Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 424
Filtrar
1.
Molecules ; 29(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38999116

RESUMO

The present article describes the synthesis of an isonicotinate-derived meso-arylporphyrin, that has been fully characterized by spectroscopic methods (including fluorescence spectroscopy), as well as elemental analysis and HR-MS. The structure of an n-hexane monosolvate has been determined by single-crystal X-ray diffraction analysis. The radical scavenging activity of this new porphyrin against the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical has been measured. Its antifungal activity against three yeast strains (C. albicans ATCC 90028, C. glabrata ATCC 64677, and C. tropicalis ATCC 64677) has been tested using the disk diffusion and microdilution methods. Whereas the measured antioxidant activity was low, the porphyrin showed moderate but encouraging antifungal activity. Finally, a study of its effect on the germination of lentil seeds revealed interesting allelopathic properties.


Assuntos
Antifúngicos , Antioxidantes , Porfirinas , Antifúngicos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/síntese química , Porfirinas/química , Porfirinas/farmacologia , Porfirinas/síntese química , Ácidos Isonicotínicos/química , Ácidos Isonicotínicos/farmacologia , Ácidos Isonicotínicos/síntese química , Estrutura Molecular , Compostos de Bifenilo/química , Picratos/química , Picratos/antagonistas & inibidores , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Cristalografia por Raios X , Testes de Sensibilidade Microbiana , Lens (Planta)/química , Germinação/efeitos dos fármacos , Alelopatia
2.
Sci Rep ; 14(1): 15423, 2024 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965285

RESUMO

Leaf mustard (Brassica juncea L.) is explored for its biofumigant properties, derived from its secondary metabolites, particularly allyl isothiocyanate (AITC), produced during the enzymatic breakdown of glucosinolates like sinigrin. The research examines eight leaf mustard cultivars developed in Yeosu city, South Korea, focusing on their genetic characteristics, AITC concentration and nitriles formation rates from glucosinolates. Results indicate that the allelopathic effects, largely dependent on AITC concentration and enzymatic activity, vary across cultivar. Sinigrin and AITC constitute 79% and 36%, respectively, of glucosinolate and its hydrolysis products. The cultivar 'Nuttongii' demonstrates significant potential for inhibiting weeds, exhibiting the highest AITC concentration at 27.47 ± 6.46 µmole g-1 These outcomes highlight the importance of selecting mustard cultivars for biofumigation based on their glucosinolate profiles and hydrolysis product yields. The study also identifies a significant genetic influence on AITC and nitrile formation, suggesting that epithiospecifier protein modulation could enhance both allelopathic and other beneficial effects. Collectively, the research underscores the promise of mustard as a sustainable, environmentally friendly alternative to traditional herbicides.


Assuntos
Glucosinolatos , Isotiocianatos , Mostardeira , Nitrilas , Glucosinolatos/metabolismo , Glucosinolatos/química , Isotiocianatos/farmacologia , Isotiocianatos/metabolismo , Isotiocianatos/química , Nitrilas/metabolismo , Nitrilas/farmacologia , Nitrilas/química , Mostardeira/metabolismo , Mostardeira/genética , República da Coreia , Alelopatia
3.
Sci Rep ; 14(1): 14927, 2024 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942921

RESUMO

Viscum album L. (VA) is a unique plant with regard to its biological content. It is rich in many different metabolites with high potential in various spheres of human activity. We conducted a pilot study with 5 VA aqueous extracts of different host-tree species for pre-sowing treatment of Cucurbita maxima 'Hokkaido orange' seeds. We set the following objectives consisting of hypotheses (1) H01 is based on different effects of tested VA extracts depending on host trees and time of pre-treatment; (2) H02 focuses on the allopathic properties of the tested extracts affecting the plant growth and development by dose-response relationship; (3) A01 considers highly biologically active compounds of VA extracts also containing allelochemicals that can be used to regulate plant growth processes and create eco-friendly and resilient cities. The analysis of the stimulatory allelopathy index for 7 parameters demonstrates the direct effect of VA extracts in 62.3% of cases. The variability of the broad spectrum of effects of VA extracts of different host trees on the ontogenesis of C. maxima plants shows the presence of potential allelochemicals, resulting from the vital products of the host-parasite relationship. These effects are not fully explained by total polyphenol content and antioxidant activity as in previous studies of other mistletoe species. The authors consider this work a pilot study that expands the areas of application of VA extracts and knowledge about potential sources of allelochemicals.


Assuntos
Cucurbita , Extratos Vegetais , Viscum album , Cucurbita/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Viscum album/química , Alelopatia , Projetos Piloto , Feromônios/química , Feromônios/metabolismo , Feromônios/farmacologia , Sementes/química
4.
Sci Total Environ ; 940: 173663, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-38823714

RESUMO

In a mixed forest, certain plants can release allelochemicals that exert allelopathic effects on neighboring plants, thereby facilitating interspecific coexistence of two species. Previous studies have demonstrated that allelochemicals released from Ficus carica Linn. roots in mixed forest of F. carica and Taxus cuspidata Sieb. et Zucc. has phase characteristics over time, which can improve the soil physicochemical properties, enzyme activity and microbial diversity, thus promoting the growth of T. cuspidata. Based on the irrigation of exogenous allelochemicals, changes in soil fertility (soil physical and chemical properties, soil enzyme activity and soil microelement content) were observed in response to variations in allelochemicals during five phases of irrigation: initial disturbance phase (0-2 d), physiological compensation phase (2-8 d), screening phase (8-16 d), restore phase (16-32 d) and maturity phase (32-64 d), which was consistent with the response of soil microorganisms. The allelopathic response of growth physiological indexes of T. cuspidata, however, exhibited a slight lag behind the soil fertility, with distinct phase characteristics becoming evident on the 4th day following irrigation of allelochemicals. The findings demonstrated that the allelochemicals released by the root of F. carica induced a synergistic effect on soil fertility and microorganisms, thereby facilitating the growth of T. cuspidata. This study provides a comprehensive elucidation of the phased dynamic response-based allelopathic mechanism employed by F. carica to enhance the growth of T. cuspidata, thus establishing a theoretical basis for optimizing forest cultivation through allelopathic pathways.


Assuntos
Ficus , Feromônios , Raízes de Plantas , Taxus , Taxus/fisiologia , Alelopatia , Solo/química , Microbiologia do Solo , Exsudatos de Plantas
5.
BMC Plant Biol ; 24(1): 523, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38853237

RESUMO

Allelopathy is a biological process in which one organism releases biochemicals that affect the growth and development of other organisms. The current investigation sought to determine the allelopathic effect of Rumex acetosella on white clover (Trifolium repens) growth and development by using its shoot extract (lower IC50 value) as a foliar treatment. Here, different concentrations (25, 50, 100, and 200 g/L) of shoot extract from Rumex acetosella were used as treatments. With increasing concentrations of shoot extract, the plant growth parameters, chlorophyll and total protein content of Trifolium repens decreased. On the other hand, ROS, such as O2.- and H2O2, and antioxidant enzymes, including SOD, CAT, and POD, increased with increasing shoot extract concentration. A phytohormonal study indicated that increased treatment concentrations increased ABA and SA levels while JA levels were reduced. For the identification of allelochemicals, liquid‒liquid extraction, thin-layer chromatography, and open-column chromatography were conducted using R. acetosella shoot extracts, followed by a seed bioassay on the separated layer. A lower IC50 value was obtained through GC/MS analysis. gammaSitosterol was identified as the most abundant component. The shoot extract of Rumex acetosella has strong allelochemical properties that may significantly impede the growth and development of Trifolium repens. This approach could help to understand the competitive abilities of this weed species and in further research provide an alternate weed management strategy.


Assuntos
Alelopatia , Antioxidantes , Extratos Vegetais , Reguladores de Crescimento de Plantas , Rumex , Trifolium , Trifolium/crescimento & desenvolvimento , Trifolium/metabolismo , Trifolium/efeitos dos fármacos , Extratos Vegetais/farmacologia , Antioxidantes/metabolismo , Rumex/crescimento & desenvolvimento , Rumex/metabolismo , Rumex/efeitos dos fármacos , Rumex/química , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Metanol , Plantas Daninhas/efeitos dos fármacos , Plantas Daninhas/crescimento & desenvolvimento , Feromônios/farmacologia , Feromônios/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Brotos de Planta/química
6.
Sci Rep ; 14(1): 13192, 2024 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851826

RESUMO

Water eutrophication has emerged as a pressing concern for massive algal blooms, and these harmful blooms can potentially generate harmful toxins, which can detrimentally impact the aquatic environment and human health. Consequently, it is imperative to identify a safe and efficient approach to combat algal blooms to safeguard the ecological safety of water. This study aimed to investigate the procedure for extracting total flavonoids from Z. bungeanum residue and assess its antioxidant properties. The most favorable parameters for extracting total flavonoids from Z. bungeanum residue were a liquid-solid ratio (LSR) of 20 mL/g, a solvent concentration of 60%, an extraction period of 55 min, and an ultrasonic temperature of 80 °C. Meanwhile, the photosynthetic inhibitory mechanism of Z. bungeanum residue extracts against M. aeruginosa was assessed with a particular focus on the concentration-dependent toxicity effect. Z. bungeanum residue extracts damaged the oxygen-evolving complex structure, influenced energy capture and distribution, and inhibited the electron transport of PSII in M. aeruginosa. Furthermore, the enhanced capacity for ROS detoxification enables treated cells to sustain their photosynthetic activity. The findings of this study hold considerable relevance for the ecological management community and offer potential avenues for the practical utilization of resources in controlling algal blooms.


Assuntos
Flavonoides , Microcystis , Fotossíntese , Zanthoxylum , Flavonoides/química , Flavonoides/isolamento & purificação , Flavonoides/farmacologia , Zanthoxylum/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Alelopatia , Proliferação Nociva de Algas , Espécies Reativas de Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo
7.
Sci Total Environ ; 945: 173864, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38879032

RESUMO

Cyanobacteria blooms (CBs) caused by eutrophication pose a global concern, especially Microcystis aeruginosa (M. aeruginosa), which could release harmful microcystins (MCs). The impact of microplastics (MPs) on allelopathy in freshwater environments is not well understood. This study examined the joint effect of adding polystyrene (PS-MPs) as representative MPs and two concentrations (2 and 8 mg/L) of pyrogallol (PYR) on the allelopathy of M. aeruginosa. The results showed that the addition of PS-MPs intensified the inhibitory effect of 8 mg/L PYR on the growth and photosynthesis of M. aeruginosa. After a 7-day incubation period, the cell density decreased to 69.7 %, and the chl-a content decreased to 48 % compared to the condition without PS-MPs (p < 0.05). Although the growth and photosynthesis of toxic Microcystis decreased with the addition of PS-MPs, the addition of PS-MPs significantly resulted in a 3.49-fold increase in intracellular MCs and a 1.10-fold increase in extracellular MCs (p < 0.05). Additionally, the emission rates of greenhouse gases (GHGs) (carbon dioxide, nitrous oxide and methane) increased by 2.66, 2.23 and 2.17-fold, respectively (p < 0.05). In addition, transcriptomic analysis showed that the addition of PS-MPs led to the dysregulation of gene expression related to DNA synthesis, membrane function, enzyme activity, stimulus detection, MCs release and GHGs emissions in M. aeruginosa. PYR and PS-MPs triggered ROS-induced membrane damage and disrupted photosynthesis in algae, leading to increased MCs and GHG emissions. PS-MPs accumulation exacerbated this issue by impeding light absorption and membrane function, further heightening the release of MCs and GHGs emissions. Therefore, PS-MPs exhibited a synergistic effect with PYR in inhibiting the growth and photosynthesis of M. aeruginosa, resulting in additional risks such as MCs release and GHGs emissions. These results provide valuable insights for the ecological risk assessment and control of algae bloom in freshwater ecosystems.


Assuntos
Gases de Efeito Estufa , Microcistinas , Microcystis , Microplásticos , Pirogalol , Microcystis/fisiologia , Microcystis/efeitos dos fármacos , Microcistinas/toxicidade , Microplásticos/toxicidade , Alelopatia , Poluentes Químicos da Água/toxicidade , Fotossíntese/efeitos dos fármacos
8.
Sci Total Environ ; 945: 173913, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38880157

RESUMO

The globally distributed harmful algal blooms (HAB) species, Heterosigma akashiwo, has been found to exhibit ichthyotoxicity. Previous studies have shown that H. akashiwo achieves a competitive edge during bloom occurrences by inhibiting the growth of a coexisting diatom, Skeletonema costatum, through allelopathy. However, the specific allelopathic mechanisms underlying the allelopathic effects of H. akashiwo on S. costatum remain unknown. To bridge this gap, our study utilized a combination of quantitative real-time PCR and metabolomics to examine the allelopathic processes of H. akashiwo on S. costatum. Our results demonstrate that the growth of S. costatum is hindered when co-cultured with H. akashiwo (initial cell concentration, 2 × 104 cell/mL). Gene expression investigation showed a substantial reduction in the mRNA levels of cytochrome b6, ribulose bisphosphate carboxylase large chain, and silicon transporter in S. costatum when grown in co-culture conditions. Furthermore, metabolic pathway analysis suggested that the allelopathic effects of H. akashiwo disrupted several vital metabolic pathways in S. costatum, including a reduction in purine and pyrimidine metabolism and an increase in fatty acid biosynthesis. Our investigation has revealed the intricate and substantial involvement of allelopathy in the formation of H. akashiwo blooms, demonstrating the complexity of the allelopathic interaction between H. akashiwo and S. costatum. These insights also contribute significantly to our understanding of the dynamics within HAB species.


Assuntos
Alelopatia , Diatomáceas , Proliferação Nociva de Algas , Metabolômica , Diatomáceas/fisiologia , Expressão Gênica , Dinoflagellida/fisiologia , Dinoflagellida/genética , Estramenópilas/fisiologia
9.
Sci Rep ; 14(1): 14794, 2024 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926472

RESUMO

The spontaneous plant landscape is a key focus in the development of urban environments. While many spontaneous plants can coexist with bryophytes to create appealing wilderness landscapes, the potential allelopathic effects of bryophytes on the growth of neighboring spontaneous plants remain uncertain. This study evaluated the allelopathic impact of Thuidium kanedae aqueous extracts on the germination and seedling growth of prevalent urban spontaneous plants by analyzing seed germination, seedling growth morphology, and associated indices. We also investigated the allelopathic potential of the predominant compounds in the extract on seed germination. Our findings reveal that the aqueous extract significantly impeded the seed germination of Ophiopogon japonicus, Taraxacum mongolicum, and Viola philippica, with the level of inhibition correlating positively with concentration. In contrast, Senecio scandens seed germination showed a concentration-dependent reaction, with low concentrations promoting and high concentrations hindering germination. The extract consistently reduced root length in all four species, yet it appeared to increase root vigor. The chlorophyll content in O. japonicus and V. philippica seedlings reached a maximum at a concentration of 5 g/L and decreased with higher extract concentrations. The treatment resulted in elevated catalase and soluble protein levels in the seedlings, indicating that the extract induced stress and enhanced the stress resistance index. L-phenylalanine and 2-phenylethanol, substances present in the extract, were notably inhibitory to seed germination across all species, except for O. japonicus. Notably, 2-phenylethanol exhibited a stronger allelopathic effect than L-phenylalanine. Allelopathy synthetical effect evaluation showed that high concentration of aqueous extract allelopathic inhibition effect on seed germination of four plant species, but allelopathic promotion effect on physiological and biochemical growth of Taraxacum mongolicum, Senecio scandens and Viola philippica. In summary, the study demonstrates that bryophytes exert allelopathic effects on neighboring spontaneous plants, with the degree of influence varying among species. This suggests that the germination and growth of spontaneous plant seeds may be selective in bryophyte-dominated habitats and that the density of bryophytes could shape the evolution of these landscapes.


Assuntos
Alelopatia , Germinação , Extratos Vegetais , Plântula , Germinação/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Extratos Vegetais/farmacologia , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Taraxacum/metabolismo , Feromônios/farmacologia , Feromônios/metabolismo , Senécio/química , Clorofila/metabolismo , Fenilalanina/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento
10.
Braz J Biol ; 84: e279983, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38922190

RESUMO

Plants that produce allelopathic compounds against weeds have emerged as a potential solution for the development of ecologically correct bioherbicides. Talinum triangulare is noteworthy in this regard, as its phytochemical composition encompasses flavonoids, alkaloids and other metabolites that can be used to develop inhibitory weed growth solutions. Lactuca sativa (lettuce) has been widely applied as a bioindicator species for bioherbicides and several chemicals, animal waste, water and soil quality, and atmospheric contamination, among others. In this context, this study aimed to assess the potential allelopathic effect of aqueous T. triangulare extracts on the development of L. sativa seedlings. A completely randomized design employing a 2x4 factorial scheme (shoot and root extracts) x the concentration of each extract (0, 2.5, 5, 7.5%) was applied, comprising four replications. Lactuca sativa seeds were sown on germitest papers soaked with the extracts in a germination chamber at 20°C. Physiological seed evaluations comprising the germination test, where normal and abnormal seedlings are counted on the seventh day after sowing, first normal seedling counts on the fourth day after sowing, and seedling and root length measurements. At the end of the germination test, L. sativa seedlings were separated for morphoanatomical characterizations and chlorophyll a fluorescence analyses. The T. triangulare extracts significantly influenced L. sativa root growth, with shoot extract exposure leading to more abnormal plants and lower root lengths at increasing concentrations and compared to the root extract. Root extract exposure led to evident cellular changes and lower non-photochemical quenching and unregulated dissipation quantum yields at a 5% exposure dose compared to shoot extract exposure. These findings suggest that both aqueous T. triangulare root and shoot extracts from 5% exposure doses exhibit high potential as bioherbicides, acting directly on plant structure, anatomy, quality, size and physiology.


Assuntos
Germinação , Lactuca , Extratos Vegetais , Plântula , Lactuca/efeitos dos fármacos , Lactuca/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Germinação/efeitos dos fármacos , Alelopatia
11.
Sci Rep ; 14(1): 10446, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714777

RESUMO

This study evaluates induced allelopathy in a rye-pigweed model driven by rye's (Secale cereale L.) allelopathic potential as a cover crop and pigweed's (Amaranthus retroflexus L.) notoriety as a weed. The response of rye towards pigweed's presence in terms of benzoxazinoids (BXs) provides valuable insight into induced allelopathy for crop improvement. In the 2 week plant stage, pigweed experiences a significant reduction in growth in rye's presence, implying allelopathic effects. Rye exhibits increased seedling length and BXs upsurge in response to pigweed presence. These trends persist in the 4 week plant stage, emphasizing robust allelopathic effects and the importance of different co-culture arrangements. Germination experiments show rye's ability to germinate in the presence of pigweed, while pigweed exhibits reduced germination with rye. High-performance liquid chromatography with diode-array detection (HPLC-DAD) analysis identifies allelopathic compounds (BXs), 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA) and 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) in rye. Rye significantly increases BX production in response to pigweed, age-dependently. Furthermore, pigweed plants are screened for possible BX uptake from the rhizosphere. Results suggest that allelopathy in rye-pigweed co-cultures is influenced by seed timing, and age-dependent dynamics of plants' allelopathic compounds, providing a foundation for further investigations into chemical and ecological processes in crop-weed interactions.


Assuntos
Alelopatia , Benzoxazinas , Secale , Amaranthus/crescimento & desenvolvimento , Germinação , Técnicas de Cocultura/métodos , Plantas Daninhas , Produtos Agrícolas/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento
12.
Mar Drugs ; 22(5)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38786618

RESUMO

Ecophysiological stress and the grazing of diatoms are known to elicit the production of chemical defense compounds called oxylipins, which are toxic to a wide range of marine organisms. Here we show that (1) the viral infection and lysis of diatoms resulted in oxylipin production; (2) the suite of compounds produced depended on the diatom host and the infecting virus; and (3) the virus-mediated oxylipidome was distinct, in both magnitude and diversity, from oxylipins produced due to stress associated with the growth phase. We used high-resolution accurate-mass mass spectrometry to observe changes in the dissolved lipidome of diatom cells infected with viruses over 3 to 4 days, compared to diatom cells in exponential, stationary, and decline phases of growth. Three host virus pairs were used as model systems: Chaetoceros tenuissimus infected with CtenDNAV; C. tenuissimus infected with CtenRNAV; and Chaetoceros socialis infected with CsfrRNAV. Several of the compounds that were significantly overproduced during viral infection are known to decrease the reproductive success of copepods and interfere with microzooplankton grazing. Specifically, oxylipins associated with allelopathy towards zooplankton from the 6-, 9-, 11-, and 15-lipogenase (LOX) pathways were significantly more abundant during viral lysis. 9-hydroperoxy hexadecatetraenoic acid was identified as the strongest biomarker for the infection of Chaetoceros diatoms. C. tenuissimus produced longer, more oxidized oxylipins when lysed by CtenRNAV compared to CtenDNAV. However, CtenDNAV caused a more statistically significant response in the lipidome, producing more oxylipins from known diatom LOX pathways than CtenRNAV. A smaller set of compounds was significantly more abundant in stationary and declining C. tenuissimus and C. socialis controls. Two allelopathic oxylipins in the 15-LOX pathway and essential fatty acids, arachidonic acid (ARA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) were more abundant in the stationary phase than during the lysis of C. socialis. The host-virus pair comparisons underscore the species-level differences in oxylipin production and the value of screening more host-virus systems. We propose that the viral infection of diatoms elicits chemical defense via oxylipins which deters grazing with downstream trophic and biogeochemical effects.


Assuntos
Alelopatia , Diatomáceas , Oxilipinas , Oxilipinas/metabolismo , Animais , Organismos Aquáticos , Zooplâncton
13.
Molecules ; 29(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38792226

RESUMO

The study investigated compounds present in the invasive grass Hordeum murinum L. subsp. murinum and tested the allelopathic potential of this plant against common meadow species Festuca rubra L. and Trifolium repens L. Gas chromatography-mass spectrometry (GC-MS) performed separately on the ears and stalks with leaves of wall barley revealed 32 compounds, including secondary metabolites, that may play an important role in allelopathy. Two compounds, N-butylbenzenesulfonamide (NBBS) and diphenylsulfone (DDS), were described for the first time for wall barley and the Poaceae family. The presence of 6,10,14-trimethylpentadecan-2-one (TMP) has also been documented. Aqueous extracts of H. murinum organs (ears and stalks with leaves) at concentrations of 2.5%, 5%, and 7.5% were used to evaluate its allelopathic potential. Compared to the control, all extracts inhibited germination and early growth stages of meadow species. The inhibitory effect was strongest at the highest concentration for both the underground and aboveground parts of the seedlings of the meadow species tested. Comparing the allelopathic effect, Trifolium repens proved to be more sensitive. In light of the results of the study, the removal of wall barley biomass appears to be important for the restoration of habitats where this species occurs due to its allelopathic potential.


Assuntos
Alelopatia , Hordeum , Extratos Vegetais , Hordeum/química , Hordeum/crescimento & desenvolvimento , Hordeum/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espécies Introduzidas , Trifolium/química , Trifolium/crescimento & desenvolvimento , Trifolium/efeitos dos fármacos , Folhas de Planta/química , Cromatografia Gasosa-Espectrometria de Massas , Germinação/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Festuca/efeitos dos fármacos , Festuca/crescimento & desenvolvimento , Festuca/química
14.
Sci Rep ; 14(1): 10159, 2024 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-38698043

RESUMO

Invasive alien species are becoming more and more prevalent worldwide, Erigeron bonariensis and Bidens pilosa are two invasive species of Asteraceae in Egypt. To mitigate their detrimental effects and understand their differences in invasiveness, we compared the allelopathic potentials of E. bonariensis and B. pilosa using leachates, decaying residues, and volatilization processes. Notably, the allelopathic variances in leachates were significant, influenced by plant types, concentrations, and response patterns of target plant traits, as indicated by EC50. The relative phytotoxicity of the invasive species decayed residues peaked between 20 and 25 days in the soil, with a positive correlation with concentrations and soil properties. The highest quantities of phenolic acids were chlorogenic acid and caffeic acid reaching (5.41 and 4.39 µg g-1) E. bonariensis and (4.53 and 4.46 µg g-1) B. pilosa, in leachates extracts respectively, while in the soil extract of decayed residues were coumaric acid and ferulic acid measuring (1.66 and 1.67 µg g-1) E. bonariensis and (1.47 and 1.57 µg g-1) B. pilosa, respectively. Using GC/MS analysis, the main volatile components in E. bonariensis were 1, 8 cineole (5.62%), and α-terpinene (5.43%) and iso-Caryophyllene (5.2%) which showed the greatest inhibitory effects. While B. pilosa main constituents were trans-sabinene (5.39%) and Camphene (5.11%), respectively. Finally, the high invasion level displayed from E. bonariensis (0.221) compared with B. pilosa (0.094) which correlated with the stronger allelopathic activities against plant species, and soil properties. Therefore, the allelopathic potentialities of these species are critically relevant to their invasion success.


Assuntos
Alelopatia , Bidens , Erigeron , Espécies Introduzidas , Solo , Solo/química , Erigeron/química , Egito , Hidroxibenzoatos
15.
Oecologia ; 204(4): 899-913, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38582800

RESUMO

Allelopathy has a profound impact on the germination and growth of plants, influencing the establishment of plant populations and shaping community ecological patterns. However, the allelopathic potential of many grassland species remains poorly understood. In this study, we prepared aqueous extracts from 17 herbaceous plants to investigate their allelopathic effects on the seed germination and seedling growth of Leymus chinensis, a dominant grassland species. Our results revealed that the response of L. chinensis to allelopathic compounds was dependent on the specific plant species, extract concentration, and target plant organ. Notably, Fabaceae plants exhibited a stronger allelopathic potential than Poaceae, Asteraceae, and other plant families. Moreover, we observed that root growth of L. chinensis was more sensitive to allelopathy than shoot growth, and seed germination was more affected than seedling growth. Generally, the germination of L. chinensis was strongly inhibited as the donor plant extract concentration increased. The leachate of Fabaceae plants inhibited the seedling growth of L. chinensis at concentrations ranging from 0.025 to 0.1 g mL-1. On the other hand, the leachate from other families' plants exhibited either inhibitory or hormetic effects on the early growth of L. chinensis, promoting growth at 0.025 g mL-1 and hindering it at concentrations between 0.05 and 0.1 g mL-1. These findings highlight the significant allelopathic potential of grassland plants, which plays a critical role in establishing plant populations and associated ecological processes. In addition, they shed light on the coexistence of other plants with dominant plants in the community.


Assuntos
Alelopatia , Germinação , Pradaria , Plântula , Plântula/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Poaceae/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento
16.
Plant Signal Behav ; 19(1): 2335025, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38678583

RESUMO

Allelopathy is the main chemical means in the invasion process of exotic plants and one of the key factors in grassland degradation. In this experiment, we investigated the effects of ethyl acetate phase extract (EAE), n-butanol phase extract (BE) and aqueous phase extract (AE) from the aboveground (stems and leaves) and roots of Ligularia sagitta on seed germination and seedling growth of four Gramineae forages (Poa pratensis L. Festuca ovina L. Elymus nutans Griseb. Agropyron cristatum (L.) Gaertn.) in their sympatric domains and one Legosuminae forage (Medicago sativa L.). The chemical components in each phase extract of L. sagitta were determined with UHPLC-MS/MS non-targeted metabolomics, and the differential compounds were screened using Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-DA). Within a set concentration range, EAE significantly inhibited seed germination and seedling growth of four Gramineae forages. BE and AE acted mainly in the seedling growth stage and did not significantly inhibit forage seed germination. P. pratensis was most sensitive to L. sagitta extracts; at 2.0 mg/mL of EAE from roots, germination energy and germination rate of P. pratensis seeds were 0. L. sagitta extracts inhibited the growth of M. sativa seedlings and did not inhibit its seed germination. A total of 904 compounds were identified with UHPLC-MS/MS, among which 31, 64, 81 and 66 metabolites displayed different accumulation patterns in the four comparison groups (R.EAE vs. R.BE, R.EAE vs. R.AE, SL.EAE vs. SL.BE, SL.EAE vs. SL.AE), respectively. In particular, 9 compounds were found to be common up-regulated differential metabolites in the four comparison groups and were enriched in EAE. Additionally, N,N-dimethylaniline, Caffeic acid, 4-Hydroxybenzoic acid, 4-Hydroxybenzaldehyde and cis-9-Octadecenoic acid as potential allelochemicals in L. sagitta. The results of this study support efforts at finding alternative control plants for the restoration of poisonous grass-type degraded grasslands.


Assuntos
Alelopatia , Asteraceae , Germinação , Espécies Introduzidas , Feromônios , Asteraceae/metabolismo , Asteraceae/efeitos dos fármacos , Feromônios/farmacologia , Feromônios/metabolismo , Germinação/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/metabolismo , Plântula/crescimento & desenvolvimento , Extratos Vegetais/farmacologia
17.
Molecules ; 29(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38675697

RESUMO

The allelopathic autotoxicity of ginsenosides is an important cause of continuous cropping obstacles in ginseng planting. There is no report on the potential molecular mechanism of the correlation between polarity of ginsenoside components and their allelopathic autotoxicity. This study applied a combination of metabolomics and transcriptomics analysis techniques, combined with apparent morphology, physiological indexes, and cell vitality detection of the ginseng hairy roots, through which the molecular mechanism of correlation between polarity and allelopathic autotoxicity of ginsenosides were comprehensively studied. The hairy roots of ginseng presented more severe cell apoptosis under the stress of low-polarity ginsenoside components (ZG70). ZG70 exerted allelopathic autotoxicity by regulating the key enzyme genes of cis-zeatin (cZ) synthesis pathway, indole-3-acetic acid (IAA) synthesis pathway, and jasmonates (JAs) signaling transduction pathway. The common pathway for high-polarity ginsenoside components (ZG50) and ZG70 to induce the development of allelopathic autotoxicity was through the expression of key enzymes in the gibberellin (GA) signal transduction pathway, thereby inhibiting the growth of ginseng hairy roots. cZ, indole-3-acetamid (IAM), gibberellin A1 (GA1), and jasmonoyl-L-isoleucine (JA-ILE) were the key response factors in this process. It could be concluded that the polarity of ginsenoside components were negatively correlated with their allelopathic autotoxicity.


Assuntos
Regulação da Expressão Gênica de Plantas , Ginsenosídeos , Panax , Reguladores de Crescimento de Plantas , Raízes de Plantas , Transcriptoma , Panax/metabolismo , Panax/genética , Panax/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Perfilação da Expressão Gênica , Alelopatia , Transdução de Sinais/efeitos dos fármacos , Metabolômica/métodos
18.
Chemosphere ; 357: 141953, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38614395

RESUMO

The effects of culture filtrate of Alexandrium tamarense on Prorocentrum donghaiense and Heterosigma akashiwo were investigated, including determination of algal density, photosynthesis, intracellular enzyme content and activity. The filtrate of A. tamarense had a stronger inhibitory effect on P. donghaiense than H. akashiwo, and the inhibitory effect decreased with higher temperature treatment of the filtrate. Instantaneous fluorescence (Ft) and maximum quantum yield of photosystem II (Fv/Fm) values of both kinds of target algae were reduced as exposed to the filtrate of A. tamarense, which proved that allelopathy could inhibit the normal operation of photosynthetic system. The increase of Malondialdehyde (MDA) content of the two kinds of target algae indicated that the cell membrane was seriously damaged by allelochemicals released by A. tamarense. The different responses of Superoxide Dismutase (SOD) and Catalase (CAT) activity in two kinds of target algae demonstrated the complexity and diversity of allelopathic mechanism. The filtrate of A. tamarense also influenced the metabolic function (ATPases) of P. donghaiense and H. akashiwo, and the influence on P. donghaiense was greater. Liquid-liquid extraction was used to extract and isolate allelochemicals from the filtrate of A. tamarense. It was found that only component I with molecular weight of 424.2573 and 434.2857 could inhibit the growth of P. donghaiense by HPLC-MS.


Assuntos
Alelopatia , Catalase , Dinoflagellida , Malondialdeído , Feromônios , Fotossíntese , Dinoflagellida/fisiologia , Feromônios/farmacologia , Malondialdeído/metabolismo , Fotossíntese/efeitos dos fármacos , Catalase/metabolismo , Superóxido Dismutase/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo
19.
Sci Rep ; 14(1): 7679, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561368

RESUMO

Allelopathy is a process whereby a plant directly or indirectly promotes or inhibits growth of surrounding plants. Perennial sugarcane root extracts from various years significantly inhibited Bidens pilosa, Digitaria sanguinalis, sugarcane stem seedlings, and sugarcane tissue-cultured seedlings (P < 0.05), with maximum respective allelopathies of - 0.60, - 0.62, - 0.20, and - 0.29. Allelopathy increased with increasing concentrations for the same-year root extract, and inhibitory effects of the neutral, acidic, and alkaline components of perennial sugarcane root extract from different years were significantly stronger than those of the control for sugarcane stem seedlings (P < 0.05). The results suggest that allelopathic effects of perennial sugarcane root extract vary yearly, acids, esters and phenols could be a main reason for the allelopathic autotoxicity of sugarcane ratoons and depend on the type and content of allelochemicals present, and that allelopathy is influenced by other environmental factors within the rhizosphere such as the presence of old perennial sugarcane roots. This may be a crucial factor contributing to the decline of perennial sugarcane root health.


Assuntos
Saccharum , Plântula , Raízes de Plantas/química , Plantas Daninhas/fisiologia , Alelopatia , Extratos Vegetais/química
20.
BMC Genom Data ; 25(1): 24, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438998

RESUMO

OBJECTIVES: Brasenia is a monotypic genus in the family of Cabombaceae. The only species, B. schreberi, is a macrophyte distributed worldwide. Because it requires good water quality, it is endangered in China and other countries due to the deterioration of aquatic habitats. The young leaves and stems of B. schreberi are covered by thick mucilage, which has high medical value. As an allelopathic aquatic plant, it can also be used in the management of aquatic weeds. Here, we present its assembled and annotated genome to help shed light on medial and allelopathic substrates and facilitate their conservation. DATA DESCRIPTION: Genomic DNA and RNA extracted from B. schreberi leaf tissues were used for whole genome and RNA sequencing using a Nanopore and/or MGI sequencer. The assembly was 1,055,148,839 bp in length, with 92 contigs and an N50 of 22,379,495 bp. The repetitive elements in the assembly were 555,442,205 bp. A completeness assessment of the assembly with BUSCO and compleasm indicated 88.4 and 90.9% completeness in the Eudicots database and 95.4 and 96.6% completeness in the Embryphyta database. Gene annotation revealed 67,747 genes that coded for 73,344 proteins.


Assuntos
Plantas Daninhas , Sementes , Alelopatia , China , Bases de Dados Factuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA