Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Biosystems ; 237: 105152, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38346553

RESUMO

Alanyl-tRNA synthetase (AlaRS) incorrectly recognizes both a slightly smaller glycine and a slightly larger serine in addition to alanine, and the probability of incorrect identification is extremely low at 1/300 and 1/170, respectively. Alanine is the second smallest amino acid after glycine; however, the mechanism by which AlaRS specifically identifies small differences in side chains with high accuracy remains unknown. In this study, using a malachite green assay, we aimed to elucidate the alanine recognition mechanism of a fragment (AlaRS368N) containing only the amino acid activation domain of Escherichia coli AlaRS. This method quantifies monophosphate by decomposing pyrophosphate generated during aminoacyl-AMP production. AlaRS368N produced far more pyrophosphate when glycine or serine was used as a substrate than when alanine was used. Among several mutants tested, an AlaRS mutant in which the widely conserved aspartic acid at the 235th position (D235) near the active center was replaced with glutamic acid (D235E) increased pyrophosphate release for the alanine substrate, compared to that from glycine and serine. These results suggested that D235 is optimal for AlaRS to specifically recognize alanine. Alanylation activities of an RNA minihelix by the mutants of valine at the 214th position (V214) of another fragment (AlaRS442N), which is the smallest AlaRS with alanine charging activity, suggest the existence of the van der Waals-like interaction between the side chain of V214 and the methyl group of the alanine substrate.


Assuntos
Alanina-tRNA Ligase , Alanina-tRNA Ligase/genética , Alanina-tRNA Ligase/química , Alanina-tRNA Ligase/metabolismo , Alanina/genética , Alanina/metabolismo , Difosfatos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Aminoácidos/metabolismo , Glicina , Serina/genética , Serina/metabolismo
2.
J Biol Chem ; 299(9): 105149, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37567477

RESUMO

Alanyl-tRNA synthetase retains a conserved prototype structure throughout its biology. Nevertheless, its C-terminal domain (C-Ala) is highly diverged and has been shown to play a role in either tRNA or DNA binding. Interestingly, we discovered that Caenorhabditis elegans cytoplasmic C-Ala (Ce-C-Alac) robustly binds both ligands. How Ce-C-Alac targets its cognate tRNA and whether a similar feature is conserved in its mitochondrial counterpart remain elusive. We show that the N- and C-terminal subdomains of Ce-C-Alac are responsible for DNA and tRNA binding, respectively. Ce-C-Alac specifically recognized the conserved invariant base G18 in the D-loop of tRNAAla through a highly conserved lysine residue, K934. Despite bearing little resemblance to other C-Ala domains, C. elegans mitochondrial C-Ala robustly bound both tRNAAla and DNA and maintained targeting specificity for the D-loop of its cognate tRNA. This study uncovers the underlying mechanism of how C. elegans C-Ala specifically targets the D-loop of tRNAAla.


Assuntos
Alanina-tRNA Ligase , Caenorhabditis elegans , Motivos de Nucleotídeos , RNA de Transferência de Alanina , Animais , Alanina-tRNA Ligase/química , Alanina-tRNA Ligase/metabolismo , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Sequência Conservada , Citoplasma/enzimologia , DNA/química , DNA/metabolismo , Ligantes , Lisina/metabolismo , Mitocôndrias/enzimologia , Domínios Proteicos , RNA de Transferência de Alanina/química , RNA de Transferência de Alanina/metabolismo , Especificidade por Substrato , Conformação de Ácido Nucleico
3.
Commun Biol ; 6(1): 314, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959394

RESUMO

Alanyl-tRNA synthetase (AlaRS) retains a conserved prototype structure throughout its biology, consisting of catalytic, tRNA-recognition, editing, and C-Ala domains. The catalytic and tRNA-recognition domains catalyze aminoacylation, the editing domain hydrolyzes mischarged tRNAAla, and C-Ala-the major tRNA-binding module-targets the elbow of the L-shaped tRNAAla. Interestingly, a mini-AlaRS lacking the editing and C-Ala domains is recovered from the Tupanvirus of the amoeba Acanthamoeba castellanii. Here we show that Tupanvirus AlaRS (TuAlaRS) is phylogenetically related to its host's AlaRS. Despite lacking the conserved amino acid residues responsible for recognition of the identity element of tRNAAla (G3:U70), TuAlaRS still specifically recognized G3:U70-containing tRNAAla. In addition, despite lacking C-Ala, TuAlaRS robustly binds and charges microAla (an RNA substrate corresponding to the acceptor stem of tRNAAla) as well as tRNAAla, indicating that TuAlaRS exclusively targets the acceptor stem. Moreover, this mini-AlaRS could functionally substitute for yeast AlaRS in vivo. This study suggests that TuAlaRS has developed a new tRNA-binding mode to compensate for the loss of C-Ala.


Assuntos
Alanina-tRNA Ligase , Alanina-tRNA Ligase/genética , Alanina-tRNA Ligase/química , Alanina-tRNA Ligase/metabolismo , RNA de Transferência de Alanina/química , RNA de Transferência de Alanina/genética , RNA de Transferência de Alanina/metabolismo , Escherichia coli/genética , RNA de Transferência/metabolismo
4.
Philos Trans R Soc Lond B Biol Sci ; 378(1871): 20220029, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36633285

RESUMO

By linking amino acids to their codon assignments, transfer RNAs (tRNAs) are essential for protein synthesis and translation fidelity. Some human tRNA variants cause amino acid mis-incorporation at a codon or set of codons. We recently found that a naturally occurring tRNASer variant decodes phenylalanine codons with serine and inhibits protein synthesis. Here, we hypothesized that human tRNA variants that misread glycine (Gly) codons with alanine (Ala) will also disrupt protein homeostasis. The A3G mutation occurs naturally in tRNAGly variants (tRNAGlyCCC, tRNAGlyGCC) and creates an alanyl-tRNA synthetase (AlaRS) identity element (G3 : U70). Because AlaRS does not recognize the anticodon, the human tRNAAlaAGC G35C (tRNAAlaACC) variant may function similarly to mis-incorporate Ala at Gly codons. The tRNAGly and tRNAAla variants had no effect on protein synthesis in mammalian cells under normal growth conditions; however, tRNAGlyGCC A3G depressed protein synthesis in the context of proteasome inhibition. Mass spectrometry confirmed Ala mistranslation at multiple Gly codons caused by the tRNAGlyGCC A3G and tRNAAlaAGC G35C mutants, and in some cases, we observed multiple mistranslation events in the same peptide. The data reveal mistranslation of Ala at Gly codons and defects in protein homeostasis generated by natural human tRNA variants that are tolerated under normal conditions. This article is part of the theme issue 'Reactivity and mechanism in chemical and synthetic biology'.


Assuntos
Alanina-tRNA Ligase , Biossíntese de Proteínas , Humanos , Alanina/genética , Alanina/química , Alanina/metabolismo , Alanina-tRNA Ligase/química , Alanina-tRNA Ligase/genética , Alanina-tRNA Ligase/metabolismo , Códon/genética , Glicina/genética , Glicina/metabolismo , Proteostase , RNA de Transferência/genética , RNA de Transferência/metabolismo , RNA de Transferência de Alanina/química , RNA de Transferência de Alanina/genética , RNA de Transferência de Alanina/metabolismo , RNA de Transferência de Glicina/metabolismo
5.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33753480

RESUMO

Through dominant mutations, aminoacyl-tRNA synthetases constitute the largest protein family linked to Charcot-Marie-Tooth disease (CMT). An example is CMT subtype 2N (CMT2N), caused by individual mutations spread out in AlaRS, including three in the aminoacylation domain, thereby suggesting a role for a tRNA-charging defect. However, here we found that two are aminoacylation defective but that the most widely distributed R329H is normal as a purified protein in vitro and in unfractionated patient cell samples. Remarkably, in contrast to wild-type (WT) AlaRS, all three mutant proteins gained the ability to interact with neuropilin 1 (Nrp1), the receptor previously linked to CMT pathogenesis in GlyRS. The aberrant AlaRS-Nrp1 interaction is further confirmed in patient samples carrying the R329H mutation. However, CMT2N mutations outside the aminoacylation domain do not induce the Nrp1 interaction. Detailed biochemical and biophysical investigations, including X-ray crystallography, small-angle X-ray scattering, hydrogen-deuterium exchange (HDX), switchSENSE hydrodynamic diameter determinations, and protease digestions reveal a mutation-induced structural loosening of the aminoacylation domain that correlates with the Nrp1 interaction. The b1b2 domains of Nrp1 are responsible for the interaction with R329H AlaRS. The results suggest Nrp1 is more broadly associated with CMT-associated members of the tRNA synthetase family. Moreover, we revealed a distinct structural loosening effect induced by a mutation in the editing domain and a lack of conformational impact with C-Ala domain mutations, indicating mutations in the same protein may cause neuropathy through different mechanisms. Our results show that, as with other CMT-associated tRNA synthetases, aminoacylation per se is not relevant to the pathology.


Assuntos
Alanina-tRNA Ligase/metabolismo , Doença de Charcot-Marie-Tooth/genética , Neuropilina-1/metabolismo , Alanina-tRNA Ligase/química , Alanina-tRNA Ligase/genética , Aminoacilação/genética , Células Cultivadas , Doença de Charcot-Marie-Tooth/sangue , Cristalografia por Raios X , Medição da Troca de Deutério , Humanos , Linfócitos , Mutação , Neuropilina-1/genética , Cultura Primária de Células , Ligação Proteica/genética , Domínios Proteicos/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura , Espalhamento a Baixo Ângulo
6.
Genes Genomics ; 42(6): 663-672, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32314272

RESUMO

BACKGROUND: Alanyl-tRNA synthetase 1 (AARS1) gene encodes a ubiquitously expressed class II enzyme that catalyzes the attachment of alanine to the cognate tRNA. AARS1 mutations are frequently responsible for autosomal dominant Charcot-Marie-Tooth disease type 2N (CMT2N). OBJECTIVE: To identify pathogenic mutation in the Korean patients with CMT and distal hereditary motor neuronopathy (dHMN). METHODS: We screened AARS1 mutations in 373 unrelated CMT families including 318 axonal CMT, 36 dHMN, and 19 intermediate CMT (Int-CMT) who were negative for 17p12 (PMP22) duplication or deletion using whole exome sequencing and targeted sequencing of CMT-related genes. RESULTS: This study identified an early onset Int-CMT family harboring an AARS1 p.Arg329His mutation which was previously reported as pathogenic in French and Australian families. The mutation was located in the highly conserved tRNA binding domain and several in silico analyses suggested pathogenic prediction of the mutations. The patients harboring p.Arg329His showed clinically similar phenotypes of the early onset and electrophysiological intermediate type as those in Australian patients with same mutation. We also found a novel c.2564A>G (p.Gln855Arg) in a CMT2 patient, but its' pathogenic role was uncertain (variant of uncertain significance). CONCLUSION: This study suggests that the frequency of the AARS1 mutations appears to be quite low in Korean CMT. This is the first report of the AARS1 mutation in Korean CMT patients and will be helpful for the exact molecular diagnosis and treatment of Int-CMT patients.


Assuntos
Alanina-tRNA Ligase/genética , Doença de Charcot-Marie-Tooth/genética , Adolescente , Adulto , Alanina-tRNA Ligase/química , Alanina-tRNA Ligase/metabolismo , Doença de Charcot-Marie-Tooth/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Linhagem , Fenótipo , Domínios Proteicos
7.
Protein Pept Lett ; 27(7): 635-648, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31686635

RESUMO

BACKGROUND: Aminoacyl-tRNA Synthetases (aaRSs) are well known for their role in the translation process. Lately investigators have discovered that this family of enzymes are also capable of executing a broad repertoire of functions that not only impact protein synthesis, but extend to a number of other activities. Till date, transcriptional regulation has so far only been described in E. coli Alanyl-tRNA synthetase and it was demonstrated that alaRS binds specifically to the palindromic DNA sequence flanking the gene's transcriptional start site and thereby regulating its own transcription. OBJECTIVE: In the present study, we have characterized some of the features of the alaRS-DNA binding using various biophysical techniques. METHODS: To understand the role of full length protein and oligomerization of alaRS in promoter DNA binding, two mutants were constructed, namely, N700 (a monomer, containing the N-terminal aminoacylation domain but without the C-terminal part) and G674D (previously demonstrated to form full-length monomer). Protein-DNA binding study using fluorescence spectroscopy, analytical ultracentrifugation, Isothermal Titration Calorimetry was conducted. RESULTS: Sedimentation equilibrium studies clearly demonstrated that monomeric variants were unable to bind promoter DNA. Isothermal Calorimetry (ITC) experiment was employed for further characterization of wild type alaRS-DNA interaction. It was observed that full length E. coli Alanyl-tRNA synthetase binds specifically with its promoter DNA and forms a dimer of dimers. On the other hand the two mutant variants were unable to bind with the DNA. CONCLUSION: In this study it was concluded that full length E. coli Alanyl-tRNA synthetase undergoes a conformational change in presence of its promoter DNA leading to formation of higher order structures. However, the exact mechanism behind this binding is currently unknown and beyond the scope of this study.


Assuntos
Alanina-tRNA Ligase/química , DNA Bacteriano/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Regiões Promotoras Genéticas , Multimerização Proteica , Alanina-tRNA Ligase/metabolismo , DNA Bacteriano/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Ligação Proteica
8.
Proc Natl Acad Sci U S A ; 115(29): 7527-7532, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29967150

RESUMO

Throughout three domains of life, alanyl-tRNA synthetases (AlaRSs) recognize a G3:U70 base pair in the acceptor stem of tRNAAla as the major identity determinant of tRNAAla The crystal structure of the archaeon Archaeoglobus fulgidus AlaRS in complex with tRNAAla provided the basis for G3:U70 recognition with residues (Asp and Asn) that are conserved in the three domains [Naganuma M, et al. (2014) Nature 510:507-511]. The recognition mode is unprecedented, with specific accommodation of the dyad asymmetry of the G:U wobble pair and exclusion of the dyad symmetry of a Watson-Crick pair. With this conserved mode, specificity is based more on "fit" than on direct recognition of specific atomic groups. Here, we show that, in contrast to the archaeal complex, the Escherichia coli enzyme uses direct positive (energetically favorable) minor groove recognition of the unpaired 2-amino of G3 by Asp and repulsion of a competing base pair by Asn. Strikingly, mutations that disrupted positive recognition by the E. coli enzyme had little or no effect on G:U recognition by the human enzyme. Alternatively, Homo sapiens AlaRS selects G:U without positive recognition and uses Asp instead to repel a competitor. Thus, the widely conserved Asp-plus-Asn architecture of AlaRSs can select G:U in a straightforward (bacteria) or two different unconventional (eukarya/archaea) ways. The adoption of different modes for recognition of a widely conserved G:U pair in alanine tRNAs suggests an early and insistent role for G:U in the development of the genetic code.


Assuntos
Alanina-tRNA Ligase/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Modelos Moleculares , Motivos de Nucleotídeos , RNA de Transferência/química , Alanina-tRNA Ligase/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Humanos , Mutação , RNA de Transferência/genética
9.
Nature ; 557(7706): 510-515, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29769718

RESUMO

Editing domains of aminoacyl tRNA synthetases correct tRNA charging errors to maintain translational fidelity. A mutation in the editing domain of alanyl tRNA synthetase (AlaRS) in Aars sti mutant mice results in an increase in the production of serine-mischarged tRNAAla and the degeneration of cerebellar Purkinje cells. Here, using positional cloning, we identified Ankrd16, a gene that acts epistatically with the Aars sti mutation to attenuate neurodegeneration. ANKRD16, a vertebrate-specific protein that contains ankyrin repeats, binds directly to the catalytic domain of AlaRS. Serine that is misactivated by AlaRS is captured by the lysine side chains of ANKRD16, which prevents the charging of serine adenylates to tRNAAla and precludes serine misincorporation in nascent peptides. The deletion of Ankrd16 in the brains of Aarssti/sti mice causes widespread protein aggregation and neuron loss. These results identify an amino-acid-accepting co-regulator of tRNA synthetase editing as a new layer of the machinery that is essential to the prevention of severe pathologies that arise from defects in editing.


Assuntos
Alanina-tRNA Ligase/genética , Alanina-tRNA Ligase/metabolismo , Mutação , Biossíntese de Proteínas , Células de Purkinje/enzimologia , Células de Purkinje/patologia , Alanina/metabolismo , Alanina-tRNA Ligase/química , Animais , Domínio Catalítico , Morte Celular , Feminino , Lisina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Células de Purkinje/metabolismo , Serina/metabolismo
10.
Methods ; 113: 64-71, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27794454

RESUMO

Differential scanning fluorimetry (DSF) is a fluorescence-based assay to evaluate protein stability by determining protein melting temperatures. Here, we describe the application of DSF to investigate aminoacyl-tRNA synthetase (AARS) stability and interaction with ligands. Employing three bacterial AARS enzymes as model systems, methods are presented here for the use of DSF to measure the apparent temperatures at which AARSs undergo melting transitions, and the effect of AARS substrates and inhibitors. One important observation is that the extent of temperature stability realized by an AARS in response to a particular bound ligand cannot be predicted a priori. The DSF method thus serves as a rapid and highly quantitative approach to measure AARS stability, and the ability of ligands to influence the temperature at which unfolding transitions occur.


Assuntos
Alanina-tRNA Ligase/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Histidina-tRNA Ligase/química , RNA de Transferência Aminoácido-Específico/metabolismo , Treonina-tRNA Ligase/química , Alanina-tRNA Ligase/antagonistas & inibidores , Alanina-tRNA Ligase/genética , Alanina-tRNA Ligase/metabolismo , Aminoácidos/química , Aminoácidos/metabolismo , Benzopiranos/química , Inibidores Enzimáticos/química , Estabilidade Enzimática , Escherichia coli/genética , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Corantes Fluorescentes/química , Fluorometria/métodos , Histidina-tRNA Ligase/antagonistas & inibidores , Histidina-tRNA Ligase/genética , Histidina-tRNA Ligase/metabolismo , Muramidase/química , Muramidase/metabolismo , Transição de Fase , Ligação Proteica , Desdobramento de Proteína , RNA de Transferência Aminoácido-Específico/genética , Especificidade por Substrato , Treonina-tRNA Ligase/antagonistas & inibidores , Treonina-tRNA Ligase/genética , Treonina-tRNA Ligase/metabolismo , Aminoacilação de RNA de Transferência
11.
Proc Natl Acad Sci U S A ; 113(50): 14300-14305, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27911835

RESUMO

The 20 aminoacyl tRNA synthetases (aaRSs) couple each amino acid to their cognate tRNAs. During evolution, 19 aaRSs expanded by acquiring novel noncatalytic appended domains, which are absent from bacteria and many lower eukaryotes but confer extracellular and nuclear functions in higher organisms. AlaRS is the single exception, with an appended C-terminal domain (C-Ala) that is conserved from prokaryotes to humans but with a wide sequence divergence. In human cells, C-Ala is also a splice variant of AlaRS. Crystal structures of two forms of human C-Ala, and small-angle X-ray scattering of AlaRS, showed that the large sequence divergence of human C-Ala reshaped C-Ala in a way that changed the global architecture of AlaRS. This reshaping removes the role of C-Ala in prokaryotes for docking tRNA and instead repurposes it to form a dimer interface presenting a DNA-binding groove. This groove cannot form with the bacterial ortholog. Direct DNA binding by human C-Ala, but not by bacterial C-Ala, was demonstrated. Thus, instead of acquiring a novel appended domain like other human aaRSs, which engendered novel functions, a new AlaRS architecture was created by diversifying a preexisting appended domain.


Assuntos
Alanina-tRNA Ligase/química , Alanina-tRNA Ligase/genética , Alanina-tRNA Ligase/metabolismo , Processamento Alternativo , Sequência de Aminoácidos , Animais , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Archaeoglobus fulgidus/enzimologia , Archaeoglobus fulgidus/genética , Sítios de Ligação , Sequência Conservada , Cristalografia por Raios X , DNA/metabolismo , Evolução Molecular , Humanos , Cinética , Modelos Moleculares , Domínios Proteicos , Multimerização Proteica , Estrutura Quaternária de Proteína , Homologia de Sequência de Aminoácidos , Eletricidade Estática
12.
Am J Hum Genet ; 96(4): 675-81, 2015 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-25817015

RESUMO

Mutations in genes encoding aminoacyl-tRNA synthetases are known to cause leukodystrophies and genetic leukoencephalopathies-heritable disorders that result in white matter abnormalities in the central nervous system. Here we report three individuals (two siblings and an unrelated individual) with severe infantile epileptic encephalopathy, clubfoot, absent deep tendon reflexes, extrapyramidal symptoms, and persistently deficient myelination on MRI. Analysis by whole exome sequencing identified mutations in the nuclear-encoded alanyl-tRNA synthetase (AARS) in these two unrelated families: the two affected siblings are compound heterozygous for p.Lys81Thr and p.Arg751Gly AARS, and the single affected child is homozygous for p.Arg751Gly AARS. The two identified mutations were found to result in a significant reduction in function. Mutations in AARS were previously associated with an autosomal-dominant inherited form of axonal neuropathy, Charcot-Marie-Tooth disease type 2N (CMT2N). The autosomal-recessive AARS mutations identified in the individuals described here, however, cause a severe infantile epileptic encephalopathy with a central myelin defect and peripheral neuropathy, demonstrating that defects of alanyl-tRNA charging can result in a wide spectrum of disease manifestations.


Assuntos
Anormalidades Múltiplas/genética , Alanina-tRNA Ligase/genética , Epilepsia/genética , Modelos Moleculares , Bainha de Mielina/patologia , Doenças do Sistema Nervoso Periférico/genética , Fenótipo , Anormalidades Múltiplas/patologia , Alanina-tRNA Ligase/química , Sequência de Aminoácidos , Sequência de Bases , Epilepsia/patologia , Genes Recessivos/genética , Humanos , Lactente , Recém-Nascido , Dados de Sequência Molecular , Mutação/genética , Doenças do Sistema Nervoso Periférico/patologia , Estudos Prospectivos , Análise de Sequência de DNA , Síndrome , Estados Unidos
14.
Nature ; 510(7506): 507-11, 2014 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-24919148

RESUMO

Ligation of tRNAs with their cognate amino acids, by aminoacyl-tRNA synthetases, establishes the genetic code. Throughout evolution, tRNA(Ala) selection by alanyl-tRNA synthetase (AlaRS) has depended predominantly on a single wobble base pair in the acceptor stem, G3•U70, mainly on the kcat level. Here we report the crystal structures of an archaeal AlaRS in complex with tRNA(Ala) with G3•U70 and its A3•U70 variant. AlaRS interacts with both the minor- and the major-groove sides of G3•U70, widening the major groove. The geometry difference between G3•U70 and A3•U70 is transmitted along the acceptor stem to the 3'-CCA region. Thus, the 3'-CCA region of tRNA(Ala) with G3•U70 is oriented to the reactive route that reaches the active site, whereas that of the A3•U70 variant is folded back into the non-reactive route. This novel mechanism enables the single wobble pair to dominantly determine the specificity of tRNA selection, by an approximate 100-fold difference in kcat.


Assuntos
Alanina-tRNA Ligase/química , Archaeoglobus fulgidus/enzimologia , Archaeoglobus fulgidus/genética , Pareamento de Bases , RNA de Transferência de Alanina/química , RNA de Transferência de Alanina/genética , Aminoacilação de RNA de Transferência , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/química , Sequência de Bases , Domínio Catalítico , Cristalografia por Raios X , Cinética , Modelos Moleculares , Especificidade por Substrato
15.
Protein J ; 33(2): 119-27, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24493149

RESUMO

E. coli Alanyl-tRNA synthetase (AlaRS) not only catalyzes tRNA charging but also can bind to its own promoter DNA sequence and repress its own transcription. It exists as a dimer in its native form and so far this is the only aminoacyl-tRNA synthetase whose full length structure is unresolved. Guanidine hydrochloride mediated unfolding of AlaRS has been studied under equilibrium conditions using various spectroscopic techniques such as intrinsic tryptophan fluorescence, 1-anilino-8-naphthalene-sulfonic acid binding, near and far-UV circular dichroism and analytical ultracentrifugation. These studies revealed that in presence of gdnHCl AlaRS unfolded in a multistep pathway. At 0.8 M gdnHCl, AlaRS formed a molten globule like intermediate, which was enzymatically inactive. Further characterization of this intermediate proved that there was no oligomer breakdown at this denaturant concentration. This study clearly indicates that unlike many other oligomeric proteins AlaRS unfolding does not follow the hierarchical model as in this enzyme tertiary structure gets disrupted well before the disruption of quaternary interaction.


Assuntos
Alanina-tRNA Ligase/química , Escherichia coli/enzimologia , Guanidina/química , Desnaturação Proteica , Desdobramento de Proteína , Dicroísmo Circular , Escherichia coli/química , Conformação Proteica , Multimerização Proteica
16.
Biomol NMR Assign ; 8(2): 415-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24258519

RESUMO

A gene encoding a protein classified as alanyl-tRNA synthetase (AlaRS) was found in the genome of the psychrophilic bacteria Bizionia argentinensis. The enzyme is constituted by three domains with an evolutionarily conserved modular arrangement: the N-terminal aminoacylation domain, the editing domain and the C-terminal domain (C-Ala). Herein we report the near complete NMR resonance assignment of the 122 amino acid C-Ala domain from B. argentinensis. The chemical shift data, reported for the first time for a C-Ala domain, constitute the basis for NMR structural studies aimed at elucidating the cold-adaptation mechanism of AlaRS.


Assuntos
Alanina-tRNA Ligase/química , Flavobacteriaceae/enzimologia , Ressonância Magnética Nuclear Biomolecular , Alanina-tRNA Ligase/metabolismo , Estrutura Terciária de Proteína , RNA de Transferência/metabolismo
17.
Biochemistry ; 50(45): 9886-900, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21985608

RESUMO

Alanyl-tRNA synthetase, a dimeric class 2 aminoacyl-tRNA synthetase, activates glycine and serine at significant rates. An editing activity hydrolyzes Gly-tRNA(ala) and Ser-tRNA(ala) to ensure fidelity of aminoacylation. Analytical ultracentrifugation demonstrates that the enzyme is predominately a dimer in solution. ATP binding to full length enzyme (ARS875) and to an N-terminal construct (ARS461) is endothermic (ΔH = 3-4 kcal mol(-1)) with stoichiometries of 1:1 for ARS461 and 2:1 for full-length dimer. Binding of aminoacyl-adenylate analogues, 5'-O-[N-(L-alanyl)sulfamoyl]adenosine (ASAd) and 5'-O-[N-(L-glycinyl)sulfamoyl]adenosine (GSAd), are exothermic; ASAd exhibits a large negative heat capacity change (ΔC(p) = 0.48 kcal mol(-1) K(-1)). Modification of alanyl-tRNA synthetase with periodate-oxidized tRNA(ala) (otRNA(ala)) generates multiple, covalent, enzyme-tRNA(ala) products. The distribution of these products is altered by ATP, ATP and alanine, and aminoacyl-adenylate analogues (ASAd and GSAd). Alanyl-tRNA synthetase was modified with otRNA(ala), and tRNA-peptides from tryptic digests were purified by ion exchange chromatography. Six peptides linked through a cyclic dehydromoropholino structure at the 3'-end of tRNA(ala) were sequenced by mass spectrometry. One site lies in the N-terminal adenylate synthesis domain (residue 74), two lie in the opening to the editing site (residues 526 and 585), and three (residues 637, 639, and 648) lie on the back side of the editing domain. At least one additional modification site was inferred from analysis of modification of ARS461. The location of the sites modified by otRNA(ala) suggests that there are multiple modes of interaction of tRNA(ala) with the enzyme, whose distribution is influenced by occupation of the ATP binding site.


Assuntos
Alanina-tRNA Ligase/química , Alanina-tRNA Ligase/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Escherichia coli/enzimologia , RNA de Transferência de Alanina/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Alanina/análogos & derivados , Alanina/metabolismo , Alanina-tRNA Ligase/genética , Sítio Alostérico , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Dimerização , Escherichia coli/genética , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Quaternária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinâmica
18.
Biochemistry ; 50(9): 1474-82, 2011 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-21241052

RESUMO

Aminoacyl-tRNA synthetases (ARSs) enhance the fidelity of protein synthesis through multiple mechanisms, including hydrolysis of the adenylate and cleavage of misacylated tRNA. Alanyl-tRNA synthetase (AlaRS) limits misacylation with glycine and serine by use of a dedicated editing domain, and a mutation in this activity has been genetically linked to a mouse model of a progressive neurodegenerative disease. Using the free-standing Pyrococcus horikoshii AlaX editing domain complexed with serine as a model and both Ser-tRNA(Ala) and Ala-tRNA(Ala) as substrates, the deacylation activities of the wild type and five different Escherichia coli AlaRS editing site substitution mutants were characterized. The wild-type AlaRS editing domain deacylated Ser-tRNA(Ala) with a k(cat)/K(M) of 6.6 × 10(5) M(-1) s(-1), equivalent to a rate enhancement of 6000 over the rate of enzyme-independent deacylation but only 12.2-fold greater than the rate with Ala-tRNA(Ala). While the E664A and T567G substitutions only minimally decreased k(cat)/K(M,) Q584H, I667E, and C666A AlaRS were more compromised in activity, with decreases in k(cat)/K(M) in the range of 6-, 6.6-, and 15-fold. C666A AlaRS was 1.7-fold more active on Ala-tRNA(Ala) relative to Ser-tRNA(Ala), providing the only example of a true reversal of substrate specificity and highlighting a potential role of the coordinated zinc in editing substrate specificity. Along with the potentially serious physiological consequences of serine misincorporation, the relatively modest specificity of the AlaRS editing domain may provide a rationale for the widespread phylogenetic distribution of AlaX free-standing editing domains, thereby contributing a further mechanism to lower concentrations of misacylated tRNA(Ala).


Assuntos
Alanina-tRNA Ligase/química , Alanina-tRNA Ligase/metabolismo , Escherichia coli/enzimologia , RNA de Transferência Aminoácido-Específico/metabolismo , Alanina-tRNA Ligase/genética , Catálise , Domínio Catalítico , Escherichia coli/genética , Escherichia coli/metabolismo , Modelos Moleculares , Mutação , Conformação Proteica , Especificidade por Substrato
19.
Acta Crystallogr D Biol Crystallogr ; 66(Pt 3): 243-50, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20179335

RESUMO

Although Escherichia coli alanyl-tRNA synthetase was among the first tRNA synthetases to be sequenced and extensively studied by functional analysis, it has proved to be recalcitrant to crystallization. This challenge remained even for crystallization of the catalytic fragment. By mutationally introducing three stacked leucines onto the solvent-exposed side of an alpha-helix, an engineered catalytic fragment of the synthetase was obtained that yielded multiple high-quality crystals and cocrystals with different ligands. The engineered alpha-helix did not form a leucine zipper that interlocked with the same alpha-helix from another molecule. Instead, using the created hydrophobic spine, it interacted with other surfaces of the protein as a leucine half-zipper (LHZ) to enhance the crystal lattice interactions. The LHZ made crystal lattice contacts in all crystals of different space groups. These results illustrate the power of introducing an LHZ into helices to facilitate crystallization. The authors propose that the method can be unified with surface-entropy reduction and can be broadly used for protein-surface optimization in crystallization.


Assuntos
Alanina-tRNA Ligase/química , Escherichia coli/enzimologia , Zíper de Leucina , Alanina-tRNA Ligase/genética , Cristalografia por Raios X , Entropia , Ligantes , Modelos Moleculares , Mutação , Estrutura Terciária de Proteína
20.
Nature ; 462(7274): 808-12, 2009 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-20010690

RESUMO

Mistranslation arising from confusion of serine for alanine by alanyl-tRNA synthetases (AlaRSs) has profound functional consequences. Throughout evolution, two editing checkpoints prevent disease-causing mistranslation from confusing glycine or serine for alanine at the active site of AlaRS. In both bacteria and mice, Ser poses a bigger challenge than Gly. One checkpoint is the AlaRS editing centre, and the other is from widely distributed AlaXps-free-standing, genome-encoded editing proteins that clear Ser-tRNA(Ala). The paradox of misincorporating both a smaller (glycine) and a larger (serine) amino acid suggests a deep conflict for nature-designed AlaRS. Here we show the chemical basis for this conflict. Nine crystal structures, together with kinetic and mutational analysis, provided snapshots of adenylate formation for each amino acid. An inherent dilemma is posed by constraints of a structural design that pins down the alpha-amino group of the bound amino acid by using an acidic residue. This design, dating back more than 3 billion years, creates a serendipitous interaction with the serine OH that is difficult to avoid. Apparently because no better architecture for the recognition of alanine could be found, the serine misactivation problem was solved through free-standing AlaXps, which appeared contemporaneously with early AlaRSs. The results reveal unconventional problems and solutions arising from the historical design of the protein synthesis machinery.


Assuntos
Alanina-tRNA Ligase/metabolismo , Alanina/metabolismo , Escherichia coli/enzimologia , Biossíntese de Proteínas , Serina/metabolismo , Alanina-tRNA Ligase/química , Alanina-tRNA Ligase/genética , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Domínio Catalítico , Cristalização , Cinética , Modelos Moleculares , Mutação , Conformação Proteica , RNA de Transferência de Alanina/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA