Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 225
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 323, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713233

RESUMO

Ergot alkaloids (EAs) are a diverse group of indole alkaloids known for their complex structures, significant pharmacological effects, and toxicity to plants. The biosynthesis of these compounds begins with chanoclavine-I aldehyde (CC aldehyde, 2), an important intermediate produced by the enzyme EasDaf or its counterpart FgaDH from chanoclavine-I (CC, 1). However, how CC aldehyde 2 is converted to chanoclavine-I acid (CC acid, 3), first isolated from Ipomoea violacea several decades ago, is still unclear. In this study, we provide in vitro biochemical evidence showing that EasDaf not only converts CC 1 to CC aldehyde 2 but also directly transforms CC 1 into CC acid 3 through two sequential oxidations. Molecular docking and site-directed mutagenesis experiments confirmed the crucial role of two amino acids, Y166 and S153, within the active site, which suggests that Y166 acts as a general base for hydride transfer, while S153 facilitates proton transfer, thereby increasing the acidity of the reaction. KEY POINTS: • EAs possess complicated skeletons and are widely used in several clinical diseases • EasDaf belongs to the short-chain dehydrogenases/reductases (SDRs) and converted CC or CC aldehyde to CC acid • The catalytic mechanism of EasDaf for dehydrogenation was analyzed by molecular docking and site mutations.


Assuntos
Aldeídos , Alcaloides de Claviceps , Aldeídos/metabolismo , Aldeídos/química , Domínio Catalítico , Alcaloides de Claviceps/biossíntese , Alcaloides de Claviceps/química , Alcaloides de Claviceps/metabolismo , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Oxirredução , Oxirredutases/metabolismo , Oxirredutases/genética , Oxirredutases/química
2.
Toxins (Basel) ; 13(12)2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34941699

RESUMO

Research into ergot alkaloid production in major cereal cash crops is crucial for furthering our understanding of the potential toxicological impacts of Claviceps purpurea upon Canadian agriculture and to ensure consumer safety. An untargeted metabolomics approach profiling extracts of C. purpurea sclerotia from four different grain crops separated the C. purpurea strains into two distinct metabolomic classes based on ergot alkaloid content. Variances in C. purpurea alkaloid profiles were correlated to genetic differences within the lpsA gene of the ergot alkaloid biosynthetic gene cluster from previously published genomes and from newly sequenced, long-read genome assemblies of Canadian strains. Based on gene cluster composition and unique polymorphisms, we hypothesize that the alkaloid content of C. purpurea sclerotia is currently undergoing adaptation. The patterns of lpsA gene diversity described in this small subset of Canadian strains provides a remarkable framework for understanding accelerated evolution of ergot alkaloid production in Claviceps purpurea.


Assuntos
Claviceps/genética , Alcaloides de Claviceps/biossíntese , Micotoxinas/química , Canadá , Claviceps/metabolismo , Grão Comestível/microbiologia , Alcaloides de Claviceps/genética , Variação Genética , Micotoxinas/genética , Secale/microbiologia , Triticale/microbiologia , Triticum/microbiologia
3.
Toxins (Basel) ; 13(11)2021 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-34822583

RESUMO

Ergot fungi (Claviceps spp.) are infamous for producing sclerotia containing a wide spectrum of ergot alkaloids (EA) toxic to humans and animals, making them nefarious villains in the agricultural and food industries, but also treasures for pharmaceuticals. In addition to three classes of EAs, several species also produce paspaline-derived indole diterpenes (IDT) that cause ataxia and staggers in livestock. Furthermore, two other types of alkaloids, i.e., loline (LOL) and peramine (PER), found in Epichloë spp., close relatives of Claviceps, have shown beneficial effects on host plants without evidence of toxicity to mammals. The gene clusters associated with the production of these alkaloids are known. We examined genomes of 53 strains of 19 Claviceps spp. to screen for these genes, aiming to understand the evolutionary patterns of these genes across the genus through phylogenetic and DNA polymorphism analyses. Our results showed (1) varied numbers of eas genes in C. sect. Claviceps and sect. Pusillae, none in sect. Citrinae, six idt/ltm genes in sect. Claviceps (except four in C. cyperi), zero to one partial (idtG) in sect. Pusillae, and four in sect. Citrinae, (2) two to three copies of dmaW, easE, easF, idt/ltmB, itd/ltmQ in sect. Claviceps, (3) frequent gene gains and losses, and (4) an evolutionary hourglass pattern in the intra-specific eas gene diversity and divergence in C. purpurea.


Assuntos
Claviceps/genética , Alcaloides de Claviceps/biossíntese , Genes Fúngicos/genética , Alcaloides Indólicos/isolamento & purificação , Claviceps/metabolismo , Evolução Molecular , Família Multigênica , Filogenia
4.
Toxins (Basel) ; 13(2)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33669319

RESUMO

The Epichloë species of fungi include seed-borne symbionts (endophytes) of cool-season grasses that enhance plant fitness, although some also produce alkaloids that are toxic to livestock. Selected or mutated toxin-free endophytes can be introduced into forage cultivars for improved livestock performance. Long-read genome sequencing revealed clusters of ergot alkaloid biosynthesis (EAS) genes in Epichloë coenophiala strain e19 from tall fescue (Lolium arundinaceum) and Epichloë hybrida Lp1 from perennial ryegrass (Lolium perenne). The two homeologous clusters in E. coenophiala-a triploid hybrid species-were 196 kb (EAS1) and 75 kb (EAS2), and the E. hybrida EAS cluster was 83 kb. As a CRISPR-based approach to target these clusters, the fungi were transformed with ribonucleoprotein (RNP) complexes of modified Cas9 nuclease (Cas9-2NLS) and pairs of single guide RNAs (sgRNAs), plus a transiently selected plasmid. In E. coenophiala, the procedure generated deletions of EAS1 and EAS2 separately, as well as both clusters simultaneously. The technique also gave deletions of the EAS cluster in E. hybrida and of individual alkaloid biosynthesis genes (dmaW and lolC) that had previously proved difficult to delete in E. coenophiala. Thus, this facile CRISPR RNP approach readily generates non-transgenic endophytes without toxin genes for use in research and forage cultivar improvement.


Assuntos
Sistemas CRISPR-Cas , Endófitos/genética , Epichloe/genética , Alcaloides de Claviceps/genética , Edição de Genes , Técnicas de Inativação de Genes , Família Multigênica , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Endófitos/crescimento & desenvolvimento , Endófitos/metabolismo , Epichloe/crescimento & desenvolvimento , Epichloe/metabolismo , Alcaloides de Claviceps/biossíntese , Alcaloides de Claviceps/toxicidade , Regulação Fúngica da Expressão Gênica , Reprodução Assexuada , Metabolismo Secundário
5.
Toxins (Basel) ; 13(2)2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498584

RESUMO

Epichloë endophytes are filamentous fungi (family Clavicipitaceae) that live in symbiotic associations with grasses in the sub family Poöideae. In New Zealand, E. festucae var. lolii confers significant resistance to perennial ryegrass (Lolium perenne) against insect and animal herbivory and is an essential component of pastoral agriculture, where ryegrass is a major forage species. The fungus produces in planta a range of bioactive secondary metabolites, including ergovaline, which has demonstrated bioactivity against the important pasture pest black beetle, but can also cause mammalian toxicosis. We genetically modified E. festucae var. lolii strain AR5 to eliminate key enzymatic steps in the ergovaline pathway to determine if intermediate ergot alkaloid compounds can still provide insecticidal benefits in the absence of the toxic end product ergovaline. Four genes (dmaW, easG, cloA, and lpsB) spanning the pathway were deleted and each deletion mutant was inoculated into five different plant genotypes of perennial ryegrass, which were later harvested for a full chemical analysis of the ergot alkaloid compounds produced. These associations were also used in a black beetle feeding deterrence study. Deterrence was seen with just chanoclavine present, but was cumulative as more intermediate compounds in the pathway were made available. Ergovaline was not detected in any of the deletion associations, indicating that bioactivity towards black beetle can be obtained in the absence of this mammalian toxin.


Assuntos
Besouros/fisiologia , Endófitos/genética , Epichloe/genética , Alcaloides de Claviceps/genética , Regulação Fúngica da Expressão Gênica , Lolium/microbiologia , Controle Biológico de Vetores , Animais , Endófitos/metabolismo , Epichloe/metabolismo , Alcaloides de Claviceps/biossíntese , Ergotaminas/metabolismo , Deleção de Genes , Herbivoria , Lolium/parasitologia , Simbiose
6.
N Biotechnol ; 61: 69-79, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33188977

RESUMO

The parasitic fungus Claviceps purpurea has been used for decades by the pharmaceutical industry as a valuable producer of ergot alkaloids. As the biosynthetic pathway of ergot alkaloids involves a common precursor L-tryptophan, targeted genetic modification of the related genes may improve production yield. In this work, the S76L mutated version of the trpE gene encoding anthranilate synthase was constitutively overexpressed in the fungus with the aim of overcoming feedback inhibition of the native enzyme by an excess of tryptophan. In another approach, the dmaW gene encoding dimethylallyltryptophan synthase, which produces a key intermediate for the biosynthesis of ergot alkaloids, was also constitutively overexpressed. Each of the above manipulations led to a significant increase (up to 7-fold) in the production of ergot alkaloids in submerged cultures.


Assuntos
Claviceps/genética , Claviceps/metabolismo , Alcaloides de Claviceps/biossíntese , Triptofano/genética , Alcaloides de Claviceps/química , Perfilação da Expressão Gênica , Estrutura Molecular , Triptofano/metabolismo
7.
Fungal Genet Biol ; 145: 103481, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33130255

RESUMO

Claviceps purpurea is a plant pathogenic fungus which is still highly relevant in modern agriculture as it infects grasses such as rye and wheat. The disease caused by the consumption of contaminated grain or flour has been known since the Middle Ages and is termed ergotism. The main cause for the toxicity of this fungus is attributed to the ergot alkaloids. Apart from these alkaloids and the ergochromes known as ergot pigments, the secondary metabolism of C. purpurea is not well investigated. This study demonstrated the function of the polyketide synthase PKS7 in C. purpurea by determining the effect of its overexpression on metabolite profiles. For the first time, the depsides lecanoric acid, ethyl lecanorate, gerfelin, and C10-deoxy gerfelin were discovered as secondary metabolites of C. purpurea. Additionally, to estimate the contribution of isolated secondary metabolites to the toxic effects of C. purpurea, lecanoric acid, ethyl lecanorate, and orsellinic acid were tested on HepG2 and CCF-STTG1 cell lines. This study provides the first report on the function of C. purpurea PKS7 responsible for the production of depsides, among which lecanoric acid and ethyl lecanorate were identified as main secondary metabolites.


Assuntos
Claviceps/genética , Alcaloides de Claviceps/biossíntese , Policetídeo Sintases/genética , Salicilatos/metabolismo , Claviceps/metabolismo , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Alcaloides de Claviceps/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Triticum/microbiologia
8.
Mycologia ; 112(5): 974-988, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32936061

RESUMO

Four ergot species (Claviceps ripicola, C. quebecensis, C. perihumidiphila, and C. occidentalis) were recognized based on analyses of DNA sequences from multiple loci, including two housekeeping genes, RNA polymerase II second largest subunit (RPB2), and translation elongation factor 1-α (TEF1-α), and a single-copy ergot alkaloid synthesis gene (easE) encoding chanoclavine I synthase oxidoreductase. Morphological features, ergot alkaloid production, and pathogenicity on five common cereal crops of each species were evaluated and presented in taxonomic descriptions. A synoptic key was also provided for identification.


Assuntos
Claviceps/classificação , Claviceps/genética , Claviceps/patogenicidade , Alcaloides de Claviceps/biossíntese , Alcaloides de Claviceps/genética , Carpóforos/citologia , Doenças das Plantas , Esporos Fúngicos/citologia , Canadá , Produtos Agrícolas/microbiologia , Carpóforos/classificação , Genes Fúngicos , Filogenia , Poaceae/microbiologia , Análise de Sequência de DNA , Esporos Fúngicos/classificação
9.
Toxins (Basel) ; 12(7)2020 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-32610508

RESUMO

Ergot alkaloids are novel pharmaceutical and therapeutic agents synthesized in this study using fungal species Penicillium citrinum. To get the maximum yield of ergot alkaloids a statistical process of response surface methodology was employed using surface culture fermentation technique. Initially, the strain of Penicillium was improved using physical (ultraviolet (UV) and chemical (ethyl methane sulfonate (EMS) treatments to get the maximum yield of ergot alkaloids through surface culture fermentation technique. After improving the strain, survival rate of colonies of Penicillium citrinum treated with UV and EMS was observed. Only 2.04% living colonies were observed after 150 min of exposure of Penicillium citrinum in UV light and 3.2% living colonies were observed after 20 min of the exposure in EMS. The mutated strains of Penicillium citrinum were screened for their production of ergot alkaloids and after fermentation experiments, maximum yield was obtained from PCUV-4 and PCEMS-1 strains. After strain improvement, Plackett-Burman design (PBD) and Box-Behnken design (BBD) of RSM were employed and 10-fold yield enhancement (35.60 mg/100 mL) of ergot alkaloids was achieved. This enhancement in yield of ergot alkaloids proved the positive impacts of RSM and UV on the yield of ergot alkaloids. The study provides a cost effective, economical and sustainable process to produce medically important ergot alkaloids which can be used in various pharmaceutical formulations to treat human diseases.


Assuntos
Alcaloides de Claviceps/biossíntese , Microbiologia Industrial , Modelos Estatísticos , Penicillium/metabolismo , Metanossulfonato de Etila/farmacologia , Fermentação , Penicillium/efeitos dos fármacos , Penicillium/efeitos da radiação , Fatores de Tempo , Raios Ultravioleta
10.
Org Lett ; 22(8): 3302-3306, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32243182

RESUMO

(-)-Aurantioclavine (1), which contains a characteristic seven-membered ring fused to an indole ring, belongs to the azepinoindole class of fungal clavine alkaloids. Here we show that starting from a 4-dimethylallyl-l-tryptophan precursor, a flavin adenine dinucleotide (FAD)-binding oxidase and a catalase-like heme-containing protein are involved in the biosynthesis of 1. The function of these two enzymes was characterized by heterologous expression, in vitro characterization, and deuterium labeling experiments.


Assuntos
Azepinas/metabolismo , Alcaloides de Claviceps/biossíntese , Indóis/metabolismo , Oxirredutases/metabolismo , Azepinas/química , Biocatálise , Alcaloides de Claviceps/química , Indóis/química , Conformação Molecular , Oxirredutases/química , Penicillium/enzimologia , Triptofano/química , Triptofano/metabolismo
11.
Biotechnol Lett ; 41(12): 1439-1449, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31659576

RESUMO

OBJECTIVE: To enhance ergot alkaloid production of Claviceps purpurea Cp-1 strain by epigenetic modification approach. RESULTS: The chemical epigenetic modifiers were screened to promote ergot alkaloid production of the Cp-1 strain. The histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) was found to significantly enhance the alkaloid productivity of the strain. Particularly, the titers of total ergot alkaloids were gradually increased with the increase of SAHA concentration in the fermentation medium, and the highest production of ergot alkaloids could be achieved at the concentration of 500 µM SAHA. Specially, the titers of ergometrine and total ergot alkaloids were as high as 95.4 mg/L and 179.7 mg/L, respectively, which were twice of those of the control. Furthermore, the mRNA expression levels of the most functional genes in the ergot alkaloid synthesis (EAS) gene cluster were up-regulated under SAHA treatment. It was proposed that SAHA might increase histone acetylation in the EAS gene cluster region in the chromosome, which would loosen the chromosome structure, and subsequently up-regulate the mRNA expression levels of genes involved in the biosynthesis of ergot alkaloids, thereby resulting in the markedly increase in the production of ergot alkaloids. CONCLUSIONS: The ergot alkaloid production by the C. purpurea Cp-1 strain can be effectively increased by the application of histone deacetylase inhibitor. Our work provides a reference for using the chemical epigenetic modifiers to improve SM production in other fungi.


Assuntos
Vias Biossintéticas/genética , Claviceps/genética , Claviceps/metabolismo , Epigênese Genética , Alcaloides de Claviceps/biossíntese , Vias Biossintéticas/efeitos dos fármacos , Claviceps/efeitos dos fármacos , Fermentação , Inibidores de Histona Desacetilases/metabolismo
12.
Inorg Chem ; 58(20): 13771-13781, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31560525

RESUMO

Cycloclavine is a complex ergot alkaloid containing an unusual cyclopropyl moiety, which has a wide range of biological activities and pharmaceutical applications. The biosynthesis of cycloclavine requires a series of enzymes, one of which is a nonheme FeII/α-ketoglutarate-dependent (aKG) oxidase (Aj_EasH). According to the previous proposal, the cyclopropyl ring formation catalyzed by Aj_EasH follows an unprecedented oxidative mechanism; however, the reaction details are unknown. In this article, on the basis of the recently obtained crystal structure of Aj_EasH (EasH from Aspergillus japonicas), the reactant models were built, and the reaction details were investigated by performing QM-only and combined QM and MM calculations. Our calculation results reveal that the biosynthesis of cyclopropyl moiety involves a radical intermediate rather than a carbocationic or carbanionic intermediate as in the biosynthesis of terpenoid family. The iron(IV)-oxo first abstracts a hydrogen atom from the substrate to trigger the reaction, and then the generated radical intermediate undergoes ring rearrangement to form the fused 5-3 ring system of cycloclavine. On the basis of our calculations, the absolute configuration of the cycloclavine catalyzed by Aj_EasH from Aspergillus japonicus should be (5R,8R,10R), which is different from the product isolated from Ipomoea hildebrandtii (5R,8S,10S). Residues at the active site play an important role in substrate binding, ring rearrangement, and enantioselectivity.


Assuntos
Aspergillus/enzimologia , Alcaloides de Claviceps/biossíntese , Alcaloides Indólicos/metabolismo , Ácidos Cetoglutáricos/metabolismo , Oxirredutases/metabolismo , Biocatálise , Alcaloides de Claviceps/química , Alcaloides Indólicos/química , Ácidos Cetoglutáricos/química , Modelos Moleculares , Conformação Molecular , Oxirredutases/química , Teoria Quântica , Estereoisomerismo
13.
Fungal Genet Biol ; 125: 71-83, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30731202

RESUMO

Epichloë festucae forms mutualistic symbiotic interactions with grasses of the Lolium and Festuca genera. Protection from insect and mammalian herbivory are the best-documented host benefits of these associations. The two main classes of anti-mammalian alkaloids synthesized by E. festucae are the ergot alkaloids and indole diterpenes, of which ergovaline and lolitrems are the principal terminal products. Synthesis of both metabolites require multiple gene products encoded by clusters of 11 genes located at the subtelomeric regions of chromosomes I and III respectively. These loci are essentially unexpressed in axenic culture but among the most highly expressed genes in planta. We show here that heterochromatin 1 protein (HepA) is an important component of the regulatory machinery that maintains these loci in a silent state in culture. Deletion of this gene led to derepression of eas and ltm gene expression under non-symbiotic culture conditions. Although there was no obvious culture phenotype, RNAseq analysis revealed that around 1000 genes were differentially expressed in the ΔhepA mutant compared to wild type with just one-third upregulated. Inoculation of the ΔhepA mutants into seedlings of Lolium perenne led to a severe host interaction phenotype characterized by a reduction in tiller length but an increase in tiller number. Hyphae within the leaves of these associations were much more abundant in the intercellular spaces of the leaves and aberrantly colonized the vascular bundles. This physiological change was accompanied by a dramatic change in the transcriptome with around 900 genes differentially expressed, with two thirds of these upregulated. This major physiological change was accompanied by a decrease in ltm gene expression and loss of the ability to synthesize lolitrems. These results show that HepA has an important role in controlling the chromatin state of these sub-telomeric secondary metabolite genes, including their symbiosis-specific regulation.


Assuntos
Proteínas Cromossômicas não Histona/genética , Epichloe/genética , Alcaloides de Claviceps/genética , Simbiose/genética , Homólogo 5 da Proteína Cromobox , Diterpenos/metabolismo , Endófitos/genética , Endófitos/crescimento & desenvolvimento , Epichloe/crescimento & desenvolvimento , Epigênese Genética , Alcaloides de Claviceps/biossíntese , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/genética , Heterocromatina/genética , Hifas/genética , Hifas/crescimento & desenvolvimento , Lolium/genética , Lolium/microbiologia
14.
Appl Environ Microbiol ; 84(19)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30076193

RESUMO

Ergot alkaloids are specialized fungal metabolites with potent biological activities. They are encoded by well-characterized gene clusters in the genomes of producing fungi. Penicillium camemberti plays a major role in the ripening of Brie and Camembert cheeses. The P. camemberti genome contains a cluster of five genes shown in other fungi to be required for synthesis of the important ergot alkaloid intermediate chanoclavine-I aldehyde and two additional genes (easH and easQ) that may control modification of chanoclavine-I aldehyde into other ergot alkaloids. We analyzed samples of Brie and Camembert cheeses, as well as cultures of P. camemberti, and did not detect chanoclavine-I aldehyde or its derivatives. To create a functioning facsimile of the P. camembertieas cluster, we expressed P. camemberti easH and easQ in a chanoclavine-I aldehyde-accumulating easA knockout mutant of Neosartorya fumigata The easH-easQ-engineered N. fumigata strain accumulated a pair of compounds of m/z 269.1288 in positive-mode liquid chromatography-mass spectrometry (LC-MS). The analytes fragmented in a manner typical of the stereoisomeric ergot alkaloids rugulovasine A and B, and the related rugulovasine producer Penicillium biforme accumulated the same isomeric pair of analytes. The P. camemberti eas genes were transcribed in culture, but comparison of the P. camemberti eas cluster with the functional cluster from P. biforme indicated 11 polymorphisms. Whereas other P. camembertieas genes functioned when expressed in N. fumigata, P. camembertieasC did not restore ergot alkaloids when expressed in an easC mutant. The data indicate that P. camemberti formerly had the capacity to produce the ergot alkaloids rugulovasine A and B.IMPORTANCE The presence of ergot alkaloid synthesis genes in the genome of Penicillium camemberti is significant, because the fungus is widely consumed in Brie and Camembert cheeses. Our results show that, although the fungus has several functional genes from the ergot alkaloid pathway, it produces only an early pathway intermediate in culture and does not produce ergot alkaloids in cheese. Penicillium biforme, a close relative of P. camemberti, contains a similar but fully functional set of ergot alkaloid synthesis genes and produces ergot alkaloids chanoclavine-I, chanoclavine-I aldehyde, and rugulovasine A and B. Our reconstruction of the P. camemberti pathway in the model fungus Neosartorya fumigata indicated that P. camemberti formerly had the capacity to produce these same ergot alkaloids. Neither P. camemberti nor P. biforme produced ergot alkaloids in cheese, indicating that nutritionally driven gene regulation prevents these fungi from producing ergot alkaloids in a dairy environment.


Assuntos
Alcaloides de Claviceps/biossíntese , Penicillium/metabolismo , Cromatografia Líquida de Alta Pressão , Ergolinas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genoma Fúngico , Espectrometria de Massas , Penicillium/genética
15.
J Microbiol Biotechnol ; 28(5): 748-756, 2018 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-29807399

RESUMO

Biofilms are of vital significance in bioconversion and biotechnological processes. In this work, sugarcane molasses was used to enhance biofilms for the improvement of the production of fumigaclavine C (FC), a conidiation-associated ergot alkaloid with strong anti-inflammatory activities. Biofilm formation was more greatly induced by the addition of molasses than the addition of other reported biofilm inducers. With the optimal molasses concentration (400 g/l), the biofilm biomass was 6-fold higher than that with sucrose, and FC and conidia production was increased by 5.8- and 3.1-fold, respectively. Moreover, the global secondary metabolism regulatory gene laeA, FC biosynthetic gene fgaOx3, and asexual central regulatory genes brlA and wetA were upregulated in molasses-based biofilms, suggesting the upregulation of both asexual development and FC biosynthesis. This study provides novel insight into the stimulatory effects of molasses on biofilm formation and supports the widespread application of molasses as an inexpensive raw material and effective inducer for biofilm production.


Assuntos
Aspergillus fumigatus , Biofilmes/efeitos dos fármacos , Alcaloides de Claviceps , Alcaloides Indólicos , Melaço , Saccharum/química , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/metabolismo , Biomassa , Biotecnologia , Alcaloides de Claviceps/análise , Alcaloides de Claviceps/biossíntese , Alcaloides Indólicos/análise
16.
Nat Prod Rep ; 35(7): 633-645, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-29513321

RESUMO

Covering: up to 2018 Non-heme iron enzymes are a versatile family of oxygenases that catalyze remarkable types of chemistry. This review highlights the intriguing chemistry of non-heme iron enzymes, especially those utilizing α-ketoglutarate (α-KG) as a co-substrate, in fungal secondary metabolism and aims to summarize how nature diversifies and complexifies natural products.


Assuntos
Proteínas Fúngicas/química , Oxigenases/química , Oxigenases/metabolismo , Catálise , Alcaloides de Claviceps/biossíntese , Proteínas Fúngicas/metabolismo , Heme , Hidroxiquinolinas/metabolismo , Indóis/metabolismo , Ferro , Ácidos Cetoglutáricos/metabolismo , Tropolona/metabolismo , beta-Lactamas/metabolismo
17.
Appl Microbiol Biotechnol ; 102(7): 3255-3266, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29457197

RESUMO

The hypocrealean fungus Claviceps paspali is a parasite of wild grasses. This fungus is widely utilized in the pharmaceutical industry for the manufacture of ergot alkaloids, but also produces tremorgenic and neurotoxic indole-diterpene (IDT) secondary metabolites such as paspalitrems A and B. IDTs cause significant losses in agriculture and represent health hazards that threaten food security. Conversely, IDTs may also be utilized as lead compounds for pharmaceutical drug discovery. Current protoplast-mediated transformation protocols of C. paspali are inadequate as they suffer from inefficiencies in protoplast regeneration, a low frequency of DNA integration, and a low mitotic stability of the nascent transformants. We adapted and optimized Agrobacterium tumefaciens-mediated transformation (ATMT) for C. paspali and validated this method with the straightforward creation of a mutant strain of this fungus featuring a targeted replacement of key genes in the putative IDT biosynthetic gene cluster. Complete abrogation of IDT production in isolates of the mutant strain proved the predicted involvement of the target genes in the biosynthesis of IDTs. The mutant isolates continued to produce ergot alkaloids undisturbed, indicating that equivalent mutants generated in industrial ergot producers may have a better safety profile as they are devoid of IDT-type mycotoxins. Meanwhile, ATMT optimized for Claviceps spp. may open the door for the facile genetic engineering of these industrially and ecologically important organisms.


Assuntos
Agrobacterium/genética , Claviceps/genética , Microbiologia Industrial/métodos , Família Multigênica/genética , Diterpenos/metabolismo , Alcaloides de Claviceps/biossíntese , Inativação Gênica , Indóis/metabolismo , Organismos Geneticamente Modificados/genética
18.
Mol Phylogenet Evol ; 123: 73-87, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29481949

RESUMO

The ergot, genus Claviceps, comprises approximately 60 species of specialised ovarial grass parasites famous for the production of food toxins and pharmaceutics. Although the ergot has been known for centuries, its evolution have not been resolved yet. Our approach combining multilocus phylogeny, molecular dating and the study of ecological, morphological and metabolic features shows that Claviceps originated in South America in the Palaeocene on a common ancestor of BEP (subfamilies Bambusoideae, Ehrhartoideae, Pooideae) and PACMAD (subfamilies Panicoideae, Aristidoideae, Chloridoideae, Micrairoideae, Arundinoideae, Danthonioideae) grasses. Four clades described here as sections diverged during the Paleocene and Eocene. Since Claviceps are parasitic fungi with a close relationship with their host plants, their evolution is influenced by interactions with the new hosts, either by the spread to a new continent or the radiation of the host plants. Three of the sections possess very narrow host ranges and biogeographical distributions and have relatively low toxicity. On the contrary, the section Claviceps, comprising the rye ergot, C. purpurea, is unique in all aspects. Fungi in this section of North American origin have spread all over the world and infect grasses in all subfamilies as well as sedges, and it is the only section synthesising toxic ergopeptines and secalonic acids. The evolutionary success of the Claviceps section members can be explained by high toxin presence, serving as feeding deterrents and playing a role in their protective mutualism with host plants. Closely related taxa Neoclaviceps monostipa and Cepsiclava phalaridis were combined into the genus Aciculosporium.


Assuntos
Claviceps/classificação , Filogenia , Teorema de Bayes , Alcaloides de Claviceps/biossíntese , Alcaloides de Claviceps/química , Loci Gênicos , Geografia , Especificidade de Hospedeiro , Metabolismo Secundário , América do Sul , Fatores de Tempo
19.
J Agric Food Chem ; 65(49): 10703-10710, 2017 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-29172518

RESUMO

Biosynthesis of the dihydrogenated forms of ergot alkaloids is of interest because many of the ergot alkaloids used as pharmaceuticals may be derived from dihydrolysergic acid (DHLA) or its precursor dihydrolysergol. The maize (Zea mays) ergot pathogen Claviceps gigantea has been reported to produce dihydrolysergol, a hydroxylated derivative of the common ergot alkaloid festuclavine. We hypothesized expression of C. gigantea cloA in a festuclavine-accumulating mutant of the fungus Neosartorya fumigata would yield dihydrolysergol because the P450 monooxygenase CloA from other fungi performs similar oxidation reactions. We engineered such a strain, and high performance liquid chromatography and liquid chromatography-mass spectrometry analyses demonstrated the modified strain produced DHLA, the fully oxidized product of dihydrolysergol. Accumulation of high concentrations of DHLA in field-collected C. gigantea sclerotia and discovery of a mutation in the gene lpsA, downstream from DHLA formation, supported our finding that DHLA rather than dihydrolysergol is the end product of the C. gigantea pathway.


Assuntos
Claviceps/metabolismo , Alcaloides de Claviceps/biossíntese , Zea mays/microbiologia , Cromatografia Líquida de Alta Pressão/métodos , Expressão Gênica , Ácido Lisérgico/análogos & derivados , Ácido Lisérgico/química , Espectrometria de Massas/métodos , Oxigenases de Função Mista/metabolismo , Mutação , Metabolismo Secundário , Transformação Genética
20.
Org Biomol Chem ; 15(38): 8059-8071, 2017 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-28902217

RESUMO

The blue cheese-making fungus Penicillium roqueforti produces isofumigaclavine A as the main ergot alkaloid. Recently, genome mining revealed the presence of two DNA loci bearing the genetic potential for its biosynthesis. In this study, a short-chain dehydrogenase/reductase (SDR) from one of the loci was proved to be responsible for the conversion of chanoclavine-I to its aldehyde. Furthermore, a putative gene coding for an enzyme with high homology to Old Yellow Enzymes (OYEs) involved in the ergot alkaloid biosynthesis was found outside the two clusters. Biochemical characterisation of this enzyme, named FgaOx3Pr3, showed that it can indeed catalyse the formation of festuclavine in the presence of a festuclavine synthase FgaFS, as had been observed for other OYEs in ergot alkaloid biosynthesis. Differing from other homologues, FgaOx3Pr3 does not convert chanoclavine-I aldehyde to its shunt products in the absence of FgaFS. Instead, it increases significantly the product yields of several SDRs for the conversion of chanoclavine-I to its aldehyde. Kinetic studies proved that overcoming the product inhibition is responsible for the observed enhancement. To the best of our knowledge, this is the first report on the bifunctionality of an OYE and its synergistic effect with SDRs.


Assuntos
Alcaloides de Claviceps/biossíntese , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação Fúngica da Expressão Gênica/fisiologia , NADPH Desidrogenase/metabolismo , Penicillium/enzimologia , Clonagem Molecular , Alcaloides de Claviceps/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Estrutura Molecular , Família Multigênica , Mutagênese Sítio-Dirigida , NADPH Desidrogenase/genética , Penicillium/metabolismo , Reação em Cadeia da Polimerase , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA