Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
FEBS J ; 286(23): 4778-4796, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31291689

RESUMO

Plant chitinases are enzymes that have several functions, including providing protection against pathogens. Agave tequilana is an economically important plant that is poorly studied. Here, we identified a chitinase from short reads of the A. tequilana transcriptome (AtChi1). A second chitinase, differing by only six residues from the first, was isolated from total RNA of plants infected with Fusarium oxysporum (AtChi2). Both enzymes were overexpressed in Escherichia coli and analysis of their sequences indicated that they belong to the class I glycoside hydrolase family19, whose members exhibit two domains: a carbohydrate-binding module and a catalytic domain, connected by a flexible linker. Activity assays and thermal shift experiments demonstrated that the recombinant Agave enzymes are highly thermostable acidic endochitinases with Tm values of 75 °C and 71 °C. Both exhibit a molecular mass close to 32 kDa, as determined by MALDI-TOF, and experimental pIs of 3.7 and 3.9. Coupling small-angle x-ray scattering information with homology modeling and docking simulations allowed us to structurally characterize both chitinases, which notably show different interactions in the binding groove. Even when the six different amino acids are all exposed to solvent in the loops located near the linker and opposite to the binding site, they confer distinct kinetic parameters against colloidal chitin and similar affinity for (GlnNAc)6, as shown by isothermal titration calorimetry. Interestingly, binding is more enthalpy-driven for AtChi2. Whereas the physiological role of these chitinases remains unknown, we demonstrate that they exhibit important antifungal activity against chitin-rich fungi such as Aspergillus sp. DATABASE: SAXS structural data are available in the SASBDB database with accession numbers SASDDE7 and SASDDA6. ENZYMES: Chitinases (EC3.2.1.14).


Assuntos
Agave/enzimologia , Quitinases/metabolismo , Sítios de Ligação , Quitinases/química , Quitinases/fisiologia , Cumarínicos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Simulação de Dinâmica Molecular , Ligação Proteica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Temperatura , Termodinâmica
2.
Plant Physiol ; 174(3): 1505-1516, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28546437

RESUMO

To maintain metabolic flux through the Calvin-Benson-Bassham cycle in higher plants, dead-end inhibited complexes of Rubisco must constantly be engaged and remodeled by the molecular chaperone Rubisco activase (Rca). In C3 plants, the thermolability of Rca is responsible for the deactivation of Rubisco and reduction of photosynthesis at moderately elevated temperatures. We reasoned that crassulacean acid metabolism (CAM) plants must possess thermostable Rca to support Calvin-Benson-Bassham cycle flux during the day when stomata are closed. A comparative biochemical characterization of rice (Oryza sativa) and Agave tequilana Rca isoforms demonstrated that the CAM Rca isoforms are approximately10°C more thermostable than the C3 isoforms. Agave Rca also possessed a much higher in vitro biochemical activity, even at low assay temperatures. Mixtures of rice and agave Rca form functional hetero-oligomers in vitro, but only the rice isoforms denature at nonpermissive temperatures. The high thermostability and activity of agave Rca mapped to the N-terminal 244 residues. A Glu-217-Gln amino acid substitution was found to confer high Rca activity to rice Rca Further mutational analysis suggested that Glu-217 restricts the flexibility of the α4-ß4 surface loop that interacts with Rubisco via Lys-216. CAM plants thus promise to be a source of highly functional, thermostable Rca candidates for thermal fortification of crop photosynthesis. Careful characterization of their properties will likely reveal further protein-protein interaction motifs to enrich our mechanistic model of Rca function.


Assuntos
Agave/enzimologia , Ácidos Carboxílicos/metabolismo , Oryza/enzimologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Temperatura , Motivos de Aminoácidos , Sequência de Aminoácidos , Estabilidade Enzimática , Modelos Moleculares , Ligação Proteica , Multimerização Proteica , Ribulose-Bifosfato Carboxilase/química
3.
ScientificWorldJournal ; 2012: 863432, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22629216

RESUMO

Fructans were extracted from Agave salmiana juice, characterized and subjected to hydrolysis process using a commercial inulinase preparation acting freely. To compare the performance of the enzymatic preparation, a batch of experiments were also conducted with chicory inulin (reference). Hydrolysis was performed for 6 h at two temperatures (50, 60 °C) and two substrate concentrations (40, 60 mg/ml). Hydrolysis process was monitored by measuring the sugars released and residual substrate by HPLC. A mathematical model which describes the kinetics of substrate degradation as well as fructose production was proposed to analyze the hydrolysis assessment. It was found that kinetics were significantly influenced by temperature, substrate concentration, and type of substrate (P < 0.01). The extent of substrate hydrolysis varied from 82 to 99%. Hydrolysis product was mainly constituted of fructose, obtaining from 77 to 96.4% of total reducing sugars.


Assuntos
Agave/enzimologia , Frutanos/química , Insulisina/química , Ativação Enzimática , Hidrólise , Cinética , Especificidade por Substrato
4.
PLoS One ; 7(4): e35878, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22558253

RESUMO

Fructans are the main storage polysaccharides found in Agave species. The synthesis of these complex carbohydrates relies on the activities of specific fructosyltransferase enzymes closely related to the hydrolytic invertases. Analysis of Agave tequilana transcriptome data led to the identification of ESTs encoding putative fructosyltransferases and invertases. Based on sequence alignments and structure/function relationships, two different genes were predicted to encode 1-SST and 6G-FFT type fructosyltransferases, in addition, 4 genes encoding putative cell wall invertases and 4 genes encoding putative vacuolar invertases were also identified. Probable functions for each gene, were assigned based on conserved amino acid sequences and confirmed for 2 fructosyltransferases and one invertase by analyzing the enzymatic activity of recombinant Agave protein s expressed and purified from Pichia pastoris. The genome organization of the fructosyltransferase/invertase genes, for which the corresponding cDNA contained the complete open reading frame, was found to be well conserved since all genes were shown to carry a 9 bp mini-exon and all showed a similar structure of 8 exons/7 introns with the exception of a cell wall invertase gene which has 7 exons and 6 introns. Fructosyltransferase genes were strongly expressed in the storage organs of the plants, especially in vegetative stages of development and to lower levels in photosynthetic tissues, in contrast to the invertase genes where higher levels of expression were observed in leaf tissues and in mature plants.


Assuntos
Agave/enzimologia , Hexosiltransferases/metabolismo , Componentes Aéreos da Planta/enzimologia , Proteínas de Plantas/metabolismo , beta-Frutofuranosidase/metabolismo , Agave/genética , Sequência de Aminoácidos , Clonagem Molecular , Sequência Conservada , DNA Complementar/análise , DNA Complementar/biossíntese , Éxons , Frutanos/biossíntese , Hexosiltransferases/genética , Íntrons , Dados de Sequência Molecular , Filogenia , Pichia , Componentes Aéreos da Planta/genética , Proteínas de Plantas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Transcriptoma , beta-Frutofuranosidase/genética
5.
Bioresour Technol ; 110: 560-5, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22336744

RESUMO

Fructanase and fructosyltransferase are interesting for the tequila process and prebiotics production (functional food industry). In this study, one hundred thirty non-Saccharomyces yeasts isolated from "Mezcal de Oaxaca" were screened for fructanase and fructosyltransferase activity. On solid medium, fifty isolates grew on Agave tequilana fructans (ATF), inulin or levan. In liquid media, inulin and ATF induced fructanase activities of between 0.02 and 0.27U/ml depending of yeast isolate. High fructanase activity on sucrose was observed for Kluyveromyces marxianus and Torulaspora delbrueckii, while the highest fructanase activity on inulin and ATF was observed for Issatchenkia orientalis, Cryptococcus albidus, and Candida apicola. Zygosaccharomyces bisporus and Candida boidinii had a high hydrolytic activity on levan. Sixteen yeasts belonging to K. marxianus, T. delbrueckii and C. apicola species were positive for fructosyltransferase activity. Mezcal microbiota proved to showed to be a source for new fructanase and fructosyltransferases with potential application in the tequila and food industry.


Assuntos
Agave/enzimologia , Fermentação , Glicosídeo Hidrolases/metabolismo , Hexosiltransferases/metabolismo , Leveduras/enzimologia , Meios de Cultura
6.
J Hered ; 102(3): 306-14, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21467156

RESUMO

The Agave genus embraces many species with outstanding ecological and economic importance in the arid regions of the Americas. Even though this genus covers a broad geographic distribution, our knowledge on the population genetics of species is concentrated in taxa located in North America. Recently, it has been demonstrated that plant domestication decreases levels of genetic diversity in managed populations and increases population structure with respect to wild populations. We examined levels of allozyme diversity (N = 17 loci) and population structure of Agave cocui, the species at the southern limit of distribution of the genus. We sampled 7 wild populations (N = 30-35 individuals per population) representative of the geographic distribution of the species in Venezuela. Among the agaves studied, A. cocui has some of the lowest estimates of genetic diversity (H(e)[species] = 0.059, H(e)[population] = 0.054) reported until present. We propose that this condition is probably linked to the recent origin of this species in arid and semiarid regions of Colombia and Venezuela, probably through one or a few founder events. The lowest estimates of genetic diversity were associated with small populations in very restricted arid patches; but also with overexploitation of rosettes for production of fermented drinks and fibers. Santa Cruz de Pecaya, one of the 2 centers of economic use of agaves in northwestern Venezuela presented one of the lowest values of genetic variability, a sign suggesting that human impact represents a significant threat to the available genetic pool that this species possesses in the region.


Assuntos
Agave/genética , Variação Genética , Genética Populacional , Agave/enzimologia , Análise por Conglomerados , Genótipo , Isoenzimas/genética , América do Sul
7.
J Exp Bot ; 58(11): 2717-31, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17609535

RESUMO

GDSL and SGNH hydrolases are lipases involved in a wide range of functions, behaving in many cases as bifunctional enzymes. In this work, the isolation and characterization of AgaSGNH, a cDNA encoding a member of the SGNH-hydrolase superfamily from young leaf epidermis of the monocot Agave americana L., is reported. The protein possesses a typical signal peptide at its N-terminus that allows its secretion to the epidermis cell wall, as verified by immunolocalization experiments. In addition, the AgaSGNH sequence contains a His-Leu-Gly-Ala-Glu (HLGAE) motif which is similar to that observed in other plant acyltransferases. Expression levels by northern blot and in situ localization of the corresponding mRNA, as well as the immunolocalization of the protein in Agave young leaves indicate that the protein is specifically present in the epidermal cells. The detailed study performed in different parts of the Agave leaf confirms two aspects: first, the expression of AgaSGNH is limited to the epidermis, and second, the maximum mRNA levels are found in the epidermis of the youngest zones of the leaf which are especially active in cutin biosynthesis. These levels dramatically decrease in the oldest zone of the leaf, where the presence of AgaSGNH mRNA is undetectable, and the biosynthesis of different cuticle components is severely reduced. These data could be compatible with the hypothesis that AgaSGNH could carry out both the hydrolysis and the transfer, from an activated acyl-CoA to a crescent cutin in Agave americana leaves and, therefore, be involved in the still unknown mechanism of plant cutin biosynthesis.


Assuntos
Agave/enzimologia , Lipase/metabolismo , Proteínas de Plantas/metabolismo , Agave/citologia , Motivos de Aminoácidos , Sequência de Bases , Northern Blotting , DNA Complementar/química , Imuno-Histoquímica , Hibridização In Situ , Lipase/análise , Lipase/química , Dados de Sequência Molecular , Folhas de Planta/citologia , Folhas de Planta/enzimologia , Proteínas de Plantas/análise , Proteínas de Plantas/química , RNA Mensageiro/metabolismo , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA