Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 24(1): 23, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36647013

RESUMO

BACKGROUND: It is inevitable to change the function or expression of genes during the environmental adaption of species. Both the giant panda (Ailuropoda melanoleuca) and red panda (Ailurus fulgens) belong to Carnivora and have developed similar adaptations to the same dietary switch to bamboos at the morphological and genomic levels. However, the genetic adaptation at the gene expression level is unclear. Therefore, we aimed to examine the gene expression patterns of giant and red panda convergent specialized bamboo-diets. We examined differences in liver and pancreas transcriptomes between the two panda species and other non-herbivorous species. RESULTS: The clustering and PCA plots suggested that the specialized bamboo diet may drive similar expression shifts in these two species of pandas. Therefore, we focused on shared liver and pancreas DEGs (differentially expressed genes) in the giant and red panda relative to other non-herbivorous species. Genetic convergence occurred at multiple levels spanning carbohydrate metabolism, lipid metabolism, and lysine degradation. The shared adaptive convergence DEGs in both organs probably be an evolutionary response to the high carbohydrate, low lipid and lysine bamboo diet. Convergent expression of those nutrient metabolism-related genes in both pandas was an intricate process and subjected to multi-level regulation, including DNA methylation and transcription factor. A large number of lysine degradation and lipid metabolism related genes were hypermethylated in promoter regions in the red panda. Most genes related to carbohydrate metabolism had reduced DNA methylation with increased mRNA expression in giant pandas. Unlike the red panda, the core gene of the lysine degradation pathway (AASS) doesn't exhibit hypermethylation modification in the giant panda, and dual-luciferase reporter assay showed that transcription factor, NR3C1, functions as a transcriptional activator in AASS transcription through the binding to AASS promoter region. CONCLUSIONS: Our results revealed the adaptive expressions and regulations of the metabolism-related genes responding to the unique nutrients in bamboo food and provided data accumulation and research hints for the future revelation of complex mechanism of two pandas underlying convergent adaptation to a specialized bamboo diet.


Assuntos
Ailuridae , Dieta , Ursidae , Animais , Dieta/veterinária , Expressão Gênica , Lisina/metabolismo , Ursidae/genética , Ursidae/metabolismo , Ailuridae/genética , Ailuridae/metabolismo
2.
Genes (Basel) ; 13(8)2022 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-36011357

RESUMO

Both the giant panda (Ailuropoda melanoleuca) and red panda (Ailurus fulgens) belong to the order Carnivora, but have changed their dietary habits to eating bamboo exclusively. The convergent evolution characteristics of their morphology, genome and gut flora have been found in the two pandas. However, the research on the convergent adaptation of their digestion and metabolism to the bamboo diet, mediated by the dietary shift of the two pandas at the gene-expression and epigenetic regulation levels, is still lacking. We therefore used RNA sequencing among five species (two pandas and three non-herbivore mammals) and bisulfite sequencing among three species (two pandas and a carnivore ferret) to sequence key digestion and metabolism tissues (stomach and small intestine). Our results provide evidence that the convergent differentially expressed genes (related to carbohydrate utilization, bile secretion, Lys and Arg metabolism, vitamin B12 utilization and cyanide detoxification) of the two pandas are adaptive responses to the bamboo diet containing low lipids, low Lys and Arg, low vitamin B12 and high cyanide. We also profiled the genome-wide methylome maps of giant panda, red panda and ferret, and the results indicated that the promoter methylation of the two pandas may regulate digestive and metabolic genes to adapt to sudden environmental changes, and then, transmit genetic information to future generations to evolve into bamboo eaters. Taken together, our study provides new insights into the molecular mechanisms of the dietary shift and the adaptation to a strict bamboo diet in both pandas using comparative transcriptomics and methylomics.


Assuntos
Ailuridae , Carnívoros , Ursidae , Ailuridae/genética , Ailuridae/metabolismo , Animais , Carnívoros/genética , Cianetos/metabolismo , Dieta , Epigênese Genética , Furões/genética , Furões/metabolismo , Transcriptoma/genética , Ursidae/genética , Vitamina B 12/metabolismo
3.
BMC Genomics ; 22(1): 228, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33794768

RESUMO

BACKGROUND: The red panda (Ailurus fulgens) is a riddle of morphology, making it hard to tell whether it is an ursid, a procyonid, a mustelid, or a member of its own family. Previous genetic studies have given quite contradictory results as to its phylogenetic placement. RESULTS: A recently developed whole genome-based algorithm, the Whole Genome K-mer Signature algorithm was used to analyze the genomes of 28 species of Carnivora, including A. fulgens and several felid, ursid, mustelid, one mephitid species. This algorithm has the advantage of holistically using all the information in the genomes of these species. Being a genomics-based algorithm, it also reduces stochastic error to a minimum. Besides the whole genome, the mitochondrial DNA from 52 mustelids, mephitids, ursids, procyonids and A. fulgens were aligned to draw further phylogenetic inferences. The results from the whole genome study suggested that A. fulgens is a member of the mustelid clade (p = 9·10- 97). A. fulgens also separates from the mephitid Spilogala gracilis. The giant panda, Ailuropoda melanoleuca also clusters away from A. fulgens, together with other ursids (p = 1.2·10- 62). This could be due to the geographic isolation of A. fulgens from other mustelid species. However, results from the mitochondrial study as well as neighbor-joining methods based on the sequence identity matrix suggests that A. fulgens forms a monophyletic group. A Maximum Likelihood tree suggests that A. fulgens and Ursidae form a monophyletic group, although the bootstrap value is weak. CONCLUSIONS: The main conclusion that we can draw from this study is that on a whole genome level A. fulgens possibly belongs to the mustelid clade, and not an ursid or a mephitid. This despite the fact that previously some researchers classified A. fulgens and A. melanoleuca as relatives. Since the genotype determines the phenotype, molecular-based classification takes precedence over morphological classifications. This affirms the results of some previous studies, which studied smaller portions of the genome. However, mitochondrial analyses based on neighbor-joining and maximum likelihood methods suggest otherwise.


Assuntos
Ailuridae , Carnívoros , Ursidae , Ailuridae/genética , Animais , Carnívoros/genética , DNA Mitocondrial/genética , Filogenia , Ursidae/genética
4.
Zoo Biol ; 40(3): 238-251, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33689172

RESUMO

Red pandas (Ailurus fulgens) are small charismatic mammals native across montane southern Asia, now endangered by human impacts. They are considered "living fossils" as the sole member of a distinct family, warranting higher conservation priority. Therefore, ex situ breeding programs were initiated to prevent extinction and act as genetic reservoirs for reintroduction, although complicated by apparent taxonomic subdivision. This study investigated whether the separation of captive red pandas in the North American Species Survival Plan® by putative subspecies was justified. A 383-bp segment of mitochondrial DNA control region was therefore sequenced from 67 members representing matriarchal lineages of both groups. A network analysis placed the 11 haplotypes found into separate but closely connected clusters, with one group more strongly related than the other. Statistical analyses and diversity indices corroborated differentiation between the two management units. Phylogenetic analyses employing multiple outgroups confirmed, although not robustly, reciprocal monophyly of the four- and seven-haplotype clades representing putative subspecies Ailurus fulgens fulgens and Ailurus fulgens styani, respectively. These empirical results are adequate to justify continued independent management of these zoo subpopulations, but cannot be definitive for taxonomic classification due to limited sampling from their native range. They will, however, be useful in evaluating long-term genetic diversity changes, focusing management efforts on newly revealed evolutionary limitations, and comparing with an assessment of wild red pandas to determine how representative zoo populations are for reintroduction purposes. Maintaining genetic diversity and population structure of endangered species is essential to protect evolutionary potential and adaptations for long-term sustainability.


Assuntos
Ailuridae/genética , Animais de Zoológico , Espécies em Perigo de Extinção , Especiação Genética , Animais , Conservação dos Recursos Naturais , Variação Genética , Haplótipos , Filogenia , Estados Unidos
5.
Sci Rep ; 11(1): 65, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420314

RESUMO

Pleistocene glaciations facilitated climatic oscillations that caused for enormous heterogeneity in landscapes, and consequently affected demography and distribution patterns of the mountain endemic species. In this context, we investigated demographic history and population genetic structure of red panda, distributed along the geographical proximity in the southern edge of the Qinghai-Tibetan Plateau. Bayesian based phylogeny demonstrated that red panda diverged about 0.30 million years ago (CI 0.23-0.39) into two phylogenetic (sub) species, that correspond to the middle-late Pleistocene transition. The observed intraspecific clades with respect to Himalayan and Chinese red panda indicated restricted gene flow resulting from the Pleistocene glaciations in the eastern and southern Tibetan Plateau. We found Himalayan red panda population at least in KL-India declined abruptly in last 5-10 thousand years after being under demographic equilibrium. We suggest revisiting the ongoing conservation activities through cross border collaboration by developing multi-nationals, and multi-lateral species-oriented conservation action plans to support the red panda populations in transboundary landscapes.


Assuntos
Ailuridae , Ailuridae/genética , Animais , China , Demografia , Genética Populacional , Geologia , Haplótipos/genética , Camada de Gelo , Índia , Filogenia , Tibet
6.
Sci China Life Sci ; 64(1): 88-95, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32617829

RESUMO

Gut microbiota plays a critical role in host physiology and health. The coevolution between the host and its gut microbes facilitates animal adaptation to its specific ecological niche. Multiple factors such as host diet and phylogeny modulate the structure and function of gut microbiota. However, the relative contribution of each factor in shaping the structure of gut microbiota remains unclear. The giant (Ailuropoda melanoleuca) and red (Ailurus styani) pandas belong to different families of order Carnivora. They have evolved as obligate bamboo-feeders and can be used as a model system for studying the gut microbiome convergent evolution. Here, we compare the structure and function of gut microbiota of the two pandas with their carnivorous relatives using 16S rRNA and metagenome sequencing. We found that both panda species share more similarities in their gut microbiota structure with each other than each species shares with its carnivorous relatives. This indicates that the specialized herbivorous diet rather than host phylogeny is the dominant driver of gut microbiome convergence within Arctoidea. Metagenomic analysis revealed that the symbiotic gut microbiota of both pandas possesses a high level of starch and sucrose metabolism and vitamin B12 biosynthesis. These findings suggest a diet-driven convergence of gut microbiomes and provide new insight into host-microbiota coevolution of these endangered species.


Assuntos
Ailuridae/genética , Carnívoros/genética , Dieta , Evolução Molecular , Microbioma Gastrointestinal/genética , Variação Genética , Ursidae/genética , Ailuridae/classificação , Ailuridae/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Bambusa/fisiologia , Carnívoros/classificação , Carnívoros/microbiologia , Fezes/microbiologia , Comportamento Alimentar/fisiologia , Metagenômica/métodos , Filogenia , RNA Ribossômico 16S/genética , Especificidade da Espécie , Ursidae/classificação , Ursidae/microbiologia
7.
Sci Rep ; 10(1): 15446, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32963325

RESUMO

Wildlife management in rapid changing landscapes requires critical planning through cross cutting networks, and understanding of landscape features, often affected by the anthropogenic activities. The present study demonstrates fine-scale spatial patterns of genetic variation and contemporary gene flow of red panda (Ailurus fulgens) populations with respect to landscape connectivity in Kangchenjunga Landscape (KL), India. The study found about 1,309.54 km2 area suitable for red panda in KL-India, of which 62.21% area fell under the Protected Area network. We identified 24 unique individuals from 234 feces collected at nine microsatellite loci. The spatially explicit and non-explicit Bayesian clustering algorithms evident to exhibit population structuring and supported red panda populations to exist in meta-population frame work. In concurrence to the habitat suitability and landscape connectivity models, gene flow results supported a contemporary asymmetric movement of red panda by connecting KL-India in a crescent arc. We demonstrate the structural-operational connectivity of corridors in KL-India that facilitated red panda movement in the past. We also seek for cooperation in Nepal, Bhutan and China to aid in preparing for a comprehensive monitoring plan for the long-term conservation and management of red panda in trans-boundary landscapes.


Assuntos
Ailuridae/genética , Biodiversidade , Ecossistema , Fluxo Gênico , Variação Genética , Genética Populacional/métodos , Movimento , Ailuridae/fisiologia , Animais , Teorema de Bayes , Índia , Repetições de Microssatélites , Dinâmica Populacional
9.
Sci Adv ; 6(9): eaax5751, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32133395

RESUMO

The red panda (Ailurus fulgens), an endangered Himalaya-endemic mammal, has been classified as two subspecies or even two species - the Himalayan red panda (A. fulgens) and the Chinese red panda (Ailurus styani) - based on differences in morphology and biogeography. However, this classification has remained controversial largely due to lack of genetic evidence, directly impairing scientific conservation management. Data from 65 whole genomes, 49 Y-chromosomes, and 49 mitochondrial genomes provide the first comprehensive genetic evidence for species divergence in red pandas, demonstrating substantial inter-species genetic divergence for all three markers and correcting species-distribution boundaries. Combined with morphological evidence, these data thus clearly define two phylogenetic species in red pandas. We also demonstrate different demographic trajectories in the two species: A. styani has experienced two population bottlenecks and one large population expansion over time, whereas A. fulgens has experienced three bottlenecks and one very small expansion, resulting in very low genetic diversity, high linkage disequilibrium, and high genetic load.


Assuntos
Ailuridae/genética , Variação Genética , Modelos Genéticos , Filogenia , Cromossomo Y/genética , Animais , Masculino , Especificidade da Espécie
10.
Integr Zool ; 13(2): 152-159, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29168616

RESUMO

Taste 2 receptors (TAS2R) mediate bitterness perception in mammals, thus are called bitter taste receptors. It is believed that these genes evolved in response to species-specific diets. The giant panda (Ailuropoda melanoleuca) and red panda (Ailurus fulgens styani) in the order Carnivora are specialized herbivores with an almost exclusive bamboo diet (>90% bamboo). Because bamboo is full of bitter tasting compounds, we hypothesized that adaptive evolution has occurred at TAS2R genes in giant and red pandas throughout the course of their dietary shift. Here, we characterized 195 TAS2R genes in 9 Carnivora species and examined selective pressures on these genes. We found that both pandas harbor more putative functional TAS2R genes than other carnivores, and pseudogenized TAS2R genes in the giant panda are different from the red panda. The purifying selection on TAS2R1, TAS2R9 and TAS2R38 in the giant panda, and TAS2R62 in the red panda, has been strengthened throughout the course of adaptation to bamboo diet, while selective constraint on TAS2R4 and TAS2R38 in the red panda is relaxed. Remarkably, a few positively selected sites on TAS2R42 have been specifically detected in the giant panda. These results suggest an adaptive response in both pandas to a dietary shift from carnivory to herbivory, and TAS2R genes evolved independently in the 2 pandas. Our findings provide new insight into the molecular basis of mammalian sensory evolution and the process of adaptation to new ecological niches.


Assuntos
Adaptação Fisiológica/genética , Ailuridae/genética , Dieta , Evolução Molecular , Receptores Acoplados a Proteínas G/genética , Ursidae/genética , Ailuridae/fisiologia , Animais , Filogenia , Ursidae/fisiologia
11.
Proc Natl Acad Sci U S A ; 114(5): 1081-1086, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28096377

RESUMO

Phenotypic convergence between distantly related taxa often mirrors adaptation to similar selective pressures and may be driven by genetic convergence. The giant panda (Ailuropoda melanoleuca) and red panda (Ailurus fulgens) belong to different families in the order Carnivora, but both have evolved a specialized bamboo diet and adaptive pseudothumb, representing a classic model of convergent evolution. However, the genetic bases of these morphological and physiological convergences remain unknown. Through de novo sequencing the red panda genome and improving the giant panda genome assembly with added data, we identified genomic signatures of convergent evolution. Limb development genes DYNC2H1 and PCNT have undergone adaptive convergence and may be important candidate genes for pseudothumb development. As evolutionary responses to a bamboo diet, adaptive convergence has occurred in genes involved in the digestion and utilization of bamboo nutrients such as essential amino acids, fatty acids, and vitamins. Similarly, the umami taste receptor gene TAS1R1 has been pseudogenized in both pandas. These findings offer insights into genetic convergence mechanisms underlying phenotypic convergence and adaptation to a specialized bamboo diet.


Assuntos
Ailuridae/genética , Evolução Biológica , Genoma , Ursidae/genética , Adaptação Fisiológica , Ailuridae/classificação , Animais , Bambusa/química , Digestão/genética , Comportamento Alimentar , Herbivoria/genética , Mamíferos/classificação , Mamíferos/genética , Fenótipo , Filogenia , Pseudogenes , Receptores Acoplados a Proteínas G/genética , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie , Papilas Gustativas , Dedos do Pé/anatomia & histologia , Dedos do Pé/fisiologia , Ursidae/classificação
13.
PLoS One ; 9(2): e87885, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24498390

RESUMO

The red panda is the only living species of the genus Ailurus. Like giant pandas, red pandas are also highly specialized to feed mainly on highly fibrous bamboo. Although several studies have focused on the gut microbiota in the giant panda, little is known about the gut microbiota of the red panda. In this study, we characterized the fecal microbiota from both wild (n = 16) and captive (n = 6) red pandas using a pyrosequecing based approach targeting the V1-V3 hypervariable regions of the 16S rRNA gene. Distinct bacterial communities were observed between the two groups based on both membership and structure. Wild red pandas maintained significantly higher community diversity, richness and evenness than captive red pandas, the communities of which were skewed and dominated by taxa associated with Firmicutes. Phylogenetic analysis of the top 50 OTUs revealed that 10 of them were related to known cellulose degraders. To the best of our knowledge, this is the first study of the gut microbiota of the red panda. Our data suggest that, similar to the giant panda, the gut microbiota in the red panda might also play important roles in the digestion of bamboo.


Assuntos
Ailuridae/microbiologia , Fezes/microbiologia , Trato Gastrointestinal/microbiologia , Metagenoma , Microbiota/genética , Ailuridae/genética , Animais , Celulose/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Especificidade da Espécie
14.
Mol Ecol ; 20(13): 2662-75, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21585580

RESUMO

Clarification of the genetic structure and population history of a species can shed light on the impacts of landscapes, historical climate change and contemporary human activities and thus enables evidence-based conservation decisions for endangered organisms. The red panda (Ailurus fulgens) is an endangered species distributing at the edge of the Qinghai-Tibetan Plateau and is currently subject to habitat loss, fragmentation and population decline, thus representing a good model to test the influences of the above-mentioned factors on a plateau edge species. We combined nine microsatellite loci and 551 bp of mitochondrial control region (mtDNA CR) to explore the genetic structure and demographic history of this species. A total of 123 individuals were sampled from 23 locations across five populations. High levels of genetic variation were identified for both mtDNA and microsatellites. Phylogeographic analyses indicated little geographic structure, suggesting historically wide gene flow. However, microsatellite-based Bayesian clustering clearly identified three groups (Qionglai-Liangshan, Xiaoxiangling and Gaoligong-Tibet). A significant isolation-by-distance pattern was detected only after removing Xiaoxiangling. For mtDNA data, there was no statistical support for a historical population expansion or contraction for the whole sample or any population except Xiaoxiangling where a signal of contraction was detected. However, Bayesian simulations of population history using microsatellite data did pinpoint population declines for Qionglai, Xiaoxiangling and Gaoligong, demonstrating significant influences of human activity on demography. The unique history of the Xiaoxiangling population plays a critical role in shaping the genetic structure of this species, and large-scale habitat loss and fragmentation is hampering gene flow among populations. The implications of our findings for the biogeography of the Qinghai-Tibetan Plateau, subspecies classification and conservation of red pandas are discussed.


Assuntos
Ailuridae/genética , DNA Mitocondrial/genética , Variação Genética/genética , Genética Populacional , Repetições de Microssatélites/genética , Ailuridae/classificação , Animais , Sequência de Bases , Teorema de Bayes , Conservação dos Recursos Naturais , DNA Mitocondrial/química , Ecossistema , Espécies em Perigo de Extinção , Fluxo Gênico , Haplótipos , Humanos , Modelos Biológicos , Dados de Sequência Molecular , Filogeografia , Análise de Sequência de DNA , Tibet
15.
Mol Ecol Resour ; 11(2): 400-3, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21429153

RESUMO

Molecular sexing is a key component in the investigation of wild populations. In this study, we developed a fast, accurate and reliable amplification refractory mutation system (ARMS) technique for sex determination of red panda based on the exon 4 of the ZFX/ZFY gene. The amplicons were distinguished simply by agarose gel electrophoresis, exhibiting one fragment in females (X: 300 bp) and two in males (X: 300 bp, Y: 166 bp). Robustness of this ARMS system was confirmed by testing both 43 captive red pandas using DNA samples with known-sex and 10 wild red pandas using faecal DNA samples with unknown sex.


Assuntos
Ailuridae/genética , Eletroforese em Gel de Ágar/métodos , Análise para Determinação do Sexo/métodos , Animais , Sequência de Bases , Éxons , Feminino , Masculino , Dados de Sequência Molecular , Mutação
16.
J Anat ; 215(6): 611-35, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19930516

RESUMO

Within the order Carnivora, the phylogeny of the red panda (Ailurus fulgens) is contentious, with morphological and molecular studies supporting a wide range of possible relationships, including close ties to procyonids, ursids, mustelids and mephitids. This study provides additional morphological data, including muscle maps, for the forelimb of Ailurus, based on the dissection of four cadavers from the National Zoological Park, Washington, DC, USA. The red panda forelimb is characterized by a number of primitive features, including the lack of m. rhomboideus profundus, a humeral insertion for m. cleidobrachialis, the presence of mm. brachioradialis, articularis humeri and coracobrachialis, a single muscle belly for m. extensor digitorum lateralis with tendons to digits III-V, four mm. lumbricales, and the presence of mm. flexor digitorum brevis manus, adductores digiti I, II and V, and abductor digiti I and V. Red pandas resemble Ailuropoda, mustelids and some procyonids in possessing a soft tissue origin of m. flexor digitorum superficialis. In addition, red pandas are similar to ursids and procyonids in having a variable presence of m. biceps brachii caput breve. Furthermore, Ailurus and some ursids lack m. rhomboideus capitis. The forelimb muscle maps from this study represent a valuable resource for analyzing the functional anatomy of fossil ailurids and some notes on the Miocene ailurid, Simocyon batalleri, are presented.


Assuntos
Ailuridae/classificação , Evolução Biológica , Membro Anterior/anatomia & histologia , Ailuridae/genética , Animais , Feminino , Fósseis , Masculino , Músculo Esquelético/anatomia & histologia , Filogenia , Especificidade da Espécie
17.
Mol Phylogenet Evol ; 53(3): 907-22, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19699810

RESUMO

Few species have been of more disputed affinities than the red or lesser panda (Ailurus fulgens), an endangered endemic Southeast Asian vegetarian member of the placental mammalian order Carnivora. This peculiar carnivoran has mostly been classified with raccoons (Procyonidae) or bears (Ursidae), grouped with the giant panda (Ailuropoda melanoleuca) in their own family, or considered a separate lineage of equivocal ancestry. Recent molecular studies have indicated a close affinity of the red panda to a clade of procyonids and mustelids (weasels, otters, martens, badgers, and allies), but have failed to unambiguously resolve the position of this species relative to mephitids (skunks and stink badgers). We examined the relationship of the red panda to other extant species of the carnivoran suborder Caniformia using a set of concatenated approximately 5.5-kb sequences from protein-coding exons of five nuclear genes. Bayesian, maximum likelihood, and parsimony phylogenetic analyses strongly supported the red panda as the closest living relative of a clade containing Procyonidae and Mustelidae to the exclusion of Mephitidae. These three families together with the red panda (which is classified here as a single extant species of a distinct family, Ailuridae) compose the superfamily Musteloidea, a clade strongly supported by all our phylogenetic analyses as sister to the monophyletic Pinnipedia (seals, sea lions, walruses). The approximately unbiased, Kishino-Hasegawa, and Templeton topology tests rejected (P<0.05) each of all possible alternative hypotheses about the relationships among the red panda and mephitids, procyonids, and mustelids. We also estimated divergence times for the red panda's lineage and ones of other caniform taxa, as well as the ages of the first appearance datums for the crown and total clades of musteloids and the total clades of the red panda, mephitids, procyonids, and mustelids. Bayesian relaxed molecular-clock analysis using combined information from all sampled genes yielded a approximately 42-Myr timescale to caniform evolution and provided evidence of five periods of increased diversification. The red panda's lineage and those of other extant musteloid families are estimated to have diverged during a 3-Myr interval from the mid-Early Oligocene to near the Early/Late Oligocene boundary. We present fossil evidence that extends the early adaptive radiation of the total clade of musteloids to the Eocene-Oligocene transition and also suggests Asia as a center of this radiation.


Assuntos
Ailuridae/genética , Evolução Molecular , Filogenia , Ailuridae/classificação , Animais , Teorema de Bayes , Núcleo Celular/genética , Hibridização Genômica Comparativa , Funções Verossimilhança , Alinhamento de Sequência , Análise de Sequência de DNA
18.
J Hered ; 100 Suppl 1: S90-100, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19366814

RESUMO

The extent to which taste receptor specificity correlates with, or even predicts, diet choice is not known. We recently reported that the insensitivity to sweeteners shown by species of Felidae can be explained by their lacking of a functional Tas1r2 gene. To broaden our understanding of the relationship between the structure of the sweet receptors and preference for sugars and artificial sweeteners, we measured responses to 12 sweeteners in 6 species of Carnivora and sequenced the coding regions of Tas1r2 in these same or closely related species. The lion showed no preference for any of the 12 sweet compounds tested, and it possesses the pseudogenized Tas1r2. All other species preferred some of the natural sugars, and their Tas1r2 sequences, having complete open reading frames, predict functional sweet receptors. In addition to preferring natural sugars, the lesser panda also preferred 3 (neotame, sucralose, and aspartame) of the 6 artificial sweeteners. Heretofore, it had been reported that among vertebrates, only Old World simians could taste aspartame. The observation that the lesser panda highly preferred aspartame could be an example of evolutionary convergence in the identification of sweet stimuli.


Assuntos
Carnívoros/genética , Receptores Acoplados a Proteínas G/genética , Paladar/genética , Ailuridae/genética , Sequência de Aminoácidos , Animais , Comportamento Animal/fisiologia , Feminino , Furões/genética , Herpestidae/genética , Leões/genética , Masculino , Alinhamento de Sequência , Paladar/fisiologia , Viverridae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA