, however, currently poorly known. In this study, we present a novel, conserved gene family, Snowball (snb), termed after the unique, differentiation-less fruiting body morphology of snb1 knockout strains in the model mushroom Coprinopsis cinerea. snb is a gene of unknown function that is highly conserved among agaricomycetes and encodes a protein of unknown function. A comparative transcriptomic analysis of the early developmental stages of differentiated wild-type and non-differentiated mutant fruiting bodies revealed conserved differentially expressed genes which may be related to tissue differentiation and developmental patterning fruiting body development.


Assuntos
Agaricales , Ascomicetos , Basidiomycota , Carpóforos/genética , Filogenia , Proteínas Fúngicas/genética , Agaricales/genética , Basidiomycota/metabolismo , Ascomicetos/metabolismo
13.
Mycologia ; 116(2): 322-349, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38363178

RESUMO

Xerampelinae is a subsection composed of species of ectomycorrhizal fungi belonging to the hyperdiverse and cosmopolitan genus Russula (Russulales). Species of Xerampelinae are recognized by their fishy or shrimp odor, browning context, and a green reaction to iron sulfate. However, species delimitation has traditionally relied on morphology and analysis of limited molecular data. Prior taxonomic work in Xerampelinae has led to the description of as many as 59 taxa in Europe and 19 in North America. Here we provide the first multilocus phylogeny of European and North American members based on two nrDNA loci and two protein-coding genes. The resulting phylogeny supports the recognition of 17 species-rank Xerampelinae clades; however, higher species richness (~23) is suggested by a more inclusive nuclear rDNA internal transcribed spacer region ITS1-5.8S-ITS2 (ITS barcode) analysis. Phylogenetic and morphological analyses support three new species with restricted geographic distributions: R. lapponica, R. neopascua, and R. olympiana. We confirm that the European species R. subrubens is present in North America and the North American species R. serissima (previously known as R. favrei) is present in Europe. Most other Xerampelinae appear restricted to either North America or Eurasia, which indicates a high degree of regional endemism; this includes R. xerampelina, a name widely applied to North American taxa, but a species restricted to Eurasia.


Assuntos
Agaricales , Basidiomycota , Filogenia , Análise de Sequência de DNA , Agaricales/genética , Basidiomycota/genética , DNA Ribossômico/genética , DNA Espaçador Ribossômico/genética , DNA Fúngico/genética
14.
Mycologia ; 116(2): 251-257, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38363194

RESUMO

Fungi are important decomposers of organic material, including animal waste. Ammonia and postputrefaction fungi grow in soil enriched in ammonium and nitrogen from carcasses. In 2014, we observed mushrooms fruiting on the flesh of a dead muskrat (Ondatra zibethicus) in an abandoned underground copper mine in southeastern New Brunswick, Canada. We placed an adult beaver (Castor canadensis) carcass near the muskrat to facilitate fungal colonization and fruiting. The beaver carcass was colonized by a variety of molds, especially Acaulium caviariforme. We observed mushrooms of an unidentified copriniid on the flesh 6 years and 9 months after carcass placement. Using morphological and molecular (nuclear internal transcribed spacer [nrITS]) data, we identified the mushrooms as Coprinopsis laanii, a rarely encountered species generally considered lignicolous. We discuss the role of C. laanii, and other postputrefaction fungi, in cave environments.


Assuntos
Agaricales , Animais , Agaricales/genética , Roedores , Arvicolinae , Canadá
15.
J Microbiol Biotechnol ; 34(4): 930-939, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38314447

RESUMO

Mushroom laccases play a crucial role in lignin depolymerization, one of the most critical challenges in lignin utilization. Importantly, laccases can utilize a wide range of substrates, such as toxicants and antibiotics. This study isolated a novel laccase, named HeLac4c, from endophytic white-rot fungi Hericium erinaceus mushrooms. The cDNAs for this enzyme were 1569 bp in length and encoded a protein of 523 amino acids, including a 20 amino-acid signal peptide. Active extracellular production of glycosylated laccases from Saccharomyces cerevisiae was successfully achieved by selecting an optimal translational fusion partner. We observed that 5 and 10 mM Ca2+, Zn2+, and K+ increased laccase activity, whereas 5 mM Fe2+ and Al3+ inhibited laccase activity. The laccase activity was inhibited by the addition of low concentrations of sodium azide and L-cysteine. The optimal pH for the 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt was 4.4. Guaiacylglycerol-ß-guaiacyl ether, a lignin model compound, was polymerized by the HeLac4c enzyme. These results indicated that HeLac4c is a novel oxidase biocatalyst for the bioconversion of lignin into value-added products for environmental biotechnological applications.


Assuntos
Hericium , Lacase , Lignina , Saccharomyces cerevisiae , Lacase/metabolismo , Lacase/genética , Lacase/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Hericium/metabolismo , Hericium/genética , Hericium/enzimologia , Concentração de Íons de Hidrogênio , Lignina/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Sequência de Aminoácidos , Clonagem Molecular , Azida Sódica/farmacologia , Agaricales/enzimologia , Agaricales/genética , Glicosilação
16.
Proc Natl Acad Sci U S A ; 121(3): e2311245121, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38194448

RESUMO

Psychoactive mushrooms in the genus Psilocybe have immense cultural value and have been used for centuries in Mesoamerica. Despite the recent surge of interest in these mushrooms due to the psychotherapeutic potential of their natural alkaloid psilocybin, their phylogeny and taxonomy remain substantially incomplete. Moreover, the recent elucidation of the psilocybin biosynthetic gene cluster is known for only five of ~165 species of Psilocybe, four of which belong to only one of two major clades. We set out to improve the phylogeny of Psilocybe using shotgun sequencing of fungarium specimens, from which we obtained 71 metagenomes including from 23 types, and conducting phylogenomic analysis of 2,983 single-copy gene families to generate a fully supported phylogeny. Molecular clock analysis suggests the stem lineage of Psilocybe arose ~67 mya and diversified ~56 mya. We also show that psilocybin biosynthesis first arose in Psilocybe, with 4 to 5 possible horizontal transfers to other mushrooms between 40 and 9 mya. Moreover, predicted orthologs of the psilocybin biosynthetic genes revealed two distinct gene orders within the biosynthetic gene cluster that corresponds to a deep split within the genus, possibly a signature of two independent acquisitions of the cluster within Psilocybe.


Assuntos
Agaricales , Psilocybe , Psilocybe/genética , Agaricales/genética , Filogenia , Psilocibina/genética , Família Multigênica/genética
17.
Curr Microbiol ; 81(3): 78, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38281277

RESUMO

Two yeast strains designated as 20-27-1 and 20-28 were isolated from the fruiting bodies of Tricholoma gambosum and Marasmius maximus, respectively, which were collected in Wudaogou, Weichang county, Chengde area, Hebei Province, China. The multi-locus analysis of the sequences of the rDNA ITS, D1/D2 LSU, and SSU regions, together with partial sequences of two protein-coding genes RPB1 and TEF1 indicates that the two strains are closely related to Nakazawaea ernobii and Nakazawaea holstii, showing the similarity values of 99.3-98.7%, 97.2-97.1%, 91.9-92.5%, and 84.6% in D1/D2 LSU, ITS, TEF1, and RPB1, respectively. Physiologically, the two strains are different from N. ernobii and N. holstii in the assimilation of melibiose, inulin, and DL-lactic acid. Both the phenotypic and phylogenetic analyses indicate that those two strains represent a novel species in the genus Nakazawaea, for which the name Nakazawaea tricholomae f.a., sp. nov. (Fungal Names: FN 571492) is proposed.


Assuntos
Agaricales , Saccharomycetales , Agaricales/genética , Filogenia , DNA Espaçador Ribossômico/genética , DNA Fúngico/genética , Saccharomycetales/genética , Pichia/genética , China , Análise de Sequência de DNA , Técnicas de Tipagem Micológica
18.
Int J Syst Evol Microbiol ; 73(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37991225

RESUMO

Six strains representing two novel ascomycetous yeast species were isolated from mushroom fruiting bodies and cocoa leaves collected in Thailand. Analysis of the internal transcribed spacer (ITS) regions and the D1/D2 domains of the large subunit rRNA gene sequences showed that the six strains were divided into two groups. The first group consisted of four strains (DMKU-SSK46, DMKU-SK1, SCCL3-5 and SCCL19-3), that were closely related to the type strains of Candida conglobata, Candida insectorum, Yamadazyma dushanensis, Yamadazyma mexicana and Yamadazyma riverae, but with 12-14 (2.5-2.9 %) and 28-50 (5.4-8.8 %) nucleotide substitutions in the D1/D2 domains and the ITS regions, respectively. However, two strains (DMKU-KMY40 and DMKU-KO18) of the second group differed from a group of described species, Candida diddensiae, Candida dendronema, Candida germanica, Candida kanchanaburiensis, Candida naeodendra, Candida vaughaniae and Yamadazyma siamensis by 8-15 (1.5-2.8 %) and 45-53 (8.2-9.6 %) nucleotide substitutions in the D1/D2 domains and the ITS regions, respectively. Phylogenetic analysis based on the concatenated sequences of the ITS regions and D1/D2 domains showed that these strains represented two species of the Yamadazyma clade that were distinct from the other related species. Based on the phylogenetic analysis and phenotypic characteristics, these six strains were assigned to two novel species of the genus Yamadazyma, although formation of ascospores was not observed. Yamadazyma sisaketensis f.a., sp. nov., is proposed for the first group (four strains). The holotype is TBRC 17139T (ex-type culture: PYCC 9797). The MycoBank number is MB 849637. Yamadazyma koratensis f.a., sp. nov. is proposed for the second group (two strains). The holotype is TBRC 14868T (ex-type culture: PYCC 8907). The MycoBank number is MB 849638. In addition, it is proposed that Candida andamanensis, Candida jaroonii and Candida songkhlaensis are reassigned to the genus Yamadazyma as Yamadazyma andamanensis comb. nov., Y. jaroonii comb. nov. and Y. songkhlaensis comb. nov., respectively.


Assuntos
Agaricales , Ascomicetos , Saccharomycetales , Filogenia , Tailândia , Agaricales/genética , DNA Espaçador Ribossômico/genética , Análise de Sequência de DNA , Composição de Bases , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Ácidos Graxos/química , Ascomicetos/genética , Nucleotídeos , DNA Fúngico/genética , Técnicas de Tipagem Micológica
19.
Dokl Biochem Biophys ; 511(1): 203-211, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37833607

RESUMO

The edible oyster mushroom Pleurotus ostreatus is one of the most cultivated species worldwide. Morphogenesis associated with the maturation of fruit bodies is controlled by two unlinked loci of sexual compatibility matA and matB with multiple alleles (tetrapolar system of sexual compatibility). Quantitative analysis of the alleles of mating compatibility loci in 17 natural isolates collected in the Moscow region was performed in mon-mon (monokaryons-monokaryon) and di-mon (dikaryon-monokaryon) crossings. Four monokaryotic testers strains which were heteroallelic at both mating type loci were obtained for each of the five natural mushroom isolates by using original technique of sterile spore prints on Petri dishes and mon-mon crossing. Twelve natural isolates were crossed via di-mon mating with the four monokaryotic testers M-38. Genetic analysis of the alleles of sexual compatibility loci in 17 natural isolates revealed multiple alleles at both loci: at least ten alleles at matA locus and eight alleles at matB locus. Structural organization analysis of the matA locus was performed in silico for homokaryotic strains PC9 and PC15 based on the whole-genome sequencing data available at DOE Joint Genome Institute. The matA locus has an extremely divergent structure: there are one copy of the homeodomain gene hd1 and one copy of the hd2 gene in the PC9 strain, whereas the matA locus of the PC15 strain is composed by two copies of hd1.1 and hd1.2 genes (class HD1 homeodomain proteins) and one copy of hd2 gene (class HD2 proteins). Comprehensive analysis of amino acid sequences of HD1 and HD2 homeodomain proteins demonstrated that the proteins have a globular structure with the nuclear localization and contain a variable N-terminus and a more conserved DNA-binding domain with a specific conserved motif  WFXNXR in the third ɑ-helix. The results suggest that multiple alleles of the matA locus of sexual compatibility in basidiomycete fungi is achieved due to both different copy number of the coding hd genes within the locus and the variability of the coding gene sequences.


Assuntos
Agaricales , Pleurotus , Pleurotus/genética , Agaricales/genética , Proteínas de Homeodomínio/genética , Sequência de Aminoácidos , Genes Homeobox
20.
Nat Commun ; 14(1): 6560, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875491

RESUMO

Canonical sexual reproduction among basidiomycete fungi involves the fusion of two haploid individuals of different mating types, resulting in a heterokaryotic mycelial body made up of genetically different nuclei. Using population genomics data and experiments, we discover mushrooms of the invasive and deadly Amanita phalloides can also be homokaryotic; evidence of sexual reproduction by single, unmated individuals. In California, genotypes of homokaryotic mushrooms are also found in heterokaryotic mushrooms, implying nuclei of homokaryotic mycelia are also involved in outcrossing. We find death cap mating is controlled by a single mating type locus, but the development of homokaryotic mushrooms appears to bypass mating type gene control. Ultimately, sporulation is enabled by nuclei able to reproduce alone as well as with others, and nuclei competent for both unisexuality and bisexuality have persisted in invaded habitats for at least 17 but potentially as long as 30 years. The diverse reproductive strategies of invasive death caps are likely facilitating its rapid spread, suggesting a profound similarity between plant, animal and fungal invasions.


Assuntos
Agaricales , Basidiomycota , Humanos , Animais , Agaricales/genética , Reprodução/genética , Basidiomycota/genética , Genótipo , Genes Fúngicos Tipo Acasalamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA