Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
Biosystems ; 237: 105152, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38346553

RESUMO

Alanyl-tRNA synthetase (AlaRS) incorrectly recognizes both a slightly smaller glycine and a slightly larger serine in addition to alanine, and the probability of incorrect identification is extremely low at 1/300 and 1/170, respectively. Alanine is the second smallest amino acid after glycine; however, the mechanism by which AlaRS specifically identifies small differences in side chains with high accuracy remains unknown. In this study, using a malachite green assay, we aimed to elucidate the alanine recognition mechanism of a fragment (AlaRS368N) containing only the amino acid activation domain of Escherichia coli AlaRS. This method quantifies monophosphate by decomposing pyrophosphate generated during aminoacyl-AMP production. AlaRS368N produced far more pyrophosphate when glycine or serine was used as a substrate than when alanine was used. Among several mutants tested, an AlaRS mutant in which the widely conserved aspartic acid at the 235th position (D235) near the active center was replaced with glutamic acid (D235E) increased pyrophosphate release for the alanine substrate, compared to that from glycine and serine. These results suggested that D235 is optimal for AlaRS to specifically recognize alanine. Alanylation activities of an RNA minihelix by the mutants of valine at the 214th position (V214) of another fragment (AlaRS442N), which is the smallest AlaRS with alanine charging activity, suggest the existence of the van der Waals-like interaction between the side chain of V214 and the methyl group of the alanine substrate.


Assuntos
Alanina-tRNA Ligase , Alanina-tRNA Ligase/genética , Alanina-tRNA Ligase/química , Alanina-tRNA Ligase/metabolismo , Alanina/genética , Alanina/metabolismo , Difosfatos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Aminoácidos/metabolismo , Glicina , Serina/genética , Serina/metabolismo
2.
Cancer Med ; 12(23): 21531-21544, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37990642

RESUMO

INTRODUCTION: The mitochondrial alanyl-tRNA synthetase 2 (AARS2) as one of aminoacyl-tRNA synthases (ARSs) performs amino acid transportation and involves protein synthesis. However, its role in cancer remains largely unexplored. METHODS: In this study, more than 10,000 samples were enrolled to explore genomic alterations, biological function, prognosis, and clinical treatment based on AARS2 across pan-cancer. The molecular characterization of AARS2 was confirmed in hepatocellular carcinoma (HCC) using proteomics analysis, quantitative real-time PCR, western blotting, immunohistochemical staining, and cell experiments. RESULTS: For genomic landscape, the AARS2 was dramatically upregulated in multiple cancers, which might be mainly caused by copy number alteration rather than mutation and methylation. The abnormal expression of AARS2 was prominently associated with activity of cancer pathways and performed oncogenic roles in most cancers. Systematic experiments in vitro substantiated the elevated expression of AARS2, and the deficiency of it inhibited cell proliferation and cell migration in HCC. Meanwhile, our findings suggested that AARS2 could serve as a novel promising and stable biomarker for assessing prognosis and immunotherapy. Moreover, a variety of therapeutic drugs and targeted pathways were proposed for cancer treatment, which might enhance clinical efficacy. CONCLUSION: The AARS2 could serve as a new oncogenic gene that promotes cell proliferation and migration in HCC. The comprehensive investigations increased the understanding of AARS2 across human cancers and generated beginning insights of AARS2 in genomic landscape, molecular biological function, prognosis, and clinical treatment.


Assuntos
Alanina-tRNA Ligase , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Alanina-tRNA Ligase/genética , Alanina-tRNA Ligase/metabolismo , Biomarcadores , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Prognóstico
3.
J Biol Chem ; 299(9): 105149, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37567477

RESUMO

Alanyl-tRNA synthetase retains a conserved prototype structure throughout its biology. Nevertheless, its C-terminal domain (C-Ala) is highly diverged and has been shown to play a role in either tRNA or DNA binding. Interestingly, we discovered that Caenorhabditis elegans cytoplasmic C-Ala (Ce-C-Alac) robustly binds both ligands. How Ce-C-Alac targets its cognate tRNA and whether a similar feature is conserved in its mitochondrial counterpart remain elusive. We show that the N- and C-terminal subdomains of Ce-C-Alac are responsible for DNA and tRNA binding, respectively. Ce-C-Alac specifically recognized the conserved invariant base G18 in the D-loop of tRNAAla through a highly conserved lysine residue, K934. Despite bearing little resemblance to other C-Ala domains, C. elegans mitochondrial C-Ala robustly bound both tRNAAla and DNA and maintained targeting specificity for the D-loop of its cognate tRNA. This study uncovers the underlying mechanism of how C. elegans C-Ala specifically targets the D-loop of tRNAAla.


Assuntos
Alanina-tRNA Ligase , Caenorhabditis elegans , Motivos de Nucleotídeos , RNA de Transferência de Alanina , Animais , Alanina-tRNA Ligase/química , Alanina-tRNA Ligase/metabolismo , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Sequência Conservada , Citoplasma/enzimologia , DNA/química , DNA/metabolismo , Ligantes , Lisina/metabolismo , Mitocôndrias/enzimologia , Domínios Proteicos , RNA de Transferência de Alanina/química , RNA de Transferência de Alanina/metabolismo , Especificidade por Substrato , Conformação de Ácido Nucleico
4.
Commun Biol ; 6(1): 314, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959394

RESUMO

Alanyl-tRNA synthetase (AlaRS) retains a conserved prototype structure throughout its biology, consisting of catalytic, tRNA-recognition, editing, and C-Ala domains. The catalytic and tRNA-recognition domains catalyze aminoacylation, the editing domain hydrolyzes mischarged tRNAAla, and C-Ala-the major tRNA-binding module-targets the elbow of the L-shaped tRNAAla. Interestingly, a mini-AlaRS lacking the editing and C-Ala domains is recovered from the Tupanvirus of the amoeba Acanthamoeba castellanii. Here we show that Tupanvirus AlaRS (TuAlaRS) is phylogenetically related to its host's AlaRS. Despite lacking the conserved amino acid residues responsible for recognition of the identity element of tRNAAla (G3:U70), TuAlaRS still specifically recognized G3:U70-containing tRNAAla. In addition, despite lacking C-Ala, TuAlaRS robustly binds and charges microAla (an RNA substrate corresponding to the acceptor stem of tRNAAla) as well as tRNAAla, indicating that TuAlaRS exclusively targets the acceptor stem. Moreover, this mini-AlaRS could functionally substitute for yeast AlaRS in vivo. This study suggests that TuAlaRS has developed a new tRNA-binding mode to compensate for the loss of C-Ala.


Assuntos
Alanina-tRNA Ligase , Alanina-tRNA Ligase/genética , Alanina-tRNA Ligase/química , Alanina-tRNA Ligase/metabolismo , RNA de Transferência de Alanina/química , RNA de Transferência de Alanina/genética , RNA de Transferência de Alanina/metabolismo , Escherichia coli/genética , RNA de Transferência/metabolismo
5.
Nucleic Acids Res ; 51(7): 3327-3340, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36951106

RESUMO

Homochirality of the cellular proteome is attributed to the L-chiral bias of the translation apparatus. The chiral specificity of enzymes was elegantly explained using the 'four-location' model by Koshland two decades ago. In accordance with the model, it was envisaged and noted that some aminoacyl-tRNA synthetases (aaRS) that charge larger amino acids are porous to D-amino acids. However, a recent study showed that alanyl-tRNA synthetase (AlaRS) can mischarge D-alanine and that its editing domain, but not the universally present D-aminoacyl-tRNA deacylase (DTD), is responsible for correcting the chirality-based error. Here, using in vitro and in vivo data coupled with structural analysis, we show that AlaRS catalytic site is a strict D-chiral rejection system and therefore does not activate D-alanine. It obviates the need for AlaRS editing domain to be active against D-Ala-tRNAAla and we show that it is indeed the case as it only corrects L-serine and glycine mischarging. We further provide direct biochemical evidence showing activity of DTD on smaller D-aa-tRNAs that corroborates with the L-chiral rejection mode of action proposed earlier. Overall, while removing anomalies in the fundamental recognition mechanisms, the current study further substantiates how chiral fidelity is perpetuated during protein biosynthesis.


Assuntos
Alanina-tRNA Ligase , Biossíntese de Proteínas , Alanina-tRNA Ligase/genética , Alanina-tRNA Ligase/metabolismo , Aminoácidos/genética , Aminoacil-tRNA Sintetases/genética , RNA de Transferência/metabolismo , Animais
6.
Philos Trans R Soc Lond B Biol Sci ; 378(1871): 20220029, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36633285

RESUMO

By linking amino acids to their codon assignments, transfer RNAs (tRNAs) are essential for protein synthesis and translation fidelity. Some human tRNA variants cause amino acid mis-incorporation at a codon or set of codons. We recently found that a naturally occurring tRNASer variant decodes phenylalanine codons with serine and inhibits protein synthesis. Here, we hypothesized that human tRNA variants that misread glycine (Gly) codons with alanine (Ala) will also disrupt protein homeostasis. The A3G mutation occurs naturally in tRNAGly variants (tRNAGlyCCC, tRNAGlyGCC) and creates an alanyl-tRNA synthetase (AlaRS) identity element (G3 : U70). Because AlaRS does not recognize the anticodon, the human tRNAAlaAGC G35C (tRNAAlaACC) variant may function similarly to mis-incorporate Ala at Gly codons. The tRNAGly and tRNAAla variants had no effect on protein synthesis in mammalian cells under normal growth conditions; however, tRNAGlyGCC A3G depressed protein synthesis in the context of proteasome inhibition. Mass spectrometry confirmed Ala mistranslation at multiple Gly codons caused by the tRNAGlyGCC A3G and tRNAAlaAGC G35C mutants, and in some cases, we observed multiple mistranslation events in the same peptide. The data reveal mistranslation of Ala at Gly codons and defects in protein homeostasis generated by natural human tRNA variants that are tolerated under normal conditions. This article is part of the theme issue 'Reactivity and mechanism in chemical and synthetic biology'.


Assuntos
Alanina-tRNA Ligase , Biossíntese de Proteínas , Humanos , Alanina/genética , Alanina/química , Alanina/metabolismo , Alanina-tRNA Ligase/química , Alanina-tRNA Ligase/genética , Alanina-tRNA Ligase/metabolismo , Códon/genética , Glicina/genética , Glicina/metabolismo , Proteostase , RNA de Transferência/genética , RNA de Transferência/metabolismo , RNA de Transferência de Alanina/química , RNA de Transferência de Alanina/genética , RNA de Transferência de Alanina/metabolismo , RNA de Transferência de Glicina/metabolismo
7.
J Biol Chem ; 298(3): 101601, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35065077

RESUMO

Aminoacyl-tRNA synthetases (aaRSs) are enzymes that synthesize aminoacyl-tRNAs to facilitate translation of the genetic code. Quality control by aaRS proofreading and other mechanisms maintains translational accuracy, which promotes cellular viability. Systematic disruption of proofreading, as recently demonstrated for alanyl-tRNA synthetase (AlaRS), leads to dysregulation of the proteome and reduced viability. Recent studies showed that environmental challenges such as exposure to reactive oxygen species can also alter aaRS synthetic and proofreading functions, prompting us to investigate if oxidation might positively or negatively affect AlaRS activity. We found that while oxidation leads to modification of several residues in Escherichia coli AlaRS, unlike in other aaRSs, this does not affect proofreading activity against the noncognate substrates serine and glycine and only results in a 1.6-fold decrease in efficiency of cognate Ala-tRNAAla formation. Mass spectrometry analysis of oxidized AlaRS revealed that the critical proofreading residue in the editing site, Cys666, and three methionine residues (M217 in the active site, M658 in the editing site, and M785 in the C-Ala domain) were modified to cysteine sulfenic acid and methionine sulfoxide, respectively. Alanine scanning mutagenesis showed that none of the identified residues were solely responsible for the change in cognate tRNAAla aminoacylation observed under oxidative stress, suggesting that these residues may act as reactive oxygen species "sinks" to protect catalytically critical sites from oxidative damage. Combined, our results indicate that E. coli AlaRS proofreading is resistant to oxidative damage, providing an important mechanism of stress resistance that helps to maintain proteome integrity and cellular viability.


Assuntos
Alanina-tRNA Ligase , Escherichia coli , Alanina-tRNA Ligase/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Estresse Oxidativo , Proteoma , RNA de Transferência de Alanina/genética , RNA de Transferência de Alanina/metabolismo , Espécies Reativas de Oxigênio/metabolismo
8.
Hum Mol Genet ; 30(18): 1711-1720, 2021 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-33909043

RESUMO

Trichothiodystrophy (TTD) is a rare hereditary neurodevelopmental disorder defined by sulfur-deficient brittle hair and nails and scaly skin, but with otherwise remarkably variable clinical features. The photosensitive TTD (PS-TTD) forms exhibits in addition to progressive neuropathy and other features of segmental accelerated aging and is associated with impaired genome maintenance and transcription. New factors involved in various steps of gene expression have been identified for the different non-photosensitive forms of TTD (NPS-TTD), which do not appear to show features of premature aging. Here, we identify alanyl-tRNA synthetase 1 and methionyl-tRNA synthetase 1 variants as new gene defects that cause NPS-TTD. These variants result in the instability of the respective gene products alanyl- and methionyl-tRNA synthetase. These findings extend our previous observations that TTD mutations affect the stability of the corresponding proteins and emphasize this phenomenon as a common feature of TTD. Functional studies in skin fibroblasts from affected individuals demonstrate that these new variants also impact on the rate of tRNA charging, which is the first step in protein translation. The extension of reduced abundance of TTD factors to translation as well as transcription redefines TTD as a syndrome in which proteins involved in gene expression are unstable.


Assuntos
Alanina-tRNA Ligase/genética , Metionina tRNA Ligase/genética , Síndromes de Tricotiodistrofia/genética , Alanina-tRNA Ligase/metabolismo , Criança , Estabilidade Enzimática/genética , Feminino , Humanos , Metionina tRNA Ligase/metabolismo , Síndromes de Tricotiodistrofia/enzimologia , Síndromes de Tricotiodistrofia/patologia , Sequenciamento Completo do Genoma
9.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33753480

RESUMO

Through dominant mutations, aminoacyl-tRNA synthetases constitute the largest protein family linked to Charcot-Marie-Tooth disease (CMT). An example is CMT subtype 2N (CMT2N), caused by individual mutations spread out in AlaRS, including three in the aminoacylation domain, thereby suggesting a role for a tRNA-charging defect. However, here we found that two are aminoacylation defective but that the most widely distributed R329H is normal as a purified protein in vitro and in unfractionated patient cell samples. Remarkably, in contrast to wild-type (WT) AlaRS, all three mutant proteins gained the ability to interact with neuropilin 1 (Nrp1), the receptor previously linked to CMT pathogenesis in GlyRS. The aberrant AlaRS-Nrp1 interaction is further confirmed in patient samples carrying the R329H mutation. However, CMT2N mutations outside the aminoacylation domain do not induce the Nrp1 interaction. Detailed biochemical and biophysical investigations, including X-ray crystallography, small-angle X-ray scattering, hydrogen-deuterium exchange (HDX), switchSENSE hydrodynamic diameter determinations, and protease digestions reveal a mutation-induced structural loosening of the aminoacylation domain that correlates with the Nrp1 interaction. The b1b2 domains of Nrp1 are responsible for the interaction with R329H AlaRS. The results suggest Nrp1 is more broadly associated with CMT-associated members of the tRNA synthetase family. Moreover, we revealed a distinct structural loosening effect induced by a mutation in the editing domain and a lack of conformational impact with C-Ala domain mutations, indicating mutations in the same protein may cause neuropathy through different mechanisms. Our results show that, as with other CMT-associated tRNA synthetases, aminoacylation per se is not relevant to the pathology.


Assuntos
Alanina-tRNA Ligase/metabolismo , Doença de Charcot-Marie-Tooth/genética , Neuropilina-1/metabolismo , Alanina-tRNA Ligase/química , Alanina-tRNA Ligase/genética , Aminoacilação/genética , Células Cultivadas , Doença de Charcot-Marie-Tooth/sangue , Cristalografia por Raios X , Medição da Troca de Deutério , Humanos , Linfócitos , Mutação , Neuropilina-1/genética , Cultura Primária de Células , Ligação Proteica/genética , Domínios Proteicos/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura , Espalhamento a Baixo Ângulo
10.
RNA Biol ; 18(11): 1501-1511, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33317386

RESUMO

Among the 20 cytoplasmic aminoacyl-tRNA synthetases (aaRSs), alanyl-tRNA synthetase (AlaRS) has unique features. AlaRS is the only aaRS that exclusively recognizes a single G3:U70 wobble base pair in the acceptor stem of tRNA, which serves as the identity element for both the synthetic and the proofreading activities of the synthetase. The recognition is relaxed during evolution and eukaryotic AlaRS can mis-aminoacylate noncognate tRNAs with a G4:U69 base pair seemingly as a deliberate gain of function for unknown reasons. Unlike other class II aaRSs, dimerization of AlaRS is not necessarily required for aminoacylation possibly due to functional compensations from the C-terminal domain (C-Ala). In contrast to other 19 cytoplasmic aaRSs that append additional domains or motifs to acquire new functions during evolution, the functional expansion of AlaRS is likely achieved through transformations of the existing C-Ala. Given both essential canonical and diverse non-canonical roles of AlaRS, dysfunction of AlaRS leads to neurodegenerative disorders in human and various pathological phenotypes in mouse models. In this review, the uniqueness of AlaRS in both physiological and pathological events is systematically discussed, with a particular focus on its novel functions gained in evolution.


Assuntos
Alanina-tRNA Ligase/metabolismo , Aminoacilação , Doenças Neurodegenerativas/patologia , Animais , Humanos , Doenças Neurodegenerativas/enzimologia
11.
Genes (Basel) ; 11(10)2020 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-33081015

RESUMO

One integral step in the transition from a nucleic acid encoded-genome to functional proteins is the aminoacylation of tRNA molecules. To perform this activity, aminoacyl-tRNA synthetases (aaRSs) activate free amino acids in the cell forming an aminoacyl-adenylate before transferring the amino acid on to its cognate tRNA. These newly formed aminoacyl-tRNA (aa-tRNA) can then be used by the ribosome during mRNA decoding. In Escherichia coli, there are twenty aaRSs encoded in the genome, each of which corresponds to one of the twenty proteinogenic amino acids used in translation. Given the shared chemicophysical properties of many amino acids, aaRSs have evolved mechanisms to prevent erroneous aa-tRNA formation with non-cognate amino acid substrates. Of particular interest is the post-transfer proofreading activity of alanyl-tRNA synthetase (AlaRS) which prevents the accumulation of Ser-tRNAAla and Gly-tRNAAla in the cell. We have previously shown that defects in AlaRS proofreading of Ser-tRNAAla lead to global dysregulation of the E. coli proteome, subsequently causing defects in growth, motility, and antibiotic sensitivity. Here we report second-site AlaRS suppressor mutations that alleviate the aforementioned phenotypes, revealing previously uncharacterized residues within the AlaRS proofreading domain that function in quality control.


Assuntos
Alanina-tRNA Ligase/metabolismo , Aminoácidos/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Mutação , Proteoma/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Alanina-tRNA Ligase/genética , Sequência de Aminoácidos , Aminoácidos/genética , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Proteoma/análise , Controle de Qualidade , Aminoacil-RNA de Transferência/genética , Homologia de Sequência , Especificidade por Substrato
12.
Int J Rheum Dis ; 23(6): 828-832, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32483920

RESUMO

We report a rare case of antisynthase syndrome (ASS) complicated with Kaposi sarcoma, analyze its clinical characteristics, and review the literature on the topic. An 80-year-old male patient developed fever, cough, and shortness of breath. Lung high-resolution computed tomography showed nonspecific interstitial pneumonia in both lungs, and myositis antibody examination showed strongly positive anti-alanyl tRNA synthase (PL-12) antibodies. Based on these findings, the patient was diagnosed with ASS. After full-dose glucocorticoid treatment, the symptoms of fever and cough were relieved, but skin thickening and pigmentation in both feet were observed. We confirmed Kaposi sarcoma through skin pathology and immunohistochemical examination of the bottom of the patient's feet, and the patient was transferred to a cancer hospital for radiotherapy. ASS presents with some skin changes that might lead to misdiagnosis. ASS complicated with Kaposi sarcoma is rare, and to our knowledge, this is the first case reported in China.


Assuntos
Alanina-tRNA Ligase/genética , Autoanticorpos/imunologia , Miosite/genética , Sarcoma de Kaposi/genética , Idoso de 80 Anos ou mais , Alanina-tRNA Ligase/imunologia , Alanina-tRNA Ligase/metabolismo , Biópsia , Diagnóstico Diferencial , Humanos , Masculino , Miosite/complicações , Miosite/diagnóstico , Sarcoma de Kaposi/complicações , Sarcoma de Kaposi/diagnóstico , Tomografia Computadorizada por Raios X
13.
J Mol Evol ; 88(6): 501-509, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32382786

RESUMO

Nanoarchaeum equitans is a species of hyperthermophilic archaea with the smallest genome size. Its alanyl-tRNA synthetase genes are split into AlaRS-α and AlaRS-ß, encoding the respective subunits. In the current report, we surveyed N. equitans AlaRS-dependent alanylation of RNA minihelices, composed only of the acceptor stem and the T-arm of tRNAAla. Combination of AlaRS-α and AlaRS-ß showed a strong alanylation activity specific to a single G3:U70 base pair, known to mark a specific tRNA for charging with alanine. However, AlaRS-α alone had a weak but appreciable alanylation activity that was independent of the G3:U70 base pair. The shorter 16-mer RNA tetraloop substrate mimicking only the first four base pairs of the acceptor stem of tRNAAla, but with C3:G70 base pair, was also successfully aminoacylated by AlaRS-α. The end of the acceptor stem, including CCA-3' terminus and the discriminator A73, was able to function as a minimal structure for the recognition by the enzyme. Our findings imply that aminoacylation by N. equitans AlaRS-α may represent a vestige of a primitive aminoacylation system, before the appearance of the G3:U70 pair as an identity element for alanine.


Assuntos
Alanina-tRNA Ligase , Aminoacil-tRNA Sintetases , Nanoarchaeota , Alanina-tRNA Ligase/genética , Alanina-tRNA Ligase/metabolismo , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Aminoacilação , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Nanoarchaeota/enzimologia , Nanoarchaeota/genética , Conformação de Ácido Nucleico , RNA
14.
Mol Biol Rep ; 47(5): 3779-3787, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32319008

RESUMO

Mitochondrial diseases are a clinically heterogeneous group of multisystemic disorders that arise as a result of various mitochondrial dysfunctions. Autosomal recessive aARS deficiencies represent a rapidly growing group of severe rare inherited mitochondrial diseases, involving multiple organs, and currently without curative option. They might be related to defects of mitochondrial aminoacyl t-RNA synthetases (mtARS) that are ubiquitous enzymes involved in mitochondrial aminoacylation and the translation process. Here, using NGS analysis of 281 nuclear genes encoding mitochondrial proteins, we identified 4 variants in different mtARS in three patients from unrelated Tunisian families, with clinical features of mitochondrial disorders. Two homozygous variants were found in KARS (c.683C>T) and AARS2 (c.1150-4C>G), respectively in two patients, while two heterozygous variants in EARS2 (c.486-7C>G) and DARS2 (c.1456C>T) were concomitantly found in the third patient. Bio-informatics investigations predicted their pathogenicity and deleterious effects on pre-mRNA splicing and on protein stability. Thus, our results suggest that mtARS mutations are common in Tunisian patients with mitochondrial diseases.


Assuntos
Alanina-tRNA Ligase/genética , Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética , Alanina-tRNA Ligase/metabolismo , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Aspartato-tRNA Ligase/genética , Aspartato-tRNA Ligase/metabolismo , Criança , Pré-Escolar , Feminino , Estudos de Associação Genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Homozigoto , Humanos , Masculino , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Mutação/genética , Linhagem
15.
Genes Genomics ; 42(6): 663-672, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32314272

RESUMO

BACKGROUND: Alanyl-tRNA synthetase 1 (AARS1) gene encodes a ubiquitously expressed class II enzyme that catalyzes the attachment of alanine to the cognate tRNA. AARS1 mutations are frequently responsible for autosomal dominant Charcot-Marie-Tooth disease type 2N (CMT2N). OBJECTIVE: To identify pathogenic mutation in the Korean patients with CMT and distal hereditary motor neuronopathy (dHMN). METHODS: We screened AARS1 mutations in 373 unrelated CMT families including 318 axonal CMT, 36 dHMN, and 19 intermediate CMT (Int-CMT) who were negative for 17p12 (PMP22) duplication or deletion using whole exome sequencing and targeted sequencing of CMT-related genes. RESULTS: This study identified an early onset Int-CMT family harboring an AARS1 p.Arg329His mutation which was previously reported as pathogenic in French and Australian families. The mutation was located in the highly conserved tRNA binding domain and several in silico analyses suggested pathogenic prediction of the mutations. The patients harboring p.Arg329His showed clinically similar phenotypes of the early onset and electrophysiological intermediate type as those in Australian patients with same mutation. We also found a novel c.2564A>G (p.Gln855Arg) in a CMT2 patient, but its' pathogenic role was uncertain (variant of uncertain significance). CONCLUSION: This study suggests that the frequency of the AARS1 mutations appears to be quite low in Korean CMT. This is the first report of the AARS1 mutation in Korean CMT patients and will be helpful for the exact molecular diagnosis and treatment of Int-CMT patients.


Assuntos
Alanina-tRNA Ligase/genética , Doença de Charcot-Marie-Tooth/genética , Adolescente , Adulto , Alanina-tRNA Ligase/química , Alanina-tRNA Ligase/metabolismo , Doença de Charcot-Marie-Tooth/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Linhagem , Fenótipo , Domínios Proteicos
16.
PLoS Negl Trop Dis ; 14(2): e0007983, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32106219

RESUMO

The development of chemotherapies against eukaryotic pathogens is especially challenging because of both the evolutionary conservation of drug targets between host and parasite, and the evolution of strain-dependent drug resistance. There is a strong need for new nontoxic drugs with broad-spectrum activity against trypanosome parasites such as Leishmania and Trypanosoma. A relatively untested approach is to target macromolecular interactions in parasites rather than small molecular interactions, under the hypothesis that the features specifying macromolecular interactions diverge more rapidly through coevolution. We computed tRNA Class-Informative Features in humans and independently in eight distinct clades of trypanosomes, identifying parasite-specific informative features, including base pairs and base mis-pairs, that are broadly conserved over approximately 250 million years of trypanosome evolution. Validating these observations, we demonstrated biochemically that tRNA:aminoacyl-tRNA synthetase (aaRS) interactions are a promising target for anti-trypanosomal drug discovery. From a marine natural products extract library, we identified several fractions with inhibitory activity toward Leishmania major alanyl-tRNA synthetase (AlaRS) but no activity against the human homolog. These marine natural products extracts showed cross-reactivity towards Trypanosoma cruzi AlaRS indicating the broad-spectrum potential of our network predictions. We also identified Leishmania major threonyl-tRNA synthetase (ThrRS) inhibitors from the same library. We discuss why chemotherapies targeting multiple aaRSs should be less prone to the evolution of resistance than monotherapeutic or synergistic combination chemotherapies targeting only one aaRS.


Assuntos
Alanina-tRNA Ligase/antagonistas & inibidores , Antiprotozoários/farmacologia , Inibidores Enzimáticos/farmacologia , Leishmania/enzimologia , Proteínas de Protozoários/antagonistas & inibidores , Treonina-tRNA Ligase/antagonistas & inibidores , Trypanosoma/efeitos dos fármacos , Alanina-tRNA Ligase/genética , Alanina-tRNA Ligase/metabolismo , Antiprotozoários/química , Inibidores Enzimáticos/química , Humanos , Leishmania/efeitos dos fármacos , Leishmania/genética , Leishmaniose/parasitologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Treonina-tRNA Ligase/genética , Treonina-tRNA Ligase/metabolismo , Trypanosoma/enzimologia , Trypanosoma/genética , Tripanossomíase/parasitologia
17.
J Biol Chem ; 295(5): 1402-1410, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31862734

RESUMO

ß-N-methylamino-l-alanine (BMAA) is a nonproteinogenic amino acid that has been associated with neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD). BMAA has been found in human protein extracts; however, the mechanism by which it enters the proteome is still unclear. It has been suggested that BMAA is misincorporated at serine codons during protein synthesis, but direct evidence of its cotranslational incorporation is currently lacking. Here, using LC-MS-purified BMAA and several biochemical assays, we sought to determine whether any aminoacyl-tRNA synthetase (aaRS) utilizes BMAA as a substrate for aminoacylation. Despite BMAA's previously predicted misincorporation at serine codons, following a screen for amino acid activation in ATP/PPi exchange assays, we observed that BMAA is not a substrate for human seryl-tRNA synthetase (SerRS). Instead, we observed that BMAA is a substrate for human alanyl-tRNA synthetase (AlaRS) and can form BMAA-tRNAAla by escaping from the intrinsic AlaRS proofreading activity. Furthermore, we found that BMAA inhibits both the cognate amino acid activation and the editing functions of AlaRS. Our results reveal that, in addition to being misincorporated during translation, BMAA may be able to disrupt the integrity of protein synthesis through multiple different mechanisms.


Assuntos
Alanina-tRNA Ligase/metabolismo , Diamino Aminoácidos/metabolismo , Aminoacilação de RNA de Transferência , Alanina/química , Alanina/metabolismo , Diamino Aminoácidos/química , Cromatografia Líquida , Toxinas de Cianobactérias , Expressão Gênica , Humanos , Cinética , Espectrometria de Massas , Serina/química , Serina/metabolismo , Serina-tRNA Ligase/metabolismo
18.
Protein Pept Lett ; 27(7): 635-648, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31686635

RESUMO

BACKGROUND: Aminoacyl-tRNA Synthetases (aaRSs) are well known for their role in the translation process. Lately investigators have discovered that this family of enzymes are also capable of executing a broad repertoire of functions that not only impact protein synthesis, but extend to a number of other activities. Till date, transcriptional regulation has so far only been described in E. coli Alanyl-tRNA synthetase and it was demonstrated that alaRS binds specifically to the palindromic DNA sequence flanking the gene's transcriptional start site and thereby regulating its own transcription. OBJECTIVE: In the present study, we have characterized some of the features of the alaRS-DNA binding using various biophysical techniques. METHODS: To understand the role of full length protein and oligomerization of alaRS in promoter DNA binding, two mutants were constructed, namely, N700 (a monomer, containing the N-terminal aminoacylation domain but without the C-terminal part) and G674D (previously demonstrated to form full-length monomer). Protein-DNA binding study using fluorescence spectroscopy, analytical ultracentrifugation, Isothermal Titration Calorimetry was conducted. RESULTS: Sedimentation equilibrium studies clearly demonstrated that monomeric variants were unable to bind promoter DNA. Isothermal Calorimetry (ITC) experiment was employed for further characterization of wild type alaRS-DNA interaction. It was observed that full length E. coli Alanyl-tRNA synthetase binds specifically with its promoter DNA and forms a dimer of dimers. On the other hand the two mutant variants were unable to bind with the DNA. CONCLUSION: In this study it was concluded that full length E. coli Alanyl-tRNA synthetase undergoes a conformational change in presence of its promoter DNA leading to formation of higher order structures. However, the exact mechanism behind this binding is currently unknown and beyond the scope of this study.


Assuntos
Alanina-tRNA Ligase/química , DNA Bacteriano/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Regiões Promotoras Genéticas , Multimerização Proteica , Alanina-tRNA Ligase/metabolismo , DNA Bacteriano/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Ligação Proteica
19.
Hum Mol Genet ; 28(2): 258-268, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30285085

RESUMO

Recessively inherited variants in AARS2 (NM_020745.2) encoding mitochondrial alanyl-tRNA synthetase (mt-AlaRS) were first described in patients presenting with fatal infantile cardiomyopathy and multiple oxidative phosphorylation defects. To date, all described patients with AARS2-related fatal infantile cardiomyopathy are united by either a homozygous or compound heterozygous c.1774C>T (p.Arg592Trp) missense founder mutation that is absent in patients with other AARS2-related phenotypes. We describe the clinical, biochemical and molecular investigations of two unrelated boys presenting with fatal infantile cardiomyopathy, lactic acidosis and respiratory failure. Oxidative histochemistry showed cytochrome c oxidase-deficient fibres in skeletal and cardiac muscle. Biochemical studies showed markedly decreased activities of mitochondrial respiratory chain complexes I and IV with a mild decrease of complex III activity in skeletal and cardiac muscle. Using next-generation sequencing, we identified a c.1738C>T (p.Arg580Trp) AARS2 variant shared by both patients that was in trans with a loss-of-function heterozygous AARS2 variant; a c.1008dupT (p.Asp337*) nonsense variant or an intragenic deletion encompassing AARS2 exons 5-7. Interestingly, our patients did not harbour the p.Arg592Trp AARS2 founder mutation. In silico modelling of the p.Arg580Trp substitution suggested a deleterious impact on protein stability and folding. We confirmed markedly decreased mt-AlaRS protein levels in patient fibroblasts, skeletal and cardiac muscle, although mitochondrial protein synthesis defects were confined to skeletal and cardiac muscle. In vitro data showed that the p.Arg580Trp variant had a minimal effect on activation, aminoacylation or misaminoacylation activities relative to wild-type mt-AlaRS, demonstrating that instability of mt-AlaRS is the biological mechanism underlying the fatal cardiomyopathy phenotype in our patients.


Assuntos
Alanina-tRNA Ligase/metabolismo , Cardiomiopatias/enzimologia , Alanina-tRNA Ligase/genética , Cardiomiopatias/genética , Doenças em Gêmeos/genética , Estabilidade Enzimática , Fibroblastos/metabolismo , Genes Recessivos , Humanos , Lactente , Ácido Láctico , Masculino , Mitocôndrias/metabolismo , Proteínas Mitocondriais/biossíntese , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Linhagem , Insuficiência Respiratória/enzimologia
20.
Neurosci Res ; 139: 69-78, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30261202

RESUMO

Charcot-Marie-Tooth (CMT) disease is composed of a heterogeneous group of hereditary peripheral neuropathies. The peripheral nervous system primarily comprises two types of cells: neuronal cells and myelinating glial Schwann cells. CMT2 N is an autosomal dominant disease and its responsible gene encodes alanyl-tRNA synthetase (AARS), which is a family of cytoplasmic aminoacyl-tRNA synthetases. CMT2 N is associated with the mutation, including a missense mutation, which is known to decrease the enzymatic activity of AARS, but whether and how its mutation affects AARS localization and neuronal process formation remains to be understood. First, we show that the AARS mutant harboring Asn71-to-Tyr (N71Y) is not localized in cytoplasm. The expression of AARS mutant proteins in COS-7 cells mainly leads to localization into lysosome, whereas the wild type is indeed localized in cytoplasm. Second, in N1E-115 cells as the neuronal cell model, cells expressing the N71Y mutant do not have the ability to grow processes. Third, pretreatment with antiepileptic valproic acid reverses the inhibitory effect of the N71Y mutant on process growth. Taken together, the N71Y mutation of AARS leads to abnormal intracellular localization, inhibiting process growth, yet this inhibition is reversed by valproic acid.


Assuntos
Alanina-tRNA Ligase/metabolismo , Axônios/metabolismo , Doença de Charcot-Marie-Tooth/enzimologia , Neuritos/metabolismo , Ácido Valproico/farmacologia , Alanina-tRNA Ligase/genética , Doença de Charcot-Marie-Tooth/metabolismo , Humanos , Mutação/genética , Neuritos/efeitos dos fármacos , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA