Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.528
Filtrar
1.
Oncol Rep ; 51(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38577936

RESUMO

Cancer cells are characterized by increased glycolysis, known as the Warburg effect, which leads to increased production of cytotoxic methylglyoxal (MGO) and apoptotic cell death. Cancer cells often activate the protective nuclear factor erythroid 2­related factor2 (Nrf2)/glyoxalase1 (Glo1) system to detoxify MGO. The effects of sodium butyrate (NaB), a product of gut microbiota, on Nrf2/Glos/MGO pathway and the underlying mechanisms in prostate cancer (PCa) cells were investigated in the present study. Treatment with NaB induced the cell death and reduced the proliferation of PCa cells (DU145 and LNCap). Moreover, the protein kinase RNA-like endoplasmic reticulum kinase/Nrf2/Glo1 pathway was greatly inhibited by NaB, thereby accumulating MGO-derived adduct hydroimidazolone (MG-H1). In response to a high amount of MGO, the expression of Nrf2 and Glo1 was attenuated, coinciding with an increased cellular death. NaB also markedly inhibited the Janus kinase 2 (JAK2)/Signal transducer and activator of transcription 3 (Stat3) pathway. Conversely, co­treatment with Colivelin, a Stat3 activator, significantly reversed the effects of NaB on Glo1 expression, MG-H1 production, and the cell migration and viability. As expected, overexpression of Stat3 or Glo1 reduced NaB­induced cell death. The activation of calcium/calmodulin dependent protein kinase II gamma and reactive oxygen species production also contributed to the anticancer effect of NaB. The present study, for the first time, demonstrated that NaB greatly increases MGO production through suppression of the JAK2/Stat3/Nrf2/Glo1 pathway in DU145 cells, a cell line mimicking castration­resistant PCa (CRPC), suggesting that NaB may be a potential agent for PCa therapy.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Humanos , Masculino , Ácido Butírico/farmacologia , Janus Quinase 2/metabolismo , Óxido de Magnésio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Aldeído Pirúvico/metabolismo , Fator de Transcrição STAT3/metabolismo
2.
J Agric Food Chem ; 72(19): 11174-11184, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38687489

RESUMO

Polyphenols with a typical meta-phenol structure have been intensively investigated for scavenging of methylglyoxal (MGO) to reduce harmful substances in food. However, less attention has been paid to the formation level of polyphenol-MGO adducts in foods and in vivo and their absorption, metabolism, and health impacts. In this study, hesperitin (HPT) was found to scavenge MGO by forming two adducts, namely, 8-(1-hydroxyacetone)-hesperetin (HPT-mono-MGO) and 6-(1-hydroxyacetone)-8-(1-hydroxyacetone)-hesperetin (HPT-di-MGO). These two adducts were detected (1.6-15.9 mg/kg in total) in cookies incorporated with 0.01%-0.5% HPT. HPT-di-MGO was the main adduct detected in rat plasma after HPT consumption. The adducts were absorbed 8-30 times faster than HPT, and they underwent glucuronidation and sulfation in vivo. HPT-mono-MGO would continue to react with endogenous MGO in vivo to produce HPT-di-MGO, which effectively reduced the cytotoxicity of HPT and HPT-mono-MGO. This study provided data on the safety of employing HPT as a dietary supplement to scavenge MGO in foods.


Assuntos
Hesperidina , Aldeído Pirúvico , Animais , Aldeído Pirúvico/metabolismo , Aldeído Pirúvico/química , Hesperidina/metabolismo , Hesperidina/química , Hesperidina/análogos & derivados , Ratos , Masculino , Ratos Sprague-Dawley , Humanos
3.
Cell ; 187(9): 2124-2126, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38670069

RESUMO

Many types of tumor cells alter metabolic pathways to meet their energy and biosynthetic demands for proliferation or stress adaptation. In this issue of Cell, Kong et al. find that the glycolytic metabolite methylglyoxal causes cancer-associated mutant single-base substitution features by inducing BRCA2 proteolysis, leading to functional haploinsufficiency of BRCA2.


Assuntos
Proteína BRCA2 , Glicólise , Haploinsuficiência , Humanos , Proteína BRCA2/metabolismo , Proteína BRCA2/genética , Aldeído Pirúvico/metabolismo , Mutação
4.
Cell ; 187(9): 2269-2287.e16, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38608703

RESUMO

Knudson's "two-hit" paradigm posits that carcinogenesis requires inactivation of both copies of an autosomal tumor suppressor gene. Here, we report that the glycolytic metabolite methylglyoxal (MGO) transiently bypasses Knudson's paradigm by inactivating the breast cancer suppressor protein BRCA2 to elicit a cancer-associated, mutational single-base substitution (SBS) signature in nonmalignant mammary cells or patient-derived organoids. Germline monoallelic BRCA2 mutations predispose to these changes. An analogous SBS signature, again without biallelic BRCA2 inactivation, accompanies MGO accumulation and DNA damage in Kras-driven, Brca2-mutant murine pancreatic cancers and human breast cancers. MGO triggers BRCA2 proteolysis, temporarily disabling BRCA2's tumor suppressive functions in DNA repair and replication, causing functional haploinsufficiency. Intermittent MGO exposure incites episodic SBS mutations without permanent BRCA2 inactivation. Thus, a metabolic mechanism wherein MGO-induced BRCA2 haploinsufficiency transiently bypasses Knudson's two-hit requirement could link glycolysis activation by oncogenes, metabolic disorders, or dietary challenges to mutational signatures implicated in cancer evolution.


Assuntos
Proteína BRCA2 , Neoplasias da Mama , Glicólise , Aldeído Pirúvico , Animais , Proteína BRCA2/metabolismo , Proteína BRCA2/genética , Camundongos , Humanos , Feminino , Aldeído Pirúvico/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Haploinsuficiência , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Mutação , Dano ao DNA , Reparo do DNA , Linhagem Celular Tumoral
5.
J Hazard Mater ; 470: 134212, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38583205

RESUMO

Elevated levels of cadmium (Cd) have the ability to impede plant development. Aldo-keto reductases (AKRs) have been demonstrated in a number of plant species to improve tolerance to a variety of abiotic stresses by scavenging cytotoxic aldehydes; however, only a few AKRs have been identified to improve Cd tolerance. The OsAKR1 gene was extracted and identified from rice here. After being exposed to Cd, the expression of OsAKR1 dramatically rose in both roots and shoots, although more pronounced in roots. According to a subcellular localization experiment, the nucleus and cytoplasm are where OsAKR1 is primarily found. Mutants lacking OsAKR1 exhibited Cd sensitive phenotype than that of the wild-type (WT) Nipponbare (Nip), and osakr1 mutants exhibited reduced capacity to scavenge methylglyoxal (MG). Furthermore, osakr1 mutants exhibited considerably greater hydrogen peroxide (H2O2) and malondialdehyde (MDA) levels, and increased catalase (CAT) activity in comparison to Nip. The expression of three isomeric forms of CAT was found to be considerably elevated in osakr1 mutants during Cd stress, as demonstrated by quantitative real-time PCR analysis, when compared to Nip. These results imply that OsAKR1 controlled rice's ability to withstand Cd by scavenging harmful aldehydes and turning on the reactive oxygen species (ROS) scavenging mechanism.


Assuntos
Aldo-Ceto Redutases , Cádmio , Oryza , Oryza/genética , Oryza/metabolismo , Oryza/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Cádmio/toxicidade , Cádmio/metabolismo , Aldo-Ceto Redutases/genética , Aldo-Ceto Redutases/metabolismo , Aldeídos/metabolismo , Catalase/metabolismo , Catalase/genética , Aldeído Redutase/genética , Aldeído Redutase/metabolismo , Malondialdeído/metabolismo , Estresse Fisiológico , Aldeído Pirúvico/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mutação , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Inativação Metabólica
6.
Molecules ; 29(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38675531

RESUMO

Glycolytic overload promotes accumulation of the highly reactive dicarbonyl compounds, resulting in harmful conditions called dicarbonyl stress. Methylglyoxal (MG) is a highly reactive dicarbonyl species and its accumulation plays a crucial pathophysiological role in diabetes and its vascular complications. MG cytotoxicity is mediated by reactive oxygen species (ROS) generation, a key event underlying the intracellular signaling pathways leading to inflammation and apoptosis. The identification of compounds able to inhibit ROS signaling pathways and counteract the MG-induced toxicity is a crucial step for developing new therapeutic strategies in the treatment of diabetic vascular complications. In this study, the effect of genistein, a natural soybean isoflavone, has been evaluated on MG-induced cytotoxicity in human endothelial cells. Our results show that genistein is able to counteract the MG-induced apoptosis by restraining ROS production, thus inhibiting the MAPK signaling pathways and caspase-3 activation. These findings identify a beneficial role for genistein, providing new insights for its potential clinical applications in preserving endothelial function in diabetic vascular complications.


Assuntos
Apoptose , Células Endoteliais , Genisteína , Estresse Oxidativo , Aldeído Pirúvico , Espécies Reativas de Oxigênio , Genisteína/farmacologia , Aldeído Pirúvico/metabolismo , Humanos , Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Caspase 3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos
7.
Molecules ; 29(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38611866

RESUMO

α-Dicarbonyls are significant degradation products resulting from the Maillard reaction during food processing. Their presence in foods can indicate the extent of heat exposure, processing treatments, and storage conditions. Moreover, they may be useful in providing insights into the potential antibacterial and antioxidant activity of U.S. honey. Despite their importance, the occurrence of α-dicarbonyls in honey produced in the United States has not been extensively studied. This study aims to assess the concentrations of α-dicarbonyls in honey samples from different regions across the United States. The identification and quantification of α-dicarbonyls were conducted using reverse-phase liquid chromatography after derivatization with o-phenylenediamine (OPD) and detected using ultraviolet (UV) and mass spectrometry methods. This study investigated the effects of pH, color, and derivatization reagent on the presence of α-dicarbonyls in honey. The quantification method was validated by estimating the linearity, precision, recovery, method limit of detection, and quantification using known standards for GO, MGO, and 3-DG, respectively. Three major OPD-derivatized α-dicarbonyls including methylglyoxal (MGO), glyoxal (GO), and 3-deoxyglucosone (3-DG), were quantified in all the honey samples. 3-Deoxyglucosone (3-DG) was identified as the predominant α-dicarbonyl in all the U.S. honey samples, with concentrations ranging from 10.80 to 50.24 mg/kg. The total α-dicarbonyl content ranged from 16.81 to 55.74 mg/kg, with the highest concentration measured for Southern California honey. Our results showed no significant correlation between the total α-dicarbonyl content and the measured pH solutions. Similarly, we found that lower amounts of the OPD reagent are optimal for efficient derivatization of MGO, GO, and 3-DG in honey. Our results also indicated that darker types of honey may contain higher α-dicarbonyl content compared with lighter ones. The method validation results yielded excellent recovery rates for 3-DG (82.5%), MGO (75.8%), and GO (67.0%). The method demonstrated high linearity with a limit of detection (LOD) and limit of quantitation (LOQ) ranging from 0.0015 to 0.002 mg/kg and 0.005 to 0.008 mg/kg, respectively. Our results provide insights into the occurrence and concentrations of α-dicarbonyl compounds in U.S. honey varieties, offering valuable information on their quality and susceptibility to thermal processing effects.


Assuntos
Mel , Fenilenodiaminas , Óxido de Magnésio , Glioxal , Aldeído Pirúvico
8.
Am J Physiol Regul Integr Comp Physiol ; 326(5): R427-R437, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38497128

RESUMO

Methylglyoxal (MG), a reactive metabolic byproduct of glycolysis, is a causative of painful diabetic neuropathy. Patients with diabetes are associated with more frequent severe asthma exacerbation. Stimulation of capsaicin-sensitive lung vagal (CSLV) afferents may contribute to the pathogenesis of hyperreactive airway diseases such as asthma. However, the possibility of the stimulatory effect of MG on CSLV afferents and the underlying mechanisms remain unknown. Our results showed that intravenous injection of MG (25 mg/kg, MG25) in anesthetized, spontaneously breathing rats elicited pulmonary chemoreflexes characterized by apnea, bradycardia, and hypotension. The MG-induced apneic response was reproducible and dose dependent. MG25 no longer evoked these reflex responses after perineural capsaicin treatment of both cervical vagi to block C-fibers' conduction, suggesting that the reflexes were mediated through the stimulation of CSLV afferents. Pretreatment with HC030031 [an antagonist of transient receptor potential ankyrin subtype 1 protein (TRPA1)] or AP18 (another TRPA1 antagonist), but not their vehicle, markedly attenuated the apneic response induced by MG25. Consistently, electrophysiological results showed that pretreatment with HC030031 largely attenuated the intense discharge in CSLV afferents induced by injection of MG25 in open-chest and artificially ventilated rats. In isolated CSLV neurons, the perfusion of MG evoked an abrupt and pronounced increase in calcium transients in a concentration-dependent manner. This stimulatory effect on CSLV neurons was also abolished by HC030031 treatment but not by its vehicle. In conclusion, these results suggest that MG exerts a stimulatory effect on CSLV afferents, inducing pulmonary chemoreflexes, and such stimulation is mediated through the TRPA1 activation.NEW & NOTEWORTHY Methylglyoxal (MG) is implicated in the development of painful diabetic neuropathy. A retrospective cohort study revealed an increased incidence of asthma exacerbations in patients with diabetes. This study demonstrated that elevated circulating MG levels stimulate capsaicin-sensitive lung vagal afferents via activation of TRPA1, which in turn triggers respiratory reflexes. These findings provide new information for understanding the pathogenic mechanism of diabetes-associated hyperreactive airway diseases and potential therapy.


Assuntos
Acetanilidas , Asma , Neuropatias Diabéticas , Purinas , Humanos , Ratos , Animais , Capsaicina/farmacologia , Ratos Sprague-Dawley , Aldeído Pirúvico/efeitos adversos , Aldeído Pirúvico/metabolismo , Neuropatias Diabéticas/metabolismo , Estudos Retrospectivos , Pulmão , Nervo Vago/fisiologia , Apneia , Asma/metabolismo , Canal de Cátion TRPA1/metabolismo
9.
Chem Biol Interact ; 394: 110949, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38555048

RESUMO

Methylglyoxal (MGO) is an endogenous, highly reactive dicarbonyl metabolite generated under hyperglycaemic conditions. MGO plays a role in developing pathophysiological conditions, including diabetic cardiomyopathy. However, the mechanisms involved and the molecular targets of MGO in the heart have not been elucidated. In this work, we studied the exposure-related effects of MGO on cardiac function in an isolated perfused rat heart ex vivo model. The effect of MGO on calcium homeostasis in cardiomyocytes was studied in vitro by the fluorescence indicator of intracellular calcium Fluo-4. We demonstrated that MGO induced cardiac dysfunction, both in contractility and diastolic function. In rat heart, the effects of MGO treatment were significantly limited by aminoguanidine, a scavenger of MGO, ruthenium red, a general cation channel blocker, and verapamil, an L-type voltage-dependent calcium channel blocker, demonstrating that this dysfunction involved alteration of calcium regulation. MGO induced a significant concentration-dependent increase of intracellular calcium in neonatal rat cardiomyocytes, which was limited by aminoguanidine and verapamil. These results suggest that the functionality of various calcium channels is altered by MGO, particularly the L-type calcium channel, thus explaining its cardiac toxicity. Therefore, MGO could participate in the development of diabetic cardiomyopathy through its impact on calcium homeostasis in cardiac cells.


Assuntos
Cálcio , Miócitos Cardíacos , Aldeído Pirúvico , Ratos Wistar , Animais , Aldeído Pirúvico/toxicidade , Ratos , Cálcio/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Masculino , Guanidinas/farmacologia , Canais de Cálcio Tipo L/metabolismo , Coração/efeitos dos fármacos , Miocárdio/metabolismo , Verapamil/farmacologia , Contração Miocárdica/efeitos dos fármacos
10.
J Agric Food Chem ; 72(14): 8027-8038, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38529939

RESUMO

There is considerable research evidence that α-dicarbonyl compounds, including glyoxal (GO) and methylglyoxal (MGO), are closely related to many chronic diseases. In this work, after comparison of the capture capacity, reaction pathway, and reaction rate of synephrine (SYN) and neohesperidin (NEO) on GO/MGO in vitro, experimental mice were administrated with SYN and NEO alone and in combination. Quantitative data from UHPLC-QQQ-MS/MS revealed that SYN/NEO/HES (hesperetin, the metabolite of NEO) could form the GO/MGO-adducts in mice (except SYN-MGO), and the levels of GO/MGO-adducts in mouse urine and fecal samples were dose-dependent. Moreover, SYN and NEO had a synergistic scavenging effect on GO in vivo by promoting each other to form more GO adducts, while SYN could promote NEO to form more MGO-adducts, although it could not form MGO-adducts. Additionally, human experiments showed that the GO/MGO-adducts of SYN/NEO/HES found in mice were also detected in human urine and fecal samples after drinking flowers of Citrus aurantium L. var. amara Engl. (FCAVA) tea using UHPLC-QTOF-MS/MS. These findings provide a novel strategy to reduce endogenous GO/MGO via the consumption of dietary FCAVA rich in SYN and NEO.


Assuntos
Citrus , Hesperidina/análogos & derivados , Aldeído Pirúvico , Humanos , Animais , Camundongos , Glioxal , Sinefrina , Espectrometria de Massas em Tandem , Óxido de Magnésio , Flores
11.
Food Chem ; 447: 139056, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38513495

RESUMO

Sinapic acid (SA), canolol (CAO) and canolol dimer (CAO dimer) are the main phenolic compounds in rapeseed oil. However, their possible efficacy against glycation remains unclear. This study aims to explore the impacts of these substances on the formation of advanced glycation end products (AGEs) based on chemical and cellular models in vitro. Based on fluorescence spectroscopy results, three chemical models of BSA-fructose, BSA-methylglyoxal (MGO), and arginine (Arg)-MGO showed that SA/CAO/CAO dimer could effectively reduce AGE formation but with different abilities. After SA/CAO/CAO dimer incubation, effective protection against BSA protein glycation was observed and three different MGO adducts were formed. In MGO-induced HUVEC cell models, only CAO and CAO dimer significantly inhibited oxidative stress and cell apoptosis, accompanied by the regulation of the Nrf2-HO-1 pathway. During the inhibition, 20 and 12 lipid mediators were reversed in the CAO and CAO dimer groups compared to the MGO group.


Assuntos
Produtos Finais de Glicação Avançada , Óxido de Magnésio , Compostos de Vinila , Produtos Finais de Glicação Avançada/química , Óleo de Brassica napus , Fenóis/química , Aldeído Pirúvico/química
12.
Planta ; 259(4): 81, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438662

RESUMO

MAIN CONCLUSION: Overexpression of OsDJ-1C in rice improves root architecture, photosynthesis, yield and abiotic stress tolerance through modulating methylglyoxal levels, antioxidant defense, and redox homeostasis. Exposure to abiotic stresses leads to elevated methylglyoxal (MG) levels in plants, impacting seed germination and root growth. In response, the activation of NADPH-dependent aldo-keto reductase and glutathione (GSH)-dependent glyoxalase enzymes helps to regulate MG levels and reduce its toxic effects. However, detoxification may not be carried out effectively due to the limitation of GSH and NADPH in plants under stress. Recently, a novel enzyme called glyoxalase III (GLY III) has been discovered which can detoxify MG in a single step without needing GSH. To understand the physiological importance of this pathway in rice, we overexpressed the gene encoding GLYIII enzyme (OsDJ-1C) in rice. It was observed that OsDJ-1C overexpression in rice regulated MG levels under stress conditions thus, linked well with plants' abiotic stress tolerance potential. The OsDJ-1C overexpression lines displayed better root architecture, improved photosynthesis, and reduced yield penalty compared to the WT plants under salinity, and drought stress conditions. These plants demonstrated an improved GSH/GSSG ratio, reduced level of reactive oxygen species, increased antioxidant capacity, and higher anti-glycation activity thereby indicating that the GLYIII mediated MG detoxification plays a significant role in plants' ability to reduce the impact of abiotic stress. Furthermore, these findings imply the potential of OsDJ-1C in crop improvement programs.


Assuntos
Aldeído Oxirredutases , Oryza , Oryza/genética , Antioxidantes , NADP , Aldeído Pirúvico , Glutationa , Estresse Fisiológico
13.
J Appl Biomed ; 22(1): 33-39, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38505968

RESUMO

PURPOSE: The aim of this study was to investigate whether luteoloside, a flavonoid, could protect human dental pulp cells (HDPCs) against inflammation and oxidative stress induced by methylglyoxal (MGO), one of the advanced glycated end products (AGE) substances. METHODS: HDPCs were stimulated with MGO and treated with luteoloside. MTT assay was used to determine cell viability. Protein expression was measured via western blotting. Reactive oxygen species (ROS) were measured with a Muse Cell Analyzer. Alkaline phosphatase activity (ALP) and Alizarin red staining were used for mineralization assay. RESULTS: Luteoloside down-regulated the expression of inflammatory molecules such as ICAM-1, VCAM-1, TNF-α, IL-1ß, MMP-2, MMP-9, and COX-2 in MGO-induced HDPCs without showing any cytotoxicity. It attenuated ROS formation and enhanced osteogenic differentiation such as ALP activity and Alizarin red staining in MGO-induced HDPCs. Overall, luteoloside showed protective actions against inflammation and oxidative stress in HDPCs induced by MGO through its anti-inflammatory, anti-oxidative, and osteogenic activities by down-regulating p-JNK in the MAPK pathway. CONCLUSION: These results suggest that luteoloside might be a potential adjunctive therapeutic agent for treating pulpal pathological conditions in patients with diabetes mellitus.


Assuntos
Antraquinonas , Glucosídeos , Luteolina , Osteogênese , Aldeído Pirúvico , Humanos , Osteogênese/fisiologia , Aldeído Pirúvico/toxicidade , Células Cultivadas , Espécies Reativas de Oxigênio , Polpa Dentária , Óxido de Magnésio , Anti-Inflamatórios/farmacologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico
14.
Nutrients ; 16(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474882

RESUMO

Previous studies have shown that advanced glycation end products (AGEs) are implicated in the occurrence and progression of numerous diseases, with dietary AGEs being particularly associated with intestinal disorders. In this study, methylglyoxal-beta-lactoglobulin AGEs (MGO-ß-LG AGEs) were utilized as the exclusive nitrogen source to investigate the interaction between protein-bound AGEs and human gut microbiota. The high-resolution mass spectrometry analysis of alterations in peptides containing AGEs within metabolites before and after fermentation elucidated the capacity of intestinal microorganisms to enzymatically hydrolyze long-chain AGEs into short-chain counterparts. The 16S rRNA sequencing revealed Klebsiella, Lactobacillus, Escherichia-Shigella, and other genera as dominant microbiota at different fermentation times. A total of 187 potential strains of AGE-metabolizing bacteria were isolated from the fermentation broth at various time points. Notably, one strain of Klebsiella exhibited the most robust growth capacity when AGEs served as the sole nitrogen source. Subsequently, proteomics was employed to compare the changes in protein levels of Klebsiella X15 following cultivation in unmodified proteins and proteins modified with AGEs. This analysis unveiled a remodeled amino acid and energy metabolism pathway in Klebsiella in response to AGEs, indicating that Klebsiella may possess a metabolic pathway specifically tailored to AGEs. This study found that fermenting AGEs in healthy human intestinal microbiota altered the bacterial microbiota structure, especially by increasing Klebsiella proliferation, which could be a key factor in AGEs' role in causing diseases, particularly intestinal inflammation.


Assuntos
Produtos Finais de Glicação Avançada , Aldeído Pirúvico , Humanos , Produtos Finais de Glicação Avançada/metabolismo , RNA Ribossômico 16S , Aldeído Pirúvico/química , Bactérias/metabolismo , Nitrogênio
15.
J Food Drug Anal ; 32(1): 54-64, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38526590

RESUMO

Increased leptin resistance and methylglyoxal (MG) levels are observed in obese patients. However, whether MG deposits contribute to leptin resistance, oxidative stress, and inflammation in peripheral tissues remains unclear. In addition, the edible fruit of Indian gooseberry (Phyllanthus emblica L.) contains abundant bioactive components such as vitamin C, ß-glucogallin (ß-glu), gallic acid (GA), and ellagic acid (EA). Water extract of Indian gooseberry fruit (WEIG) and GA has been shown to improve cognitive decline by suppressing brain MG-induced insulin resistance in rats administered a high-fat diet (HFD). Accordingly, this study investigated the functions of WEIG and GA in inhibiting MG-induced leptin resistance, oxidative stress, and inflammation in the peripheral tissues of HFD-fed rats. The results showed that MG, advanced glycation end products (AGEs), and leptin resistance accumulation in the liver, kidney, and perinephric fat were effectively restored by elevated glyoxalase-1 (Glo-1) activity after WEIG and GA administration comparable to that of alagebrium chloride (positive control) treatment in HFD-fed rats. Furthermore, WEIG and GA supplementation increased adiponectin and antioxidant enzymes (glutathione peroxidase, superoxide dismutase, catalase) and decreased inflammatory cytokines (IL-6, IL-1ß, TNF-α) in the peripheral tissues of HFD-fed rats. In conclusion, these findings demonstrated that MG may trigger leptin resistance, oxidative stress, and inflammation in peripheral tissues, which could be abolished by WEIG and GA treatment. These results show the potential of P. emblica for functional food development and improving obesity-associated metabolic disorders.


Assuntos
Phyllanthus emblica , Ribes , Humanos , Animais , Ratos , Leptina , Dieta Hiperlipídica/efeitos adversos , Aldeído Pirúvico , Ácido Gálico , Inflamação
16.
Mol Biol Rep ; 51(1): 434, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520585

RESUMO

BACKGROUND: The formation of advanced glycation end products (AGEs) is the central process contributing to diabetic complications in diabetic individuals with sustained and inconsistent hyperglycemia. Methylglyoxal, a reactive carbonyl species, is found to be a major precursor of AGEs, and its levels are elevated in diabetic conditions. Dysfunction of pancreatic beta cells and impairment in insulin secretion are the hallmarks of diabetic progression. Exposure to methylglyoxal-induced AGEs alters the function and maintenance of pancreatic beta cells. Hence, trapping methylglyoxal could be an ideal approach to alleviate AGE formation and its influence on beta cell proliferation and insulin secretion, thereby curbing the progression of diabetes to its complications. METHODS AND RESULTS: In the present study, we have explored the mechanism of action of (+)-Catechin against methylglyoxal-induced disruption in pancreatic beta cells via molecular biology techniques, mainly western blot. Methylglyoxal treatment decreased insulin synthesis (41.5%) via downregulating the glucose-stimulated insulin secretion pathway (GSIS). This was restored upon co-treatment with (+)-Catechin (29.9%) in methylglyoxal-induced Beta-TC-6 cells. Also, methylglyoxal treatment affected the autocrine function of insulin by disrupting the IRS1/PI3k/Akt pathway. Methylglyoxal treatment suppresses Pdx-1 and Maf A levels, which are responsible for beta cell maintenance and cell proliferation. (+)-Catechin could significantly augment the levels of these transcription factors. CONCLUSION: This is the first study to examine the impact of a natural compound on methylglyoxal with the insulin-mediated autocrine and paracrine activities of pancreatic beta cells. The results indicate that (+)-Catechin exerts a protective effect against methylglyoxal exposure in pancreatic beta cells and can be considered a potential anti-glycation agent in further investigations on ameliorating diabetic complications.


Assuntos
Catequina , Complicações do Diabetes , Diabetes Mellitus , Células Secretoras de Insulina , Humanos , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Aldeído Pirúvico/farmacologia , Aldeído Pirúvico/metabolismo , Catequina/farmacologia , Catequina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Insulina/metabolismo , Diabetes Mellitus/metabolismo , Complicações do Diabetes/metabolismo , Produtos Finais de Glicação Avançada/metabolismo
17.
Org Biomol Chem ; 22(13): 2670-2676, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38483440

RESUMO

Advanced glycation end products (AGEs) arise from the Maillard reaction between dicarbonyls and proteins, nucleic acids, or specific lipids. Notably, AGEs are linked to aging and implicated in various disorders, spanning from cancer to neurodegenerative diseases. While dicarbonyls like methylglyoxal preferentially target arginine residues, lysine-derived AGEs, such as N(6)-(1-carboxymethyl)lysine (CML) and N(6)-(1-carboxyethyl)lysine (CEL), are also abundant. Predicting protein glycation in vivo proves challenging due to the intricate nature of glycation reactions. In vitro, glycation is difficult to control, especially in proteins that harbor multiple glycation-prone amino acids. α-Synuclein (aSyn), pivotal in Parkinson's disease and synucleinopathies, has 15 lysine residues and is known to become glycated at multiple lysine sites. To understand the influence of glycation in specific regions of aSyn on its behavior, a strategy for site-specific glycated protein production is imperative. To fulfill this demand, we devised a synthetic route integrating solid-phase peptide synthesis, orthogonal protection of amino acid side-chain functionalities, and reductive amination strategies. This methodology yielded two disease-related N-terminal peptide fragments, each featuring five and six CML and CEL modifications, alongside a full-length aSyn protein containing a site-selective E46CEL modification. Our synthetic approach facilitates the broad introduction of glycation motifs at specific sites, providing a foundation for generating glycated forms of synucleinopathy-related and other disease-relevant proteins.


Assuntos
Produtos Finais de Glicação Avançada , alfa-Sinucleína , alfa-Sinucleína/metabolismo , Produtos Finais de Glicação Avançada/química , Lisina/química , Aldeído Pirúvico/metabolismo , Aminoácidos
18.
Plant Cell Rep ; 43(4): 103, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502356

RESUMO

KEY MESSAGE: Methylglyoxal and glyoxalase function a significant role in plant response to heavy metal stress. We update and discuss the most recent developments of methylglyoxal and glyoxalase in regulating plant response to heavy metal stress. Methylglyoxal (MG), a by-product of several metabolic processes, is created by both enzymatic and non-enzymatic mechanisms. It plays an important role in plant growth and development, signal transduction, and response to heavy metal stress (HMS). Changes in MG content and glyoxalase (GLY) activity under HMS imply that they may be potential biomarkers of plant stress resistance. In this review, we summarize recent advances in research on the mechanisms of MG and GLY in the regulation of plant responses to HMS. It has been discovered that appropriate concentrations of MG assist plants in maintaining a balance between growth and development and survival defense, therefore shielding them from heavy metal harm. MG and GLY regulate plant physiological processes by remodeling cellular redox homeostasis, regulating stomatal movement, and crosstalking with other signaling molecules (including abscisic acid, gibberellic acid, jasmonic acid, cytokinin, salicylic acid, melatonin, ethylene, hydrogen sulfide, and nitric oxide). We also discuss the involvement of MG and GLY in the regulation of plant responses to HMS at the transcriptional, translational, and metabolic levels. Lastly, considering the current state of research, we present a perspective on the future direction of MG research to elucidate the MG anti-stress mechanism and offer a theoretical foundation and useful advice for the remediation of heavy metal-contaminated environments in the future.


Assuntos
Lactoilglutationa Liase , Metais Pesados , Aldeído Pirúvico/metabolismo , Plantas/metabolismo , Lactoilglutationa Liase/metabolismo , Metais Pesados/toxicidade , Metais Pesados/metabolismo , Desenvolvimento Vegetal , Estresse Fisiológico/fisiologia
19.
J Agric Food Chem ; 72(11): 5828-5841, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38442256

RESUMO

α-Dicarbonyl compounds, such as glyoxal (GO) and methylglyoxal (MGO), are a series of chemical hazards that exist in vivo and in vitro, posing a threat to human health. We aimed to explore the scavenging effects on GO/MGO by synephrine (SYN) alone or in combination with neohesperidin (NEO). First, through LC-MS/MS, we confirmed that both SYN and NEO could effectively remove GO and form GO adducts, while NEO could also clear MGO by forming MGO adducts, and its ability to clear MGO was stronger than that of GO. Second, a synergistic inhibitory effect on GO was found when SYN and NEO were used in combination by using the Chou-Talalay method; on the other hand, SYN could promote NEO to clear more MGO, although SYN could not capture MGO. Third, after synthesizing four GO/MGO-adducts (SYN-GO-1, SYN-GO-3, NEO-GO-7, and NEO-MGO-2) and identifying their structure through NMR, strict correlations between the GO/MGO-adducts and the GO/MGO-clearance rate were found when using SYN and NEO alone or in combination. Furthermore, it was inferred that the synergistic effect between SYN and NEO stems from their mutual promotion in capturing more GO by the quantitative analysis of the adducts in the combined model. Finally, a study was conducted on flowers of Citrus aurantium L. var. amara Engl. (FCAVA, an edible tea) rich in SYN and NEO, which could serve as an effective GO and MGO scavenger in the presence of both GO and MGO. Therefore, our study provided well-defined evidence that SYN and NEO, alone or in combination, could efficiently scavenge GO/MGO at high temperatures, whether in the pure form or located in FCAVA.


Assuntos
Glioxal , Hesperidina/análogos & derivados , Aldeído Pirúvico , Humanos , Aldeído Pirúvico/química , Glioxal/química , Sinefrina , Cromatografia Líquida , Óxido de Magnésio , Temperatura , Espectrometria de Massas em Tandem
20.
Mol Pain ; 20: 17448069241233744, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38323375

RESUMO

Methylglyoxal (MGO), a highly reactive dicarbonyl metabolite of glucose primarily formed during the glycolytic pathway, is a precursor of advanced glycation end-products (AGEs). Recently, numerous studies have shown that MGO accumulation can cause pain and hyperalgesia. However, the mechanism through which MGO induces pain in the spinal dorsal horn remains unclear. The present study investigated the effect of MGO on spontaneous excitatory postsynaptic currents (sEPSC) in rat spinal dorsal horn neurons using blind whole-cell patch-clamp recording. Perfusion of MGO increased the frequency and amplitude of sEPSC in spinal horn neurons in a concentration-dependent manner. Additionally, MGO administration increased the number of miniature EPSC (mEPSC) in the presence of tetrodotoxin, a sodium channel blocker. However, 6-cyano-7-nitroqiunocaline-2,3-dione (CNQX), an AMPA/kainate receptor antagonist, blocked the enhancement of sEPSC by MGO. HC-030031, a TRP ankyrin-1 (TRPA1) antagonist, and capsazepine, a TRP vanilloid-1 (TRPV1) antagonist, inhibited the action of MGO. Notably, the effects of MGO were completely inhibited by HC-030031 and capsazepine. MGO generates reactive oxygen species (ROS) via AGEs. ROS also potentially induce pain via TRPA1 and TRPV1 in the spinal dorsal horn. Furthermore, we examined the effect of MGO in the presence of N-tert-butyl-α-phenylnitrone (PBN), a non-selective ROS scavenger, and found that the effect of MGO was completely inhibited. These results suggest that MGO increases spontaneous glutamate release from the presynaptic terminal to spinal dorsal horn neurons through TRPA1, TRPV1, and ROS and could enhance excitatory synaptic transmission.


Assuntos
Acetanilidas , Capsaicina/análogos & derivados , Óxido de Magnésio , Purinas , Aldeído Pirúvico , Ratos , Animais , Espécies Reativas de Oxigênio/metabolismo , Aldeído Pirúvico/farmacologia , Aldeído Pirúvico/metabolismo , Ratos Sprague-Dawley , Óxido de Magnésio/metabolismo , Óxido de Magnésio/farmacologia , Corno Dorsal da Medula Espinal/metabolismo , Células do Corno Posterior/metabolismo , Dor/metabolismo , Transmissão Sináptica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA