Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22.029
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Cells ; 13(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38727274

RESUMO

α-Synuclein (α-syn) can form oligomers, protofibrils, and fibrils, which are associated with the pathogenesis of Parkinson's disease and other synucleinopathies. Both the lipid peroxidation product 4-oxo-2-nonenal (ONE) and agitation can induce aggregation of α-syn and phosphorylated α-syn. Thus, clarification of the characteristics of different α-syn species could help to select suitable aggregates for diagnosis and elucidate the pathogenesis of diseases. Here, we characterized ONE-induced wild-type (WT) α-syn aggregates (OW), ONE-induced phosphorylated α-syn (p-α-syn) aggregates (OP), agitation-induced α-syn preformed fibrils (PFF), and agitation-induced p-α-syn preformed fibrils (pPFF). Thioflavin T (ThT) dying demonstrated that OW and OP had fewer fibrils than the PFF and pPFF. Transmission electron microscopy revealed that the lengths of PFF and pPFF were similar, but the diameters differed. OW and OP had more compact structures than PFF and pPFF. Aggregation of p-α-syn was significantly faster than WT α-syn. Furthermore, OW and OP were more sodium dodecyl sulfate-stable and proteinase K-resistant, suggesting greater stability and compactness, while aggregates of PFF and pPFF were more sensitive to proteinase K treatment. Both ONE- and agitation-induced aggregates were cytotoxic when added exogenously to SH-SY5Y cells with increasing incubation times, but the agitation-induced aggregates caused cell toxicity in a shorter time and more p-α-syn inclusions. Similarly, p-proteins were more cytotoxic than non-p-proteins. Finally, all four aggregates were used as standard antigens to establish sandwich enzyme-linked immunosorbent assay (ELISA). The results showed that the recognition efficiency of OW and OP was more sensitive than that of PFF and pPFF. The OW- and OP-specific ELISA for detection of p-α-syn and α-syn in plasma samples of Thy1-α-syn transgenic mice showed that the content of aggregates could reflect the extent of disease. ONE and agitation induced the formation of α-syn aggregates with distinct biophysical properties and biomedical applications.


Assuntos
Aldeídos , Agregados Proteicos , alfa-Sinucleína , alfa-Sinucleína/metabolismo , alfa-Sinucleína/química , Aldeídos/metabolismo , Fosforilação , Humanos , Animais , Camundongos , Linhagem Celular Tumoral , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Fenômenos Biofísicos
2.
Food Res Int ; 186: 114372, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729730

RESUMO

The oxidation and degradation of fats lead to a decrease in the nutritional value of food and pose safety concerns. Saturated fatty acids also hold a significant position in the field of lipid oxidation. In this study, the oxidation products of methyl palmitate were investigated by using gas chromatography mass spectrometry (GC-MS). Seven monohydroperoxides and 72 secondary oxidation products were detected. Combined with density functional theory (DFT) calculations, the formation mechanisms of oxidation products can be summarized into four stages. The initial stage involved the formation of monohydroperoxides and alkanes, followed by the subsequent stage involving methyl x-oxo(hydroxy)hexadecanoates. The third stage involved the formation of methyl ketones, carboxylic acids, and aldehydes, while the final stage involved lactones. Meanwhile, methyl ketones were the most abundant oxidation product, approximately 25 times more abundant than aldehydes; the calculated results agreed well with the experimental results. The establishment of a comprehensive thermal oxidation mechanism for palmitic acid provided a new foundation for future lipid oxidation analyses.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Temperatura Alta , Oxirredução , Aldeídos/química , Aldeídos/análise , Palmitatos/química , Ácido Palmítico/química , Cetonas/química , Ácidos Carboxílicos/química
3.
Proc Natl Acad Sci U S A ; 121(21): e2317616121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38743627

RESUMO

The therapeutic targeting of ferroptosis requires full understanding of the molecular mechanism of this regulated cell death pathway. While lipid-derived electrophiles (LDEs), including 4-hydroxy-2-nonenal (4-HNE), are important biomarkers of ferroptosis, a functional role for these highly reactive species in ferroptotic cell death execution has not been established. Here, through mechanistic characterization of LDE-detoxification impairment, we demonstrate that LDEs mediate altered protein function during ferroptosis. Applying live cell fluorescence imaging, we first identified that export of glutathione-LDE-adducts through multidrug resistance-associated protein (MRP) channels is inhibited following exposure to a panel of ferroptosis inducers (FINs) with different modes of action (type I-IV FINs erastin, RSL3, FIN56, and FINO2). This channel inhibition was recreated by both initiation of lipid peroxidation and treatment with 4-HNE. Importantly, treatment with radical-trapping antioxidants prevented impaired LDE-adduct export when working with both FINs and lipid peroxidation initiators but not 4-HNE, pinpointing LDEs as the cause of this inhibited MRP activity observed during ferroptosis. Our findings, when combined with reports of widespread LDE alkylation of key proteins following ferroptosis induction, including MRP1, set a precedent for LDEs as critical mediators of ferroptotic cell damage. Lipid hydroperoxide breakdown to form truncated phospholipids and LDEs may fully explain membrane permeabilization and modified protein function downstream of lipid peroxidation, offering a unified explanation of the molecular cell death mechanism of ferroptosis.


Assuntos
Aldeídos , Ferroptose , Peroxidação de Lipídeos , Ferroptose/efeitos dos fármacos , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Aldeídos/farmacologia , Aldeídos/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Glutationa/metabolismo
4.
Sci Rep ; 14(1): 10905, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740939

RESUMO

Cancer-derived cell lines are useful tools for studying cellular metabolism and xenobiotic toxicity, but they are not suitable for modeling the biological effects of food contaminants or natural biomolecules on healthy colonic epithelial cells in a normal genetic context. The toxicological properties of such compounds may rely on their oxidative properties. Therefore, it appears to be necessary to develop a dual-cell model in a normal genetic context that allows to define the importance of oxidative stress in the observed toxicity. Given that the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) is considered to be the master regulator of antioxidant defenses, our aim was to develop a cellular model comparing normal and Nrf2-depleted isogenic cells to qualify oxidative stress-related toxicity. We generated these cells by using the CRISPR/Cas9 technique. Whole-genome sequencing enabled us to confirm that our cell lines were free of cancer-related mutations. We used 4-hydroxy-2-nonenal (HNE), a lipid peroxidation product closely related to oxidative stress, as a model molecule. Here we report significant differences between the two cell lines in glutathione levels, gene regulation, and cell viability after HNE treatment. The results support the ability of our dual-cell model to study the role of oxidative stress in xenobiotic toxicity.


Assuntos
Células Epiteliais , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Estresse Oxidativo/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Animais , Camundongos , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Aldeídos/metabolismo , Glutationa/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular , Sistemas CRISPR-Cas , Peroxidação de Lipídeos/efeitos dos fármacos
5.
Appl Microbiol Biotechnol ; 108(1): 323, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713233

RESUMO

Ergot alkaloids (EAs) are a diverse group of indole alkaloids known for their complex structures, significant pharmacological effects, and toxicity to plants. The biosynthesis of these compounds begins with chanoclavine-I aldehyde (CC aldehyde, 2), an important intermediate produced by the enzyme EasDaf or its counterpart FgaDH from chanoclavine-I (CC, 1). However, how CC aldehyde 2 is converted to chanoclavine-I acid (CC acid, 3), first isolated from Ipomoea violacea several decades ago, is still unclear. In this study, we provide in vitro biochemical evidence showing that EasDaf not only converts CC 1 to CC aldehyde 2 but also directly transforms CC 1 into CC acid 3 through two sequential oxidations. Molecular docking and site-directed mutagenesis experiments confirmed the crucial role of two amino acids, Y166 and S153, within the active site, which suggests that Y166 acts as a general base for hydride transfer, while S153 facilitates proton transfer, thereby increasing the acidity of the reaction. KEY POINTS: • EAs possess complicated skeletons and are widely used in several clinical diseases • EasDaf belongs to the short-chain dehydrogenases/reductases (SDRs) and converted CC or CC aldehyde to CC acid • The catalytic mechanism of EasDaf for dehydrogenation was analyzed by molecular docking and site mutations.


Assuntos
Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Alcaloides de Claviceps/biossíntese , Alcaloides de Claviceps/química , Alcaloides de Claviceps/metabolismo , Aldeídos/metabolismo , Aldeídos/química , Oxirredução , Domínio Catalítico , Oxirredutases/metabolismo , Oxirredutases/genética , Oxirredutases/química
6.
Int J Mol Sci ; 25(9)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38732269

RESUMO

New antimicrobial molecules effective against Pseudomonas aeruginosa, known as an antibiotic-resistant "high-priority pathogen", are urgently required because of its ability to develop biofilms related to healthcare-acquired infections. In this study, for the first time, the anti-biofilm and anti-virulence activities of a polyphenolic extract of extra-virgin olive oil as well as purified oleocanthal and oleacein, toward P. aeruginosa clinical isolates were investigated. The main result of our study was the anti-virulence activity of the mixture of oleacein and oleocanthal toward multidrug-resistant and intermediately resistant strains of P. aeruginosa isolated from patients with ventilator-associated pneumonia or surgical site infection. Specifically, the mixture of oleacein (2.5 mM)/oleocanthal (2.5 mM) significantly inhibited biofilm formation, alginate and pyocyanin production, and motility in both P. aeruginosa strains (p < 0.05); scanning electron microscopy analysis further evidenced its ability to inhibit bacterial cell adhesion as well as the production of the extracellular matrix. In conclusion, our results suggest the potential application of the oleacein/oleocanthal mixture in the management of healthcare-associated P. aeruginosa infections, particularly in the era of increasing antimicrobial resistance.


Assuntos
Aldeídos , Antibacterianos , Biofilmes , Monoterpenos Ciclopentânicos , Azeite de Oliva , Fenóis , Pseudomonas aeruginosa , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Pseudomonas aeruginosa/efeitos dos fármacos , Azeite de Oliva/química , Azeite de Oliva/farmacologia , Fenóis/farmacologia , Fenóis/química , Aldeídos/farmacologia , Aldeídos/química , Antibacterianos/farmacologia , Antibacterianos/química , Humanos , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Aderência Bacteriana/efeitos dos fármacos
7.
Nutrients ; 16(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38732529

RESUMO

The Mediterranean diet, renowned for its health benefits, especially in reducing cardiovascular risks and protecting against diseases like diabetes and cancer, emphasizes virgin olive oil as a key contributor to these advantages. Despite being a minor fraction, the phenolic compounds in olive oil significantly contribute to its bioactive effects. This review examines the bioactive properties of hydroxytyrosol and related molecules, including naturally occurring compounds (-)-oleocanthal and (-)-oleacein, as well as semisynthetic derivatives like hydroxytyrosyl esters and alkyl ethers. (-)-Oleocanthal and (-)-oleacein show promising anti-tumor and anti-inflammatory properties, which are particularly underexplored in the case of (-)-oleacein. Additionally, hydroxytyrosyl esters exhibit similar effectiveness to hydroxytyrosol, while certain alkyl ethers surpass their precursor's properties. Remarkably, the emerging research field of the effects of phenolic molecules related to virgin olive oil on cell autophagy presents significant opportunities for underscoring the anti-cancer and neuroprotective properties of these molecules. Furthermore, promising clinical data from studies on hydroxytyrosol, (-)-oleacein, and (-)-oleocanthal urge further investigation and support the initiation of clinical trials with semisynthetic hydroxytyrosol derivatives. This review provides valuable insights into the potential applications of olive oil-derived phenolics in preventing and managing diseases associated with cancer, angiogenesis, and atherosclerosis.


Assuntos
Inibidores da Angiogênese , Azeite de Oliva , Fenóis , Álcool Feniletílico , Azeite de Oliva/química , Humanos , Fenóis/farmacologia , Inibidores da Angiogênese/farmacologia , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/farmacologia , Dieta Mediterrânea , Aterosclerose/prevenção & controle , Aterosclerose/tratamento farmacológico , Monoterpenos Ciclopentânicos , Neoplasias/prevenção & controle , Neoplasias/tratamento farmacológico , Catecóis/farmacologia , Aldeídos/farmacologia , Animais , Antineoplásicos/farmacologia , Anti-Inflamatórios/farmacologia
8.
Nutrients ; 16(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38732549

RESUMO

Oleocanthal (OC) is a monophenol of extra-virgin olive oil (EVOO) endowed with antibiotic, cardioprotective and anticancer effects, among others, mainly in view of its antioxidant and anti-inflammatory properties. OC has been largely investigated in terms of its anticancer activity, in Alzheimer disease and in collagen-induced arthritis; however, the possibility that it can also affect muscle biology has been totally overlooked so far. This study is the first to describe that OC modulates alterations induced in C2C12 myotubes by stimuli known to induce muscle wasting in vivo, namely TNF-α, or in the medium conditioned by the C26 cachexia-inducing tumor (CM-C26). C2C12 myotubes were exposed to CM-C26 or TNF-α in the presence or absence of OC for 24 and 48 h and analyzed by immunofluorescence and Western blotting. In combination with TNF-α or CM-C26, OC was revealed to be able to restore both the myotube's original size and morphology and normal levels of both atrogin-1 and MuRF1. OC seems unable to impinge on the autophagic-lysosomal proteolytic system or protein synthesis. Modulations towards normal levels of the expression of molecules involved in myogenesis, such as Pax7, myogenin and MyHC, were also observed in the myotube cultures exposed to OC and TNF-α or CM-C26. In conclusion, the data presented here show that OC exerts a protective action in C2C12 myotubes exposed to TNF-α or CM-C26, with mechanisms likely involving the downregulation of ubiquitin-proteasome-dependent proteolysis and the partial relief of myogenic differentiation impairment.


Assuntos
Catecóis , Monoterpenos Ciclopentânicos , Fibras Musculares Esqueléticas , Proteínas Musculares , Atrofia Muscular , Fator de Necrose Tumoral alfa , Animais , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Camundongos , Fator de Necrose Tumoral alfa/metabolismo , Atrofia Muscular/prevenção & controle , Atrofia Muscular/metabolismo , Proteínas Musculares/metabolismo , Monoterpenos Ciclopentânicos/farmacologia , Catecóis/farmacologia , Linhagem Celular , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteínas Ligases SKP Culina F-Box/genética , Desenvolvimento Muscular/efeitos dos fármacos , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/metabolismo , Autofagia/efeitos dos fármacos , Fenóis/farmacologia , Caquexia/prevenção & controle , Meios de Cultivo Condicionados/farmacologia , Aldeídos
9.
J Vis Exp ; (206)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38738901

RESUMO

Protein carbonylation by reactive aldehydes derived from lipid peroxidation leads to cross-linking, oligomerization, and aggregation of proteins, causing intracellular damage, impaired cell functions, and, ultimately, cell death. It has been described in aging and several age-related chronic conditions. However, the basis of structural changes related to the loss of function in protein targets is still not well understood. Hence, a route to the in silico construction of new parameters for amino acids carbonylated with reactive carbonyl species derived from fatty acid oxidation is described. The Michael adducts for Cys, His, and Lys with 4-hydroxy-2-nonenal (HNE), 4-hydroxy-2-hexenal (HHE), and a furan ring form for 4-Oxo-2-nonenal (ONE), were built, while malondialdehyde (MDA) was directly attached to each residue. The protocol describes details for the construction, geometry optimization, assignment of charges, missing bonds, angles, dihedral angles parameters, and its validation for each modified residue structure. As a result, structural effects induced by the carbonylation with these lipid derivatives have been measured by molecular dynamics simulations on different protein systems such as the thioredoxin enzyme, bovine serum albumin and the membrane Zu-5-ankyrin domain employing root-mean-square deviation (RMSD), root mean square fluctuation (RMSF), structural secondary prediction (DSSP) and the solvent-accessible surface area analysis (SASA), among others.


Assuntos
Aldeídos , Aminoácidos , Simulação de Dinâmica Molecular , Aminoácidos/química , Aminoácidos/metabolismo , Aldeídos/química , Malondialdeído/química , Malondialdeído/metabolismo , Carbonilação Proteica
10.
Proc Natl Acad Sci U S A ; 121(19): e2317703121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38687792

RESUMO

Fluorescence labeling of chemically fixed specimens, especially immunolabeling, plays a vital role in super-resolution imaging as it offers a convenient way to visualize cellular structures like mitochondria or the distribution of biomolecules with high detail. Despite the development of various distinct probes that enable super-resolved stimulated emission depletion (STED) imaging of mitochondria in live cells, most of these membrane-potential-dependent fluorophores cannot be retained well in mitochondria after chemical fixation. This lack of suitable mitochondrial probes has limited STED imaging of mitochondria to live cell samples. In this study, we introduce a mitochondria-specific probe, PK Mito Orange FX (PKMO FX), which features a fixation-driven cross-linking motif and accumulates in the mitochondrial inner membrane. It exhibits high fluorescence retention after chemical fixation and efficient depletion at 775 nm, enabling nanoscopic imaging both before and after aldehyde fixation. We demonstrate the compatibility of this probe with conventional immunolabeling and other strategies commonly used for fluorescence labeling of fixed samples. Moreover, we show that PKMO FX facilitates correlative super-resolution light and electron microscopy, enabling the correlation of multicolor fluorescence images and transmission EM images via the characteristic mitochondrial pattern. Our probe further expands the mitochondrial toolkit for multimodal microscopy at nanometer resolutions.


Assuntos
Aldeídos , Corantes Fluorescentes , Microscopia de Fluorescência , Mitocôndrias , Mitocôndrias/metabolismo , Humanos , Corantes Fluorescentes/química , Aldeídos/metabolismo , Aldeídos/química , Microscopia de Fluorescência/métodos , Células HeLa , Reagentes de Ligações Cruzadas/química , Animais , Membranas Mitocondriais/metabolismo
11.
Int J Mol Sci ; 25(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38674064

RESUMO

Olive leaf contains plenty of phenolic compounds, among which oleuropein (OP) is the main component and belongs to the group of secoiridoids. Additionally, phenolic compounds such as oleocanthal (OL) and oleacein (OC), which share a structural similarity with OP and two aldehyde groups, are also present in olive leaves. These compounds have been studied for several health benefits, such as anti-cancer and antioxidant effects. However, their impact on the skin remains unknown. Therefore, this study aims to compare the effects of these three compounds on melanogenesis using B16F10 cells and human epidermal cells. Thousands of gene expressions were measured by global gene expression profiling with B16F10 cells. We found that glutaraldehyde compounds derived from olive leaves have a potential effect on the activation of the melanogenesis pathway and inducing differentiation in B16F10 cells. Accordingly, the pro-melanogenesis effect was investigated by means of melanin quantification, mRNA, and protein expression using human epidermal melanocytes (HEM). This study suggests that secoiridoid and its derivates have an impact on skin protection by promoting melanin production in both human and mouse cell lines.


Assuntos
Glucosídeos Iridoides , Melaninas , Melanócitos , Olea , Fenóis , Humanos , Melanócitos/efeitos dos fármacos , Melanócitos/metabolismo , Olea/química , Animais , Melaninas/biossíntese , Melaninas/metabolismo , Camundongos , Fenóis/farmacologia , Glucosídeos Iridoides/farmacologia , Iridoides/farmacologia , Aldeídos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Monoterpenos Ciclopentânicos , Células Epidérmicas/metabolismo , Células Epidérmicas/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Epiderme/metabolismo , Epiderme/efeitos dos fármacos , Linhagem Celular Tumoral , Folhas de Planta/química , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Melanogênese
12.
Food Chem ; 449: 139193, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38604037

RESUMO

The desirable wine aroma compounds 3-sulfanylhexan-1-ol (3SH) and 3-sulfanylhexyl acetate (3SHA) are released during fermentation from non-volatile precursors present in the grapes. This work explores the relative contribution of four precursors (E-2-hexenal, 3-S-glutathionylhexan-1-ol, 3-S-glutathionylhexanal, and 3-S-cysteinylhexan-1-ol) to 3SH and 3SHA. Through the use of isotopically labelled analogues of these precursors in defined fermentation media, new insights into the role of each precursor have been identified. E-2-Hexenal was shown to contribute negligible amounts of thiols, while 3-S-glutathionylhexan-1-ol was the main precursor of both 3SH and 3SHA. The glutathionylated precursors were both converted to 3SHA more efficiently than 3-S-cysteinylhexan-1-ol. Interestingly, 3-S-glutathionylhexanal generated 3SHA without detectable concentrations of 3SH, suggesting possible differences in the way this precursor is metabolised compared to 3-S-glutathionylhexan-1-ol and 3-S-cysteinylhexan-1-ol. We also provide the first evidence for chemical conversion of 3-S-glutathionylhexan-1-ol to 3-S-(γ-glutamylcysteinyl)-hexan-1-ol in an oenological system.


Assuntos
Fermentação , Vitis , Vinho , Vinho/análise , Vitis/química , Vitis/metabolismo , Acetatos/metabolismo , Acetatos/química , Aldeídos/metabolismo , Aldeídos/química , Odorantes/análise , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química
13.
Sci Rep ; 14(1): 8555, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609415

RESUMO

Many gregarious insect species use aggregation and alarm pheromones. The bed bug, Cimex lectularius L., emits an alarm pheromone (AP), a 70/30 blend of (E)-2-hexenal and (E)-2-octenal, when threatened. Bed bugs avoid temperatures above 43 °C, which are lethal to bugs and used commercially as spatial heat treatments to manage infestations. However, the interaction of bed bug AP in heat avoidance has not been investigated. The goal of this research was to: 1) determine if bed bugs emit AP as an alarm response to heat exposure, and 2) quantify the behavioral responses of conspecifics to AP emitted by heat-exposed bed bugs. Using a selected ion flow tube mass spectrometer, we found that bed bugs responded to lethal and sublethal heat exposure by emitting AP. The Harlan laboratory population emitted more pheromone than a laboratory adapted field population from Florida (McCall). Harlan females emitted the most AP, followed by Harlan males, McCall females and males. In separate behavioral experiments, we showed that conspecifics (i.e., recipients) reacted to AP released by heat exposed bed bugs (i.e., emitters) by frantically moving within 50 mm and 100 mm test arenas. The Harlan recipients reacted to AP in 100 mm areas, whereas the McCall strain did not, indicating a short area of effectiveness of the AP. Synthetic AP components tested in behavioral experiments caused identical effects as the natural AP blend released by heat-exposed bed bugs.


Assuntos
Aldeídos , Percevejos-de-Cama , Ectoparasitoses , Feminino , Masculino , Animais , Temperatura Alta , Causalidade , Feromônios
14.
Molecules ; 29(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38611722

RESUMO

Podophyllotoxin, a cyclolignan natural product, has been the object of extensive chemomodulation to obtain better chemotherapeutic agents. Among the obtained podophyllotoxin derivatives, podophyllic aldehyde showed very interesting potency and selectivity against several tumoral cell lines, so it became our lead compound for further modifications, as described in this work, oriented toward the enlargement of the cyclolignan skeleton. Thus, modifications performed at the aldehyde function included nucleophilic addition reactions and the incorporation of the aldehyde carbon into several five-membered rings, such as thiazolidinones and benzo-fused azoles. The synthesized derivatives were evaluated against several types of cancer cells, and although some compounds were cytotoxic at the nanomolar range, most of them were less potent and less selective than the parent compound podophyllic aldehyde, with the most potent being those having the lactone ring of podophyllotoxin. In silico ADME evaluation predicted good druggability for most of them. The results indicate that the γ-lactone ring is important for potency, while the α,ß-unsaturated aldehyde is necessary to induce selectivity in these cyclolignans.


Assuntos
Antineoplásicos , Podofilotoxina , Humanos , Podofilotoxina/farmacologia , Esqueleto , Hipertrofia , Aldeídos , Lactonas , Compostos Radiofarmacêuticos
15.
Molecules ; 29(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38611810

RESUMO

A single combi oven, known for its versatility, is an excellent choice for a variety of chicken soup preparations. However, the impact of universal steam ovens on the flavor quality of chicken soup remains unclear. This study aimed to explore the impact of different cooking methods on the aroma and taste of chicken soup. Three cooking methods with various stewing times were compared: ceramic pot (CP), electric pressure cooker (EPC), and combi oven (CO). Analyses were conducted using electron-nose, electron-tongue, gas chromatography-ion mobility spectrometry (GC-IMS), automatic amino acid analysis, and chemometric methods. A total of 14 amino acids, including significant umami contributors, were identified. The taste components of CP and CO chicken soups were relatively similar. In total, 39 volatile aroma compounds, predominantly aldehydes, ketones, and alcohols, were identified. Aldehydes were the most abundant compounds, and 23 key aroma compounds were identified. Pearson's correlation analyses revealed distinct correlations between various amino acids (e.g., glutamic acid and serine) and specific volatile compounds. The aroma compounds from the CP and CO samples showed similarities. The results of this study provide a reference for the application of one-touch cooking of chicken soup in versatile steam ovens.


Assuntos
Antifibrinolíticos , Odorantes , Animais , Galinhas , Vapor , Paladar , Cromatografia Gasosa-Espectrometria de Massas , Aminoácidos , Aldeídos , Culinária
16.
Biosens Bioelectron ; 256: 116260, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38613935

RESUMO

Various bioelectronic noses have been recently developed for mimicking human olfactory systems. However, achieving direct monitoring of gas-phase molecules remains a challenge for the development of bioelectronic noses due to the instability of receptor and the limitations of its surrounding microenvironment. Here, we report a MXene/hydrogel-based bioelectronic nose for the sensitive detection of liquid and gaseous hexanal, a signature odorant from spoiled food. In this study, a conducting MXene/hydrogel structure was formed on a sensor via physical adsorption. Then, canine olfactory receptor 5269-embedded nanodiscs (cfOR5269NDs) which could selectively recognize hexanal molecules were embedded in the three-dimensional (3D) MXene/hydrogel structures using glutaraldehyde as a linker. Our MXene/hydrogel-based bioelectronic nose exhibited a high selectivity and sensitivity for monitoring hexanal in both liquid and gas phases. The bioelectronic noses could sensitively detect liquid and gaseous hexanal down to 10-18 M and 6.9 ppm, and they had wide detection ranges of 10-18 - 10-6 M and 6.9-32.9 ppm, respectively. Moreover, our bioelectronic nose allowed us to monitor hexanal levels in fish and milk. In this respect, our MXene/hydrogel-based bioelectronic nose could be a practical strategy for versatile applications such as food spoilage assessments in both liquid and gaseous systems.


Assuntos
Técnicas Biossensoriais , Nariz Eletrônico , Técnicas Biossensoriais/métodos , Animais , Gases/química , Gases/análise , Aldeídos/química , Análise de Alimentos/instrumentação , Análise de Alimentos/métodos , Cães , Receptores Odorantes/química , Humanos , Leite/microbiologia , Leite/química , Desenho de Equipamento , Odorantes/análise
17.
J Agric Food Chem ; 72(15): 8731-8741, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38579129

RESUMO

Plant proteins often carry off-notes, necessitating customized aroma addition. In vitro studies revealed protein-aroma binding, limiting release during consumption. This study employs in vivo nose space proton transfer reaction-time-of-flight-mass spectrometry and dynamic sensory evaluation (time intensity) to explore in-mouth interactions. In a lupin protein-based aqueous system, a sensory evaluation of a trained "green" attribute was conducted simultaneously with aroma release of hexanal, nonanal, and 2-nonanone during consumption. Results demonstrated that enlarging aldehyde chains and relocating the keto group reduced maximum perceived intensity (Imax_R) by 71.92 and 72.25%. Protein addition decreased Imax_R by 30.91, 36.84, and 72.41%, indicating protein-aroma interactions. Sensory findings revealed a perceived intensity that was lower upon protein addition. Aroma lingering correlated with aroma compounds' volatility and hydrophobicity, with nonanal exhibiting the longest persistence. In vitro mucin addition increased aroma binding four to 12-fold. Combining PTR-ToF-MS and time intensity elucidated crucial food behavior, i.e., protein-aroma interactions, that are pivotal for food design.


Assuntos
Aldeídos , Odorantes , Compostos Orgânicos Voláteis , Odorantes/análise , Prótons , Boca/química , Espectrometria de Massas/métodos , Compostos Orgânicos Voláteis/análise
18.
J Chromatogr A ; 1722: 464866, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38581976

RESUMO

The detection of aromatic aldehydes, considered potential genotoxic impurities, holds significant importance during drug development and production. Current analytical methods necessitate complex pre-treatment processes and exhibit insufficient specificity and sensitivity. This study presents the utilization of naphthalenediimide as a pre-column derivatisation reagent to detect aromatic aldehyde impurities in pharmaceuticals via high-performance liquid chromatography (HPLC). We screened a series of derivatisation reagents through density functional theory (DFT) and investigated the phenomenon of photoinduced electron transfer (PET) for both the derivatisation reagents and the resulting products. Optimal experimental conditions for derivatisation were achieved at 40 °C for 60 min. This approach has been successfully applied to detect residual aromatic aldehyde genotoxic impurities in various pharmaceutical preparations, including 4-Nitrobenzaldehyde, 2-Nitrobenzaldehyde, 1,4-Benzodioxane-6-aldehyde, and 5-Hydroxymethylfurfural. The pre-column derivatisation method significantly enhanced detection sensitivity and reduced the limit of detection (LOD), which ranged from 0.002 to 0.008 µg/ml for the analytes, with relative standard deviations < 3 %. The correlation coefficient (R2) >0.998 demonstrated high quality. In chloramphenicol eye drops, the concentration of 4-Nitrobenzaldehyde was measured to be 8.6 µg/mL below the specified concentration, with recoveries ranging from 90.0 % to 119.2 %. In comparison to existing methods, our work simplifies the pretreatment process, enhances the sensitivity and specificity of the analysis, and offers comprehensive insights into impurity detection in pharmaceutical preparations.


Assuntos
Aldeídos , Contaminação de Medicamentos , Imidas , Limite de Detecção , Naftalenos , Cromatografia Líquida de Alta Pressão/métodos , Naftalenos/química , Naftalenos/análise , Aldeídos/análise , Aldeídos/química , Imidas/química , Mutagênicos/análise , Mutagênicos/química , Preparações Farmacêuticas/química , Preparações Farmacêuticas/análise , Benzaldeídos/química , Benzaldeídos/análise
19.
J Am Chem Soc ; 146(15): 10621-10631, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38584362

RESUMO

Lysine dimethylation (Kme2) is a crucial post-translational modification (PTM) that regulates biological processes and is implicated in diseases. There is significant interest in globally identifying these methylation marks. Unfortunately, this remains challenging due to the lack of robust technologies for selectively labeling Kme2. To address this, we present a chemical method named tertiary amine coupling by oxidation (TACO). This method selectively modifies Kme2 to aldehydes using Selectfluor and a base. The resulting aldehydes from Kme2 were then functionalized using reductive amination, thiolamine, and oxime chemistry. We successfully demonstrated the versatility of TACO in selectively labeling Kme2 peptides and proteins in complex cell lysate mixtures with varying payloads, including affinity tags and fluorophores. We further showed the application of TACO chemistry for the identification of Kme2 sites at a single-molecule level by fluorosequencing. We discovered novel 30 Kme2 sites, in addition to previously known 5 Kme2 sites, by proteomics analysis of TACO-modified nuclear extracts. Our work establishes a unique strategy for covalently modifying Kme2, facilitating the global identification of low-abundance Kme2-PTMs and their sites within complex cell lysate mixtures.


Assuntos
Lisina , Processamento de Proteína Pós-Traducional , Lisina/química , Proteínas/química , Aminas , Aldeídos
20.
Carbohydr Polym ; 336: 122105, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38670749

RESUMO

In situ forming hydrogels are promising for biomedical applications, especially in drug delivery. The precursor solution can be injected at the target site, where it undergoes a sol-gel transition to afford a hydrogel. In this sense, the most significant characteristic of these hydrogels is fast gelation behavior after injection. This study describes an all-polysaccharide, rapidly in situ-forming hydrogel composed of carboxymethyl chitosan (CMCHT) and hydroxyethyl cellulose functionalized with aldehyde groups (HEC-Ald). The HEC-Ald was synthesized through acetal functionalization, followed by acid deprotection. This innovative approach avoids cleavage of pyran rings, as is inherent in the periodate oxidation approach, which is the most common method currently employed for adding aldehyde groups to polysaccharides. The resulting hydrogel exhibited fast stress relaxation, self-healing properties, and pH sensitivity, which allowed it to control the release of an encapsulated model drug in response to the medium pH. Based on the collected data, the HEC-Ald/CMCHT hydrogels show promise as pH-sensitive drug carriers.


Assuntos
Aldeídos , Celulose , Celulose/análogos & derivados , Quitosana , Quitosana/análogos & derivados , Hidrogéis , Quitosana/química , Concentração de Íons de Hidrogênio , Celulose/química , Hidrogéis/química , Aldeídos/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Polissacarídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA