Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
1.
Am J Physiol Cell Physiol ; 322(3): C370-C381, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35080922

RESUMO

Cannabis usage has steadily increased as acceptance is growing for both medical and recreational reasons. Medical cannabis is administered for treatment of chronic pain based on the premise that the endocannabinoid system signals desensitize pain sensor neurons and produce anti-inflammatory effects. The major psychoactive ingredient of cannabis is Δ9-tetrahydrocannabinol (THC) that signals mainly through cannabinoid receptor-1 (CBr), which is also present on nonneuron cells including blood platelets of the circulatory system. In vitro, CBr-mediated signaling has been shown to acutely inhibit platelet activation downstream of the platelet collagen receptor glycoprotein (GP)VI. The systemic effects of chronic THC administration on platelet activity and function remain unclear. This study investigates the effects of chronic THC administration on platelet function using a nonhuman primate (NHP) model. Our results show that female and male NHPs consuming a daily THC edible had reduced platelet adhesion, aggregation, and granule secretion in response to select platelet agonists. Furthermore, a change in bioactive lipids (oxylipins) was observed in the female cohort after THC administration. These results indicate that chronic THC edible administration desensitized platelet activity and function in response to GPVI- and G-protein coupled receptor-based activation by interfering with primary and secondary feedback signaling pathways. These observations may have important clinical implications for patients who use medical marijuana and for providers caring for these patients.


Assuntos
Plaquetas/efeitos dos fármacos , Agonistas de Receptores de Canabinoides/administração & dosagem , Dronabinol/administração & dosagem , Maconha Medicinal/administração & dosagem , Administração Oral , Animais , Coagulação Sanguínea/efeitos dos fármacos , Plaquetas/metabolismo , Feminino , Macaca mulatta , Masculino , Oxilipinas/sangue , Adesividade Plaquetária/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Vesículas Secretórias/efeitos dos fármacos , Vesículas Secretórias/metabolismo , Transdução de Sinais , Tromboxanos/sangue , Fatores de Tempo
2.
Psychophysiology ; 59(2): e13955, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34665890

RESUMO

Cannabis is the most commonly used psychotropic drug in the United States, after alcohol. Despite its apparent sedative and calming effects, cannabis and its main psychoactive constituent, ∆9 -tetrahydrocannabinol (THC) can produce serious adverse effects including tachycardia and anxiety. These effects can be especially pronounced in women, who remain underrepresented in clinical cannabinoid research. The present study is one of the first to characterize the effects of single doses of oral THC on autonomic nervous system function in healthy adult women. Occasional female cannabis users participated in three laboratory sessions in which they received oral THC (7.5 and 15 mg) and placebo. Autonomic measures included heart rate (HR), blood pressure (BP), pre-ejection period (PEP) a measure of cardiac sympathetic functioning, and high frequency heart rate variability (HF-HRV) a measure of parasympathetic cardiac control. Autonomic responses were examined in relation to subjective drug effects. THC dose-dependently increased HR, decreased HF-HRV, and increased ratings of feeling a drug effect, cannabis-like intoxication, and anxiety. Although the drug did not significantly affect BP or PEP, HR was negatively related to both PEP and HF-HRV. HF-HRV, the measure of parasympathetic activity, was significantly negatively related to subjective measures of cannabis intoxication (but not anxiety) at the 15 mg dose only. PEP was not significantly related to any subjective measure. These results extend our knowledge of the autonomic effects of THC in relation to subjective drug experience. This and future studies will help us to understand risk factors related to cannabis use.


Assuntos
Ansiedade/induzido quimicamente , Pressão Sanguínea/efeitos dos fármacos , Agonistas de Receptores de Canabinoides/farmacologia , Dronabinol/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Sistema Nervoso Parassimpático/efeitos dos fármacos , Sistema Nervoso Simpático/efeitos dos fármacos , Administração Oral , Adulto , Agonistas de Receptores de Canabinoides/administração & dosagem , Agonistas de Receptores de Canabinoides/efeitos adversos , Dronabinol/administração & dosagem , Dronabinol/efeitos adversos , Feminino , Humanos , Adulto Jovem
3.
Brain Res Bull ; 178: 155-163, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34800583

RESUMO

Some studies suggest that the effect of cannabis on behavior performance depends on the presence of ovarian hormones and the age of use initiation. Estradiol is the main ovarian hormone that can interact with cannabinoids. It has been suggested that cannabinoids exert some of their effects directly through estrogen receptors (ERs). A novel G-protein-coupled receptor (GPR30) was described as mediating estrogen signaling in various cell lines. Since there are few studies on the interaction of cannabis and ovarian hormones on cognitive behaviors, so, this study evaluated the role of GPR30 in the effects of marijuana (M) and estrogen, alone and in combination, on spatial learning and memory of young (non-ovarian(OVX)) and old female rats. Young (5-7 months) and old (22-24 months) female rats received an intraperitoneal injection (i.p) of 17ß-estradiol (E2), G1 (GPR30 agonist), and G15 (GPR30 antagonist) every four days, and M (every day), either alone or in combination, for 28 days. One hour after the last injection, the Morris water maze (MWM) test was conducted to evaluate of spatial learning and memory. Moreover, hippocampal BDNF level was assessed by the ELISA method. The results showed a positive effect of M on spatial learning in both young and old rats, however, E2 showed beneficial effects on the memory of young, but not old rats. Our results showed that GPR30 does not have any role in the interaction effects of M and E2 in young rats. Although both E2 and M alone showed positive effects on spatial learning and memory in old rats, however, our results showed a negative interaction between marijuana and E2 combined effects on spatial learning and memory in old female rats which is mediated by GPR30. Our results showed that the effects of GPR30 on spatial learning and memory is age dependent. Furthermore, this study showed that hippocampal BDNF does not have any role in the interaction effects of M and E2 on spatial learning and memory in young and old rats.


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Estradiol/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Aprendizagem Espacial/efeitos dos fármacos , Fatores Etários , Animais , Comportamento Animal/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Agonistas de Receptores de Canabinoides/administração & dosagem , Interações Medicamentosas , Estradiol/administração & dosagem , Hipocampo/metabolismo , Ratos , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores
4.
Behav Brain Res ; 415: 113517, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34389427

RESUMO

Cannabis use disorder (CUD) has doubled in prevalence over the past decade as a nation-wide trend toward legalization allows for increased drug accessibility. As a result, marijuana has become the most commonly used illicit drug in the United States particularly among the adolescent population. This is especially concerning since there is greater risk for the harmful side effects of drug use during this developmental period due to ongoing brain maturation. Increasing evidence indicates that CUD often occurs along with other debilitating conditions including both alcohol use disorder (AUD) and anxiety disorders such post-traumatic stress disorder (PTSD). Additionally, exposure to cannabis, alcohol, and stress can induce alterations in glutamate regulation and homeostasis in the prefrontal cortex (PFC) that may lead to impairments in neuronal functioning and cognition. Therefore, in order to study the relationship between drug exposure and the development of PTSD, these studies utilized rodent models to determine the impact of adolescent exposure to delta-9-tetrahydrocannabinol (THC) and ethanol on responses to fear stimuli during fear conditioning and used calcium imaging to measure glutamate activity in the prelimbic cortex during this behavioral paradigm. The results from these experiments indicate that adolescent exposure to THC and ethanol leads to enhanced sensitivity to fear stimuli both behaviorally and neuronally. Additionally, these effects were attenuated when animals were treated with the glutamatergic modulator N-acetylcysteine (NAC). In summary, these studies support the hypothesis that adolescent exposure to THC and ethanol leads to alterations in fear stimuli processing through glutamatergic reliant modifications in PFC signaling.


Assuntos
Comportamento Animal/efeitos dos fármacos , Agonistas de Receptores de Canabinoides/farmacologia , Depressores do Sistema Nervoso Central/farmacologia , Condicionamento Clássico/efeitos dos fármacos , Dronabinol/farmacologia , Etanol/farmacologia , Medo/efeitos dos fármacos , Fatores Etários , Animais , Agonistas de Receptores de Canabinoides/administração & dosagem , Depressores do Sistema Nervoso Central/administração & dosagem , Dronabinol/administração & dosagem , Etanol/administração & dosagem , Masculino , Ratos , Ratos Wistar
5.
Eur J Drug Metab Pharmacokinet ; 46(4): 513-525, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34143391

RESUMO

BACKGROUND AND OBJECTIVES: Lenabasum is a synthetic agonist of the cannabinoid receptor type 2 (CB2) with anti-inflammatory and antifibrotic properties. Utilizing Simcyp, we developed a physiologically based pharmacokinetic (PBPK) model based on physicochemical properties, cell culture data, and cytochrome P450 (CYP) phenotyping, inhibition, and induction data. METHODS: Clinical data from healthy volunteers treated with 20 mg of lenabasum in a single ascending dose (SAD) study were used for model development. The model was verified using lenabasum SAD (10 and 40 mg) data as well as multiple dose (20 mg three times per day) data. Lenabasum is a CYP substrate, and the model predicted lenabasum clearance of 51% by CYP2C9, 37% by CYP2C8, and 12% by CYP3A4. Lenabasum is also an inhibitor of these isozymes. RESULTS: The model accurately described the area under the plasma concentration-time curve (AUC) and maximum plasma concentration (Cmax) for lenabasum within 1.19-fold and 1.25-fold accuracy, respectively, of the observed clinical values. The simulations of CYP inducers predicted that the strongest interaction would occur with rifampin, with the AUC decreasing to 0.36 of the control value, whereas the simulations of CYP inhibitors predicted that the greatest effect would occur with fluconazole, with a 1.43-fold increase in AUC. CONCLUSIONS: Our model is a useful tool for predicting the pharmacokinetics of lenabasum and adjustments to its dosing in possible drug-drug interaction scenarios.


Assuntos
Agonistas de Receptores de Canabinoides/farmacocinética , Dronabinol/análogos & derivados , Modelos Biológicos , Adulto , Área Sob a Curva , Células CACO-2 , Agonistas de Receptores de Canabinoides/administração & dosagem , Simulação por Computador , Indutores das Enzimas do Citocromo P-450/farmacologia , Inibidores das Enzimas do Citocromo P-450/farmacologia , Relação Dose-Resposta a Droga , Dronabinol/administração & dosagem , Dronabinol/farmacocinética , Interações Medicamentosas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
6.
Behav Brain Res ; 410: 113342, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-33961911

RESUMO

Using marijuana has become popular and is allowed for medical purposes in some countries. The effect of marijuana on Parkinson's disease is controversial and Medical marijuana may benefit for motor and non-motor symptoms of patients with Parkinson's disease. No research has been conducted to fully prove the benefits, risks, and uses of marijuana as a treatment for patients with Parkinson's disease. In the present study, several different approaches, including behavioral measures and the western blot method for protein level assay, were used to investigate whether exposure to marijuana affects the motor and synaptic plasticity impairment induced by 6-OHDA. Marijuana consumption significantly decreased apomorphine-induced contralateral rotation, beam travel time, beam freeze time, and catalepsy time, but significantly increased latency to fall in the rotarod test, balance time, and protein level of PSD-95 and dopamine receptor D1 in the 6-OHDA + marijuana group. These results suggest that marijuana may be helpful for motor disorders and synaptic changes in patients with Parkinson's disease.


Assuntos
Comportamento Animal/efeitos dos fármacos , Agonistas de Receptores de Canabinoides/farmacologia , Proteína 4 Homóloga a Disks-Large/efeitos dos fármacos , Dronabinol/farmacologia , Discinesia Induzida por Medicamentos/tratamento farmacológico , Maconha Medicinal/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Receptores de Dopamina D1/efeitos dos fármacos , Adrenérgicos/farmacologia , Animais , Agonistas de Receptores de Canabinoides/administração & dosagem , Modelos Animais de Doenças , Dronabinol/administração & dosagem , Masculino , Maconha Medicinal/administração & dosagem , Oxidopamina/farmacologia , Doença de Parkinson/tratamento farmacológico , Extratos Vegetais , Ratos , Ratos Wistar
7.
J Psychopharmacol ; 35(7): 786-803, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34049452

RESUMO

BACKGROUND: Cannabis legalization is expanding, but there are no established methods for detecting cannabis impairment. AIM: Characterize the acute impairing effects of oral and vaporized cannabis using various performance tests. METHODS: Participants (N = 20, 10 men/10 women) who were infrequent cannabis users ingested cannabis brownies (0, 10, and 25 mg Δ-9-tetrahydrocannabinol, THC) and inhaled vaporized cannabis (0, 5, and 20 mg THC) in six double-blind outpatient sessions. Cognitive/psychomotor impairment was assessed with a battery of computerized tasks sensitive to cannabis effects, a novel test (the DRiving Under the Influence of Drugs, DRUID®), and field sobriety tests. Blood THC concentrations and subjective drug effects were evaluated. RESULTS: Low oral/vaporized doses did not impair cognitive/psychomotor performance relative to placebo but produced positive subjective effects. High oral/vaporized doses impaired cognitive/psychomotor performance and increased positive and negative subjective effects. The DRUID® was the most sensitive test to cannabis impairment, as it detected significant differences between placebo and active doses within both routes of administration. Women displayed more impairment on the DRUID® than men at the high vaporized dose only. Field sobriety tests showed little sensitivity to cannabis-induced impairment. Blood THC concentrations were far lower after cannabis ingestion versus inhalation. After inhalation, blood THC concentrations typically returned to baseline well before pharmacodynamic effects subsided. CONCLUSIONS: Standard approaches for identifying impairment due to cannabis exposure (i.e. blood THC and field sobriety tests) have severe limitations. There is a need to identify novel biomarkers of cannabis exposure and/or behavioral tests like the DRUID® that can reliably and accurately detect cannabis impairment at the roadside and in the workplace.


Assuntos
Agonistas de Receptores de Canabinoides , Disfunção Cognitiva/induzido quimicamente , Dronabinol , Transtornos Psicomotores/induzido quimicamente , Administração por Inalação , Adulto , Agonistas de Receptores de Canabinoides/administração & dosagem , Agonistas de Receptores de Canabinoides/efeitos adversos , Agonistas de Receptores de Canabinoides/sangue , Método Duplo-Cego , Dronabinol/administração & dosagem , Dronabinol/efeitos adversos , Dronabinol/sangue , Feminino , Alimentos , Humanos , Masculino
8.
J Ocul Pharmacol Ther ; 37(6): 360-366, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33999707

RESUMO

Purpose: The present study was performed to investigate the effect of oral dronabinol, a synthetic tetrahydrocannabinol derivate, on retinal hemodynamics in healthy subjects in a randomized, double-masked, placebo-controlled, 2-way crossover design. Methods: Twenty-four subjects received 5 mg dronabinol on 1 study day and placebo on the other study day. Total retinal blood flow (TRBF) was measured using a custom-built Doppler Optical Coherence Tomography system. Oxygen saturation of major retinal vessels was measured with a commercially available Dynamic Vessel Analyzer. Based on these parameters, retinal oxygen extraction was calculated. Measurements were performed before and after drug administration on both study days. Results: Placebo had no effect on TRBF, retinal arterial or venous oxygen content, and retinal oxygen extraction (P > 0.1 each). In contrast, dronabinol induced a significant increase in TRBF from 38.9 ± 6.1 to 40.7 ± 6.7 µL/min (P < 0.001), which was accompanied by a significant increase in retinal venous oxygen content (from 0.129 ± 0.008 to 0.132 ± 0.009 mL O2/mL, P = 0.02). As no change in retinal arterial oxygen content occurred (P = 0.12), retinal oxygen extraction remained stable (2.2 ± 0.4 µL vs. 2.2 ± 0.4 µL O2/min, P = 0.29). Conclusions: These results indicate that orally administered dronabinol increases TRBF in healthy subjects without altering retinal oxygen extraction. The drug may therefore be a candidate for improving perfusion in patients with ocular vascular disease.


Assuntos
Dronabinol/administração & dosagem , Oxigênio/metabolismo , Fluxo Sanguíneo Regional , Vasos Retinianos/fisiologia , Administração Oral , Adulto , Velocidade do Fluxo Sanguíneo , Agonistas de Receptores de Canabinoides/administração & dosagem , Estudos Cross-Over , Relação Dose-Resposta a Droga , Método Duplo-Cego , Feminino , Voluntários Saudáveis , Humanos , Masculino , Vasos Retinianos/efeitos dos fármacos
9.
J Pain ; 22(9): 1040-1047, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33727159

RESUMO

Inflammatory Bowel Disease (IBD) is a life-long disorder that often begins between the ages of 15 and 30. Anecdotal reports suggest cannabinoids may be an effective treatment. This study sought to determine whether home cage wheel running is an effective method to assess IBD, and whether Tetrahydrocannabinol (THC), the primary psychoactive compound in cannabis, can restore wheel running depressed by IBD. Adolescent and adult female Sprague-Dawley rats were individually housed in a cage with a running wheel. Rats were injected with trinitrobenzene sulphonic acid (TNBS) into the rectum to induce IBD-like symptoms. One day later, both vehicle and TNBS treated rats were injected with a low dose of THC (0.32 mg/kg, s.c.) or vehicle. Administration of TNBS depressed wheel running in adolescent and adult rats. No antinociceptive effect of THC was evident when administered 1 day after TNBS. In fact, administration of THC prolonged TNBS-induced depression of wheel running for over 5 days in adolescent and adult rats. These results show that home cage wheel running is depressed by TNBS-induced IBD, making it a useful tool to evaluate the behavioral consequences of IBD, and that administration of THC, instead of producing antinociception, exacerbates TNBS-induced IBD. PERSPECTIVE: This article advances research on inflammatory bowel disease in two important ways: 1) Home cage wheel running is a new and sensitive tool to assess the behavioral consequences of IBD in adolescent and adult rats; and 2) Administration of the cannabinoid THC exacerbates the negative behavioral effects of IBD.


Assuntos
Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Agonistas de Receptores de Canabinoides/farmacologia , Dronabinol/farmacologia , Doenças Inflamatórias Intestinais/fisiopatologia , Corrida/fisiologia , Fatores Etários , Animais , Agonistas de Receptores de Canabinoides/administração & dosagem , Agonistas de Receptores de Canabinoides/efeitos adversos , Modelos Animais de Doenças , Dronabinol/administração & dosagem , Dronabinol/efeitos adversos , Feminino , Doenças Inflamatórias Intestinais/complicações , Ratos , Ratos Sprague-Dawley , Exacerbação dos Sintomas
10.
Pharmacol Biochem Behav ; 205: 173182, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33774007

RESUMO

Cannabinoid (CB) receptor agonists show robust antinociceptive effects in various pain models. However, most of the clinically potent CB1 receptor-active drugs derived from cannabis are considered concerning due to psychotomimetic side effects. Selective CB receptor ligands that do not induce CNS side effects are of clinical interest. The venoms of marine snail Conus are a natural source of various potent analgesic peptides, some of which are already FDA approved. In this study we evaluated the ability of several Conus venom extracts to interact with CB1 receptor. HEK293 cells expressing CB1 receptors were treated with venom extracts and CB1 receptor internalization was analyzed by immunofluorescence. Results showed C. textile (C. Tex) and C. miles (C. Mil) samples as the most potent. These were serially subfractionated by HPLC for subsequent analysis by internalization assays and for analgesic potency evaluated in the formalin test and after peripheral nerve injury. Intrathecal injection of C. Tex and C. Mil subfractions reduced flinching/licking behavior during the second phase of formalin test and attenuated thermal and mechanical allodynia in nerve injury model. Treatment with proteolytic enzymes reduced CB1 internalization of subfractions, indicating the peptidergic nature of CB1 active component. Further HPLC purification revealed two potent antinociceptive subfractions within C. Tex with CB1 and possible CB2 activity, with mild to no side effects in the CB tetrad assessment. CB conopeptides can be isolated from these active Conus venom-derived samples and further developed as novel analgesic agents for the treatment of chronic pain using cell based or gene therapy approaches.


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Dor Crônica/tratamento farmacológico , Venenos de Moluscos/farmacologia , Analgésicos/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Agonistas de Receptores de Canabinoides/administração & dosagem , Canabinoides/farmacologia , Dor Crônica/metabolismo , Caramujo Conus/química , Terapia Genética/métodos , Células HEK293 , Humanos , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Injeções Espinhais , Venenos de Moluscos/administração & dosagem , Medição da Dor/efeitos dos fármacos , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/metabolismo , Ratos , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo
11.
Anesth Analg ; 133(1): 251-262, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33560661

RESUMO

BACKGROUND: Cholestatic diseases are often accompanied by elevated plasma levels of endogenous opioid peptides, but it is still unclear whether central or peripheral mechanisms are involved in this process, and little is known about the change of pain threshold in these patients. The purpose of this study was to determine the preoperative pain threshold, postoperative morphine consumption, and central and peripheral ß-endorphin levels in patients with obstructive jaundice. This study also tests the hypothesis that activation of the cannabinoid receptor-2 (CB2R) in skin keratinocytes by endocannabinoids is the mechanism underlying circulating ß-endorphin elevation in patients with obstructive jaundice. METHODS: The electrical pain thresholds, 48-hour postoperative morphine consumption, concentrations of ß-endorphin in plasma and cerebrospinal fluid, skin and liver ß-endorphin expression, and plasma levels of endocannabinoids were measured in jaundiced (n = 32) and control (n = 32) patients. Male Sprague-Dawley rats and human keratinocytes (human immortalized keratinocyte cell line [HaCaT]) were used for the in vivo and in vitro experiments, respectively. Mechanical and thermal withdrawal latency, plasma level, and skin expression of ß-endorphin were measured in CB2R-antagonist-treated and control bile duct-ligated (BDL) rats. In cultured keratinocytes, the effect of CB2R agonist AM1241-induced ß-endorphin expression was observed and the phosphorylation of extracellular-regulated protein kinases 1/2, p38, and signal transducer and activator of transcription (STAT) pathways were investigated. RESULTS: This study found (1) the plasma level of ß-endorphin (mean ± standard error of the mean [SEM]) was 193.9 ± 9.6 pg/mL in control patients, while it was significantly increased in jaundiced patients (286.6 ± 14.5 pg/mL); (2) the electrical pain perception threshold and the electrical pain tolerance threshold were higher in patients with obstructive jaundice compared with controls, while the 48-hour postoperative morphine consumption was lower in the jaundiced patients; (3) there was no correlation between plasma ß-endorphin levels, electrical pain thresholds, and 48-hour postoperative morphine consumption in patients with obstructive jaundice; (4) the plasma level of the endogenous cannabinoid anandamide was increased in the jaundiced patients; (5) CB2R antagonist treatment of the BDL rats reduced ß-endorphin levels in plasma and skin keratinocytes, while it did not alter the nociceptive thresholds in BDL and control rats; (6) the endocannabinoid anandamide-induced ß-endorphin synthesis and release via CB2R in cultured keratinocytes; and (7) phosphorylation of extracellular-regulated protein kinases 1/2 is involved in the CB2R-agonist-induced ß-endorphin expression in keratinocytes. CONCLUSIONS: CB2R activation in keratinocytes by the endocannabinoid anandamide may play an important role in the peripheral elevation of ß-endorphin during obstructive jaundice.


Assuntos
Agonistas de Receptores de Canabinoides/administração & dosagem , Icterícia Obstrutiva/sangue , Queratinócitos/metabolismo , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/sangue , beta-Endorfina/sangue , Animais , Ácidos Araquidônicos/administração & dosagem , Linhagem Celular Transformada , Células Cultivadas , Endocanabinoides/administração & dosagem , Humanos , Indóis/farmacologia , Indóis/uso terapêutico , Icterícia Obstrutiva/diagnóstico , Icterícia Obstrutiva/tratamento farmacológico , Queratinócitos/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Morfina/administração & dosagem , Medição da Dor/efeitos dos fármacos , Medição da Dor/métodos , Alcamidas Poli-Insaturadas/administração & dosagem , Ratos , Ratos Sprague-Dawley
12.
Behav Brain Res ; 396: 112901, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32920013

RESUMO

Increasing evidence shows the interaction effect of cannabinoids and sleep on cognitive functions. In the present study, we aimed to investigate the interaction effect of cannabinoids type 1 receptor (CB1r) in the CA1 hippocampal region and sleep deprivation (SD) on passive avoidance memory and depressive-like behavior in male Wistar rats. We used water box apparatus to induce total SD (TSD) for 24 h. The shuttle-box was applied to assess passive avoidance memory and locomotion apparatus was applied to assess locomotor activity. Forced swim test (FST) was used to evaluate rat's behavior. ACPA (CB1r agonist) at the doses of 0.01, 0.001 and 0.0001 µg/rat, and AM251 (CB1r antagonist) at the doses of 100, 10 and 1 ng/rat were injected intra-CA1, five minutes after training via stereotaxic surgery. Results showed SD impaired memory. ACPA at the doses of 0.01 and 0.001 µg/rat impaired memory and at all doses did not alter the effect of SD on memory. AM251 by itself did not alter memory, while at lowest dose (1 ng/rat) restored SD-induced memory deficit. Both drugs induced depressive-like behavior in a dose-dependent manner. Furthermore, both drugs decreased swimming at some doses (ACPA at 0.0001 µg/rat, AM251 at 0.001 and 0.01 ng/rat). Also, ACPA at the highest dose increased climbing of SD rats. In conclusion, we suggest CB1r may interact with the effect of SD on memory. Additionally, cannabinoids may show a dose-dependent manner in modulating mood and behavior. Interestingly, CB1r agonists and antagonists may exhibit a similar effect in some behavioral assessments.


Assuntos
Aprendizagem da Esquiva/efeitos dos fármacos , Região CA1 Hipocampal , Agonistas de Receptores de Canabinoides/farmacologia , Antagonistas de Receptores de Canabinoides/farmacologia , Depressão , Locomoção/efeitos dos fármacos , Transtornos da Memória , Receptor CB1 de Canabinoide/metabolismo , Privação do Sono , Animais , Ácidos Araquidônicos/farmacologia , Comportamento Animal/efeitos dos fármacos , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/metabolismo , Agonistas de Receptores de Canabinoides/administração & dosagem , Antagonistas de Receptores de Canabinoides/administração & dosagem , Depressão/induzido quimicamente , Depressão/metabolismo , Depressão/fisiopatologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Masculino , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Piperidinas/farmacologia , Pirazóis/farmacologia , Ratos , Ratos Wistar , Privação do Sono/complicações , Privação do Sono/metabolismo , Natação
14.
Drug Dev Res ; 82(1): 7-11, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33190277

RESUMO

The COVID-19 pandemic caused by SARS-CoV-2 is a deadly disease afflicting millions. The pandemic continues affecting population due to nonavailability of drugs and vaccines. The pathogenesis and complications of infection mainly involve hyperimmune-inflammatory responses. Thus, therapeutic strategies rely on repurposing of drugs aimed at reducing infectivity and inflammation and modulate immunity favourably. Among, numerous therapeutic targets, the endocannabinoid system, particularly activation of cannabinoid type-2 receptors (CB2R) emerged as an important one to suppress the hyperimmune-inflammatory responses. Recently, potent antiinflammatory, antiviral and immunomodulatory properties of CB2R selective ligands of endogenous, plant, and synthetic origin were showed mediating CB2R selective functional agonism. CB2R activation appears to regulate numerous signaling pathways to control immune-inflammatory mediators including cytokines, chemokines, adhesion molecules, prostanoids, and eicosanoids. Many CB2R ligands also exhibit off-target effects mediating activation of PPARs, opioids, and TRPV, suggestive of adjuvant use with existing drugs that may maximize efficacy synergistically and minimize therapeutic doses to limit adverse/ side effects. We hypothesize that CB2R agonists, due to immunomodulatory, antiinflammatory, and antiviral properties may show activity against COVID-19. Based on the organoprotective potential, relative safety, lack of psychotropic effects, and druggable properties, CB2R selective ligands might make available promising candidates for further investigation.


Assuntos
Tratamento Farmacológico da COVID-19 , Agonistas de Receptores de Canabinoides/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Imunidade Celular/efeitos dos fármacos , Receptor CB2 de Canabinoide/agonistas , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/metabolismo , COVID-19/imunologia , COVID-19/metabolismo , Agonistas de Receptores de Canabinoides/metabolismo , Humanos , Imunidade Celular/fisiologia , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/metabolismo , Receptor CB2 de Canabinoide/imunologia , Receptor CB2 de Canabinoide/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/metabolismo
15.
J Comp Neurol ; 529(9): 2332-2346, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33368252

RESUMO

The use and abuse of cannabis can be associated with significant pathophysiology, however, it remains unclear whether (1) acute administration of Δ-9-tetrahydrocannabinol (THC) during early adulthood alters the cannabinoid type 1 (CB1 ) receptor localization and expression in cells of the brain, and (2) THC produces structural brain changes. Here we use electron microscopy and a highly sensitive pre-embedding immunogold method to examine CB1 receptors in the hippocampus cornu ammonis subfield 1 (CA1) 30 min after male mice were exposed to a single THC injection (5 mg/kg). The findings show that acute exposure to THC can significantly decrease the percentage of CB1 receptor immunopositive terminals making symmetric synapses, mitochondria, and astrocytes. The percentage of CB1 receptor-labeled terminals forming asymmetric synapses was unaffected. Lastly, CB1 receptor expression was significantly lower at terminals of symmetric and asymmetric synapses as well as in mitochondria. Structurally, CA1 dendrites were significantly larger, and contained more spines and mitochondria following acute THC administration. The area of the dendritic spines, synaptic terminals, mitochondria, and astrocytes decreased significantly following acute THC exposure. Altogether, these results indicate that even a single THC exposure can have a significant impact on CB1 receptor expression, and can alter CA1 ultrastructure, within 30 min of drug exposure. These changes may contribute to the behavioral alterations experienced by young individuals shortly after cannabis intoxication.


Assuntos
Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/ultraestrutura , Agonistas de Receptores de Canabinoides/administração & dosagem , Dronabinol/administração & dosagem , Receptor CB1 de Canabinoide/biossíntese , Receptor CB1 de Canabinoide/ultraestrutura , Fatores Etários , Animais , Região CA1 Hipocampal/efeitos dos fármacos , Imuno-Histoquímica/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor CB1 de Canabinoide/agonistas
16.
Behav Brain Res ; 401: 112996, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33171147

RESUMO

Cannabinoid receptor type 1 (CB1R) is widely distributed in the substantia nigra pars reticulata (SNpr). However, the role of CB1R at the SNpr level in threatening situations is poorly understood. We investigated the role of CB1R in the SNpr on the expression of fear responses in mice confronted with urutu-cruzeiro pit vipers. First, a bidirectional neurotracer was injected into the SNpr; then, immunostaining of the vesicular GABA transporter was conducted at the levels of the striatum (CPu) and deep layers of the superior colliculus (dlSC). In addition, CB1R immunostaining and GABA labelling were performed in the SNpr. Using a prey-versus-snake paradigm, mice were pretreated with the CB1R antagonist AM251 (100 pmol) and treated with the endocannabinoid anandamide (AEA, 5 pmol) in the SNpr, followed by bicuculline (40 ng) in the dlSC, and were then confronted with a snake. Bidirectional neural tract tracers associated with immunofluorescence showed the GABAergic striatonigral disinhibitory and nigrotectal inhibitory pathways. Furthermore, we showed that CB1R labelling was restricted to axonal fibres surrounding SNpr GABAergic cells. We also demonstrated a decrease in the defensive behaviours of mice treated with AEA in the SNpr, but this effect was blocked by pre-treatment with AM251 in this structure. Taken together, our results show that the panicolytic consequences of the AEA enhancement in the SNpr are signalled by CB1R, suggesting that CB1R localised in axon terminals of CPu GABAergic neurons in the SNpr modulates the activity of the nigrotectal GABAergic pathway during the expression of defensive behaviours in threatening situations.


Assuntos
Comportamento Animal/efeitos dos fármacos , Agonistas de Receptores de Canabinoides/farmacologia , Antagonistas de Receptores de Canabinoides/farmacologia , Corpo Estriado/metabolismo , Cadeia Alimentar , Pânico/fisiologia , Parte Reticular da Substância Negra/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Colículos Superiores/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo , Animais , Ácidos Araquidônicos/farmacologia , Agonistas de Receptores de Canabinoides/administração & dosagem , Antagonistas de Receptores de Canabinoides/administração & dosagem , Crotalinae , Endocanabinoides/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais/metabolismo , Técnicas de Rastreamento Neuroanatômico , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Pirazóis/farmacologia , Receptor CB1 de Canabinoide/antagonistas & inibidores , Coloração e Rotulagem
17.
Neuropharmacology ; 184: 108416, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33271186

RESUMO

Early-life stress induces an abnormal brain development and increases the risk of psychiatric diseases, including depression, anxiety and substance use disorders. We have developed a reliable model for maternal neglect, named maternal separation with early weaning (MSEW) in CD1 mice. In the present study, we evaluated the long-term effects on anxiety-like behaviours, nociception as well as the Iba1-positive microglial cells in this model in comparison to standard nest (SN) mice. Moreover, we investigated whether MSEW alters the cannabinoid agonist WIN55,212-2 effects regarding reward, spatial and emotional memories, tolerance to different cannabinoid responses, and physical dependence. Adult male offspring of MSEW group showed impaired responses on spatial and emotional memories after a repeated WIN55,212-2 treatment. These behavioural impairments were associated with an increase in basolateral amygdala and hippocampal CB1-expressing fibres and higher number of CB1-containing cells in cerebellum. Additionally, MSEW promotes a higher number of Iba1-positive microglial cells in basolateral amygdala and cerebellum. As for the cannabinoid-induced effects, rearing conditions did not influence the rewarding effects of WIN55,212-2 in the conditioned place preference paradigm. However, MSEW mice showed a delay in the development of tolerance to the cannabinoid effects. Moreover, CB1-positive fibres were reduced in limbic areas in MSEW mice after cannabinoid withdrawal precipitated with the CB1 antagonist SR141617A. These findings support that early-life stress promotes behavioural and molecular changes in the sensitivity to cannabinoids, which are mediated by alterations in CB1 signalling in limbic areas and it induces an increased Iba1-microglial marker which could interfere in emotional memories formation.


Assuntos
Benzoxazinas , Encéfalo , Agonistas de Receptores de Canabinoides , Privação Materna , Morfolinas , Naftalenos , Receptor CB1 de Canabinoide , Animais , Feminino , Masculino , Camundongos , Gravidez , Animais Recém-Nascidos , Aprendizagem da Esquiva/efeitos dos fármacos , Aprendizagem da Esquiva/fisiologia , Benzoxazinas/administração & dosagem , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Agonistas de Receptores de Canabinoides/administração & dosagem , Antagonistas de Receptores de Canabinoides/administração & dosagem , Expressão Gênica , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Morfolinas/administração & dosagem , Naftalenos/administração & dosagem , Medição da Dor/efeitos dos fármacos , Medição da Dor/métodos , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/biossíntese , Rimonabanto/administração & dosagem , Estresse Psicológico
18.
Pharmacology ; 106(1-2): 106-113, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33105141

RESUMO

INTRODUCTION: Uterus transplantation is a complex surgical procedure. Uterine ischemia/reperfusion (IR) damage occurring in this process may cause loss of function in the uterus. Cell damage must be prevented for a healthy uterine function and successful transplantation. Cannabinoids, with their increasing clinical use, are substances with strong anti-inflammatory and antioxidative effects and have a role in immune system regulation. However, their efficacy in uterine IR damage is still unknown. This study provides information on the potential applications cannabinoids agonist JWH-133 in uterine IR damage and, hence, in the transplant process. METHODS: Rats were divided into 4 groups (n = 8), performed uterine IR, and treated 2 groups with JWH-133. After anesthesia, ischemia was applied for 1 h to the uterus while reperfusion was applied for 3 h. After the experiment, malondialdehyde (MDA) levels and phosphorylated nuclear factor-kappa B (p-NF-κB) expression were examined in the tissue samples. Also, cell damage was evaluated by histopathological imaging and TUNEL staining. RESULTS: In the uterine IR group, NF-κB expression and MDA levels were detected at high levels. Histopathological examinations and TUNEL staining revealed extensive cell damage. On the other hand, in groups treated with JWH-133, dose-dependent NF-κB expression and MDA levels decreased (p < 0.05). Depending on the dose, the rate of surviving cells increased in TUNEL staining results. CONCLUSION: The results showed that JWH-133 was effective in reducing uterine IR damage. Cannabinoids may be a new alternative that may be used in the transplantation process in the future.


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Canabinoides/farmacologia , Substâncias Protetoras/farmacologia , Receptor CB2 de Canabinoide/agonistas , Traumatismo por Reperfusão/prevenção & controle , Útero/lesões , Animais , Apoptose/efeitos dos fármacos , Agonistas de Receptores de Canabinoides/administração & dosagem , Canabinoides/administração & dosagem , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Marcação In Situ das Extremidades Cortadas , Injeções Intraperitoneais , Malondialdeído/metabolismo , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Substâncias Protetoras/administração & dosagem , Ratos Wistar , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/metabolismo , Útero/efeitos dos fármacos , Útero/metabolismo , Útero/patologia
19.
Eur Rev Med Pharmacol Sci ; 24(22): 11871-11882, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33275258

RESUMO

OBJECTIVE: The members of the matrix metalloproteinase (MMP) family and cannabinoids (CBs) are reportedly associated with hippocampus-dependent memory functions. However, the effects of endogenously formed CBs on hippocampal long-term potentiation remain unknown. The present study aimed to investigate the changes in the gene and protein expression levels of matrix metallopeptidase 9 (MMP-9), phosphatase and tensin homolog (PTEN), and NOTCH receptor 1 (NOTCH1) in rat hippocampal tissues treated with anandamide (AEA), AM251, 6-iodopravadolin (AM630), and N-[4-{[(3,4-Dimethyl-5-isoxazolyl)amino]sulfonyl}phenyl] (ML193). MATERIALS AND METHODS: The subjects were divided into 10 groups (n = five per group). The pharmaceuticals were administered via intraperitoneal injection once a day for seven days, except for the control group. The resected hippocampal tissues were then evaluated using a quantitative real-time polymerase chain reaction (RT-qPCR) and Western blot analysis. The data obtained were statistically analyzed, and p < 0.01 was considered statistically significant. RESULTS: Contrary to the literature, the changes in MMP-9 expression were not statistically significant, but the changes in PTEN and NOTCH1 were. The findings of this in vivo experimental study revealed that the agonists and antagonists acting on the CB system have significant molecular effects on hippocampal tissue. CONCLUSIONS: The changes in gene and protein expressions may be one of the reasons for the neurodegenerative processes observed in patients using these agonists and antagonists, whose effects on the CB system have not been fully explained yet. Our study can contribute to the literature as it is the first study investigating the MMP-9, PTEN and NOTCH1 gene and protein expression.


Assuntos
Ácidos Araquidônicos/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Endocanabinoides/farmacologia , Hipocampo/efeitos dos fármacos , Alcamidas Poli-Insaturadas/farmacologia , Animais , Ácidos Araquidônicos/administração & dosagem , Agonistas de Receptores de Canabinoides/administração & dosagem , Método Duplo-Cego , Endocanabinoides/administração & dosagem , Hipocampo/metabolismo , Injeções Intraperitoneais , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , PTEN Fosfo-Hidrolase/genética , Alcamidas Poli-Insaturadas/administração & dosagem , Ratos , Ratos Wistar , Receptor Notch1/genética
20.
Best Pract Res Clin Anaesthesiol ; 34(3): 463-477, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33004159

RESUMO

Chronic pain can be recurrent or constant pain that lasts for longer than 3 months and can result in disability, suffering, and a physical disturbance. Related to the complex nature of chronic pain, treatments have a pharmacological and non-pharmacological approach. Due to the opioid epidemic, alternative therapies have been introduced, and components of the plant Cannabis Sativa, Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) have gained recent interest as a choice of treatment. The exact mechanism for CBD is currently unknown, but unlike the CBD's psychoactive counterpart, THC, the side effects of CBD itself have been shown to be overall much more benign. The current pharmaceutical products for the treatment of chronic pain are known as nabiximols, and they contain a ratio of THC combined with CBD, which has been promising. This review focuses on the treatment efficacy of CBD, THC: CBD-based treatments for chronic pain and adverse events with each.


Assuntos
Analgésicos/administração & dosagem , Canabidiol/administração & dosagem , Agonistas de Receptores de Canabinoides/administração & dosagem , Dor Crônica/tratamento farmacológico , Dronabinol/administração & dosagem , Dor Crônica/diagnóstico , Dor Crônica/fisiopatologia , Estudos Cross-Over , Vias de Administração de Medicamentos , Combinação de Medicamentos , Quimioterapia Combinada , Humanos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA