Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.230
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731875

RESUMO

Mass spectrometry has become the most prominent yet evolving technology in quantitative proteomics. Today, a number of label-free and label-based approaches are available for the relative and absolute quantification of proteins and peptides. However, the label-based methods rely solely on the employment of stable isotopes, which are expensive and often limited in availability. Here we propose a label-based quantification strategy, where the mass difference is identified by the differential alkylation of cysteines using iodoacetamide and acrylamide. The alkylation reactions were performed under identical experimental conditions; therefore, the method can be easily integrated into standard proteomic workflows. Using high-resolution mass spectrometry, the feasibility of this approach was assessed with a set of tryptic peptides of human serum albumin. Several critical questions, such as the efficiency of labeling and the effect of the differential alkylation on the peptide retention and fragmentation, were addressed. The concentration of the quality control samples calculated against the calibration curves were within the ±20% acceptance range. It was also demonstrated that heavy labeled peptides exhibit a similar extraction recovery and matrix effect to light ones. Consequently, the approach presented here may be a viable and cost-effective alternative of stable isotope labeling strategies for the quantification of cysteine-containing proteins.


Assuntos
Acrilamida , Cisteína , Iodoacetamida , Proteômica , Iodoacetamida/química , Alquilação , Cisteína/química , Cisteína/análise , Acrilamida/química , Acrilamida/análise , Humanos , Proteômica/métodos , Espectrometria de Massas/métodos , Marcação por Isótopo/métodos , Peptídeos/química , Peptídeos/análise , Espectrometria de Massas em Tandem/métodos
2.
Proc Natl Acad Sci U S A ; 121(20): e2403871121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38717857

RESUMO

DNA base damage is a major source of oncogenic mutations and disruption to gene expression. The stalling of RNA polymerase II (RNAP) at sites of DNA damage and the subsequent triggering of repair processes have major roles in shaping the genome-wide distribution of mutations, clearing barriers to transcription, and minimizing the production of miscoded gene products. Despite its importance for genetic integrity, key mechanistic features of this transcription-coupled repair (TCR) process are controversial or unknown. Here, we exploited a well-powered in vivo mammalian model system to explore the mechanistic properties and parameters of TCR for alkylation damage at fine spatial resolution and with discrimination of the damaged DNA strand. For rigorous interpretation, a generalizable mathematical model of DNA damage and TCR was developed. Fitting experimental data to the model and simulation revealed that RNA polymerases frequently bypass lesions without triggering repair, indicating that small alkylation adducts are unlikely to be an efficient barrier to gene expression. Following a burst of damage, the efficiency of transcription-coupled repair gradually decays through gene bodies with implications for the occurrence and accurate inference of driver mutations in cancer. The reinitation of transcription from the repair site is not a general feature of transcription-coupled repair, and the observed data is consistent with reinitiation never taking place. Collectively, these results reveal how the directional but stochastic activity of TCR shapes the distribution of mutations following DNA damage.


Assuntos
Dano ao DNA , Reparo do DNA , RNA Polimerase II , Transcrição Gênica , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Animais , Processos Estocásticos , Camundongos , DNA/metabolismo , DNA/genética , Humanos , Alquilação , Mutação , Reparo por Excisão
3.
Nat Commun ; 15(1): 3708, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714662

RESUMO

Cheminformatics-based machine learning (ML) has been employed to determine optimal reaction conditions, including catalyst structures, in the field of synthetic chemistry. However, such ML-focused strategies have remained largely unexplored in the context of catalytic molecular transformations using Lewis-acidic main-group elements, probably due to the absence of a candidate library and effective guidelines (parameters) for the prediction of the activity of main-group elements. Here, the construction of a triarylborane library and its application to an ML-assisted approach for the catalytic reductive alkylation of aniline-derived amino acids and C-terminal-protected peptides with aldehydes and H2 is reported. A combined theoretical and experimental approach identified the optimal borane, i.e., B(2,3,5,6-Cl4-C6H)(2,6-F2-3,5-(CF3)2-C6H)2, which exhibits remarkable functional-group compatibility toward aniline derivatives in the presence of 4-methyltetrahydropyran. The present catalytic system generates H2O as the sole byproduct.


Assuntos
Aminoácidos , Compostos de Anilina , Boranos , Peptídeos , Compostos de Anilina/química , Catálise , Aminoácidos/química , Peptídeos/química , Boranos/química , Hidrogênio/química , Simulação por Computador , Oxirredução , Alquilação , Aprendizado de Máquina
4.
Anal Chem ; 96(19): 7386-7393, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38698660

RESUMO

Covalent labeling in combination with mass spectrometry is a powerful approach used in structural biology to study protein structures, interactions, and dynamics. Recently, the toolbox of covalent labeling techniques has been expanded with fast fluoroalkylation of proteins (FFAP). FFAP is a novel radical labeling method that utilizes fluoroalkyl radicals generated from hypervalent Togni reagents for targeting aromatic residues. This report further demonstrates the benefits of FFAP as a new method for structural characterization of therapeutic antibodies and interaction interfaces of antigen-antibody complexes. The results obtained from human trastuzumab and its complex with human epidermal growth factor receptor 2 (HER2) correlate well with previously published structural data and demonstrate the potential of FFAP in structural biology.


Assuntos
Mapeamento de Epitopos , Receptor ErbB-2 , Trastuzumab , Humanos , Mapeamento de Epitopos/métodos , Receptor ErbB-2/química , Receptor ErbB-2/imunologia , Trastuzumab/química , Alquilação , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Halogenação , Pegadas de Proteínas/métodos , Complexo Antígeno-Anticorpo/química
5.
Acc Chem Res ; 57(9): 1287-1297, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38626119

RESUMO

ConspectusThe growing list of physiologically important protein-protein interactions (PPIs) has amplified the need for compounds to target topologically complex biomolecular surfaces. In contrast to small molecules, peptide and protein mimics can exhibit three-dimensional shape complementarity across a large area and thus have the potential to significantly expand the "druggable" proteome. Strategies to stabilize canonical protein secondary structures without sacrificing side-chain content are particularly useful in the design of peptide-based chemical probes and therapeutics.Substitution of the backbone amide in peptides represents a subtle chemical modification with profound effects on conformation and stability. Studies focused on N-alkylation have already led to broad-ranging applications in peptidomimetic design. Inspired by nonribosomal peptide natural products harboring amide N-oxidations, we envisioned that main-chain hydrazide and hydroxamate bonds would impose distinct conformational preferences and offer unique opportunities for backbone diversification. This Account describes our exploration of peptide N-amination as a strategy for stabilizing canonical protein folds and for the structure-based design of soluble amyloid mimics.We developed a general synthetic protocol to access N-amino peptides (NAPs) on solid support. In an effort to stabilize ß-strand conformation, we designed stitched peptidomimetics featuring covalent tethering of the backbone N-amino substituent to the preceding residue side chain. Using a combination of NMR, X-ray crystallography, and molecular dynamics simulations, we discovered that backbone N-amination alone could significantly stabilize ß-hairpin conformation in multiple models of folding. Our studies revealed that the amide NH2 substituent in NAPs participates in cooperative noncovalent interactions that promote ß-sheet secondary structure. In contrast to Cα-substituted α-hydrazino acids, we found that N-aminoglycine and its N'-alkylated derivatives instead stabilize polyproline II (PPII) conformation. The reactivity of hydrazides also allows for late-stage peptide macrocyclization, affording novel covalent surrogates of side-chain-backbone H-bonds.The pronounced ß-sheet propensity of Cα-substituted α-hydrazino acids prompted us to target amyloidogenic proteins using NAP-based ß-strand mimics. Backbone N-amination was found to render aggregation-prone lead sequences soluble and resistant to proteolysis. Inhibitors of Aß and tau identified through N-amino scanning blocked protein aggregation and the formation of mature fibrils in vitro. We further identified NAP-based single-strand and cross-ß tau mimics capable of inhibiting the prion-like cellular seeding activity of recombinant and patient-derived tau fibrils.Our studies establish backbone N-amination as a valuable addition to the peptido- and proteomimetic tool kit. α-Hydrazino acids show particular promise as minimalist ß-strand mimics that retain side-chain information. Late-stage derivatization of hydrazides also provides facile entry into libraries of backbone-edited peptides. We anticipate that NAPs will thus find applications in the development of optimally constrained folds and modulators of PPIs.


Assuntos
Peptídeos , Alquilação , Peptídeos/química , Peptídeos/síntese química
6.
Nat Commun ; 15(1): 3349, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637496

RESUMO

Catalysed C-H activation has emerged as a transformative platform for molecular synthesis and provides new opportunities in drug discovery by late-stage functionalisation (LSF) of complex molecules. Notably, small aliphatic motifs have gained significant interest in medicinal chemistry for their beneficial properties and applications as sp3-rich functional group bioisosteres. In this context, we disclose a versatile strategy with broad applicability for the ruthenium-catalysed late-stage meta-C(sp2)-H alkylation of pharmaceuticals. This general protocol leverages numerous directing groups inherently part of bioactive scaffolds to selectivity install a variety of medicinally relevant bifunctional alkyl units within drug compounds. Our strategy enables the direct modification of unprotected lead structures to quickly generate an array of pharmaceutically useful analogues without resorting to de novo syntheses. Moreover, productive late-stage modulation of key biological characteristics of drug candidates upon remote C-H alkylation proves viable, highlighting the major benefits of our approach to offer in drug development programmes.


Assuntos
Hidrogênio , Rutênio , Hidrogênio/química , Alquilação , Rutênio/química , Catálise , Preparações Farmacêuticas
7.
Org Biomol Chem ; 22(18): 3544-3558, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38624091

RESUMO

Chemical tools and principles have become central to biological and medical research/applications by leveraging a range of classical organic chemistry reactions. Friedel-Crafts alkylation and acylation are arguably some of the most well-known and used synthetic methods for the preparation of small molecules but their use in biological and medical fields is relatively less frequent than the other reactions, possibly owing to the notion of their plausible incompatibility with biological systems. This review demonstrates advances in Friedel-Crafts alkylation and acylation reactions in a variety of biomolecular chemistry fields. With the discoveries and applications of numerous biomolecule-catalyzed or -assisted processes, these reactions have garnered considerable interest in biochemistry, enzymology, and biocatalysis. Despite the challenges of reactivity and selectivity of biomolecular reactions, the alkylation and acylation reactions demonstrated their utility for the construction and functionalization of all the four major biomolecules (i.e., nucleosides, carbohydrates/saccharides, lipids/fatty acids, and amino acids/peptides/proteins), and their diverse applications in biological, medical, and material fields are discussed. As the alkylation and acylation reactions are often fundamental educational components of organic chemistry courses, this review is intended for both experts and nonexperts by discussing their basic reaction patterns (with the depiction of each reaction mechanism in the ESI) and relevant real-world impacts in order to enrich chemical research and education. The significant growth of biomolecular Friedel-Crafts reactions described here is a testament to their broad importance and utility, and further development and investigations of the reactions will surely be the focus in the organic biomolecular chemistry fields.


Assuntos
Proteínas , Alquilação , Acilação , Proteínas/química , Aminoácidos/química , Aminoácidos/síntese química , Carboidratos/química , Carboidratos/síntese química , Ácidos Graxos/química , Lipídeos/química , Nucleosídeos/química , Nucleosídeos/síntese química , Peptídeos/química , Peptídeos/síntese química
8.
Molecules ; 29(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38611709

RESUMO

Solid-phase peptide synthesis (SPPS) is the preferred strategy for synthesizing most peptides for research purposes and on a multi-kilogram scale. One key to the success of SPPS is the continual evolution and improvement of the original method proposed by Merrifield. Over the years, this approach has been enhanced with the introduction of new solid supports, protecting groups for amino acids, coupling reagents, and other tools. One of these improvements is the use of the so-called "safety-catch" linkers/resins. The linker is understood as the moiety that links the peptide to the solid support and protects the C-terminal carboxylic group. The "safety-catch" concept relies on linkers that are totally stable under the conditions needed for both α-amino and side-chain deprotection that, at the end of synthesis, can be made labile to one of those conditions by a simple chemical reaction (e.g., an alkylation). This unique characteristic enables the simultaneous use of two primary protecting strategies: tert-butoxycarbonyl (Boc) and fluorenylmethoxycarbonyl (Fmoc). Ultimately, at the end of synthesis, either acids (which are incompatible with Boc) or bases (which are incompatible with Fmoc) can be employed to cleave the peptide from the resin. This review focuses on the most significant "safety-catch" linkers.


Assuntos
Antifibrinolíticos , Técnicas de Síntese em Fase Sólida , Alquilação , Aminoácidos , Resinas Vegetais , Peptídeos
9.
Nat Commun ; 15(1): 2549, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514662

RESUMO

Chemically modified nucleosi(ti)des and functional oligonucleotides (ONs, including therapeutic oligonucleotides, aptamer, nuclease, etc.) have been identified playing an essential role in the areas of medicinal chemistry, chemical biology, biotechnology, and nanotechnology. Introduction of functional groups into the nucleobases of ONs mostly relies on the laborious de novo chemical synthesis. Due to the importance of nucleosides modification and aforementioned limitations of functionalizing ONs, herein, we describe a highly efficient site-selective alkylation at the C8-position of guanines in guanosine (together with its analogues), GMP, GDP, and GTP, as well as late-stage functionalization of dinucleotides and single-strand ONs (including ssDNA and RNA) through photo-mediated Minisci reaction. Addition of catechol to assist the formation of alkyl radicals via in situ generated boronic acid catechol ester derivatives (BACED) markedly enhances the yields especially for the reaction of less stable primary alkyl radicals, and is the key to success for the post-synthetic alkylation of ONs. This method features excellent chemoselectivity, no necessity for pre-protection, wide range of substrate scope, various free radical precursors, and little strand lesion. Downstream applications in disease treatment and diagnosis, or as biochemical probes to study biological processes after linking with suitable fluorescent compounds are expected.


Assuntos
Nucleotídeos , Oligonucleotídeos , Oligonucleotídeos/química , Nucleosídeos , Guanina , Alquilação , Catecóis
10.
J Org Chem ; 89(6): 3954-3961, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38426216

RESUMO

A highly stereoselective total synthesis of potent multidrug-resistant reverser dysoxylactum A has been accomplished in the longest linear sequences of 20 steps with an overall 10.2% yield. The key steps of this synthesis included Brown's crotylation, Evans alkylation, the Carreira protocol to generate the stereogenic center, and Yamaguchi macrolactonization.


Assuntos
Lipopeptídeos , Alquilação , Estereoisomerismo
11.
Chem Soc Rev ; 53(9): 4607-4647, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38525675

RESUMO

Alcohol is ubiquitous with unparalleled structural diversity and thus has wide applications as a native functional group in organic synthesis. It is highly prevalent among biomolecules and offers promising opportunities for the development of chemical libraries. Over the last decade, alcohol has been extensively used as an environmentally friendly chemical for numerous organic transformations. In this review, we collectively discuss the utilisation of alcohol from 2015 to 2023 in various organic transformations and their application toward intermediates of drugs, drug derivatives and natural product-like molecules. Notable features discussed are as follows: (i) sustainable approaches for C-X alkylation (X = C, N, or O) including O-phosphorylation of alcohols, (ii) newer strategies using methanol as a methylating reagent, (iii) allylation of alkenes and alkynes including allylic trifluoromethylations, (iv) alkenylation of N-heterocycles, ketones, sulfones, and ylides towards the synthesis of drug-like molecules, (v) cyclisation and annulation to pharmaceutically active molecules, and (vi) coupling of alcohols with aryl halides or triflates, aryl cyanide and olefins to access drug-like molecules. We summarise the synthesis of over 100 drugs via several approaches, where alcohol was used as one of the potential coupling partners. Additionally, a library of molecules consisting over 60 fatty acids or steroid motifs is documented for late-stage functionalisation including the challenges and opportunities for harnessing alcohols as renewable resources.


Assuntos
Álcoois , Álcoois/química , Álcoois/síntese química , Preparações Farmacêuticas/química , Preparações Farmacêuticas/síntese química , Produtos Biológicos/química , Produtos Biológicos/síntese química , Indicadores e Reagentes/química , Alquilação , Estrutura Molecular , Alcenos/química , Alcenos/síntese química , Química Verde
12.
J Am Chem Soc ; 146(9): 6307-6316, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38381876

RESUMO

Saturated hydrocarbon bonds are ubiquitous in organic molecules; to date, the selective functionalization of C(sp3)-H bonds continues to pose a notorious difficulty, thereby garnering significant attention from the synthetic chemistry community. During the past several decades, a wide array of powerful new methodologies has been developed to enantioselectively modify C(sp3)-H bonds that is successfully applied in asymmetric formation of diverse bonds, including C-C, C-N, and C-O bonds; nevertheless, the asymmetric C(sp3)-H alkylation is elusive and, therefore, far less explored. In this work, we report a direct and robust strategy to construct highly valuable enantioenriched unnatural α-amino acid (α-AA) cognates and peptides by a copper-catalyzed enantioselective remote C(sp3)-H alkylation of N-fluorocarboxamides and readily accessible glycine esters under ambient conditions. The key to success lies in the optically active Cu catalyst generated through the coordination of glycine derivatives to enantiopure bisphosphine/Cu(I) species, which is beneficial to the single electronic reduction of N-fluorocarboxamides and the subsequent stereodetermining alkylation. More importantly, all types (primary, secondary, tertiary, and even α-oxy) of δ-C(sp3)-H bonds could be site- and stereospecifically activated by the kinetically favored 1,5-hydrogen atom transfer (1,5-HAT) step.


Assuntos
Cobre , Glicina , Cobre/química , Alquilação , Peptídeos/química , Catálise
13.
Chirality ; 36(3): e23658, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38414199

RESUMO

Diabrotica balteata LeConte is one of the most important polyphagous agricultural pests. The sex pheromone of this pest was synthesized using Evans asymmetric alkylation, ring-opening reaction of (R)-2-methyloxirane, SN 2 alkylation of secondary tosylate, and coupling of chiral tosylate with Grignard reagent as central strategies. The sex pheromone prepared herein would be useful to control D. balteata.


Assuntos
Besouros , Atrativos Sexuais , Animais , Estereoisomerismo , Alquilação
14.
J Am Soc Mass Spectrom ; 35(3): 433-440, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38324783

RESUMO

Post-translational oxidation of methionine residues can destabilize proteins or modify their functions. Although levels of methionine oxidation can provide important information regarding the structural integrity and regulation of proteins, their quantitation is often challenging as analytical procedures in and of themselves can artifactually oxidize methionines. Here, we develop a mass-spectrometry-based method called Methionine Oxidation by Blocking with Alkylation (MObBa) that quantifies methionine oxidation by selectively alkylating and blocking unoxidized methionines. Thus, alkylated methionines can be used as a stable proxy for unoxidized methionines. Using proof of concept experiments, we demonstrate that MObBa can be used to measure methionine oxidation levels within individual synthetic peptides and on proteome-wide scales. MObBa may provide a straightforward experimental strategy for mass spectrometric quantitation of methionine oxidation.


Assuntos
Metionina , Racemetionina , Metionina/química , Oxirredução , Espectrometria de Massas/métodos , Racemetionina/metabolismo , Alquilação , Proteoma/química
15.
Org Lett ; 26(9): 1764-1769, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38407113

RESUMO

This work described a novel "functional hybrid" design for bis-tetrahydroisoquinoline (bis-THIQ) analogues as potential DNA alkylation agents by replacing the labile C21-carbinolamine on the bis-THIQ skeleton of ET-743 with a chemically stable cyclic N,O-aminal functionality. In vitro anti-proliferation evaluation has proven that it is a successful approach to deliver new bis-THIQ analogues with common cytotoxicities, among which several exhibited sub-micromolar-range IC50 against the proliferation of human cancer cell lines A549, HepG2, and MDA-MB-231, respectively.


Assuntos
Antineoplásicos , Tetra-Hidroisoquinolinas , Humanos , Tetra-Hidroisoquinolinas/farmacologia , Linhagem Celular , Alquilação , DNA , Antineoplásicos/farmacologia , Proliferação de Células , Relação Estrutura-Atividade , Ensaios de Seleção de Medicamentos Antitumorais , Linhagem Celular Tumoral
16.
Bioorg Chem ; 144: 107170, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38335755

RESUMO

Herein, we describe the rational design, synthesis and in vitro functional characterization of new heme-dependent, direct soluble guanylyl cyclase (sGC) agonists. These new compounds bear a 1H-pyrazolo[3,4-c]pyridin-7(6H)-one skeleton, modified to enable efficient sGC binding and stimulation. To gain insights into structure-activity relationships, the N6-alkylation of the skeleton was explored, while a pyrimidine ring, substituted with various C5'-polar groups, was installed at position C3. Among the newly synthesized 1H-pyrazolo[3,4-c]pyridin-7(6H)-ones, derivatives 14b, 15b and 16a display characteristic features of sGC "stimulators" in A7r5 vascular smooth muscle cells in vitro. They strongly synergize with the NO donor, sodium nitroprusside (SNP) in inducing cGMP generation in a manner that requires the presence of a reduced heme moiety associated with sGC, and elevate the cGMP-responsive phosphorylation of the protein VASP at Ser239. In line with their sGC stimulating capacity, docking calculations of derivatives 16a, 15(a-c) on a cryo-EM structure of human sGC (hsGC) in an ΝΟ-activated state indicated the implication of 1H-pyrazolo[3,4-c]pyridin-7(6H)-one skeleton in efficient bonding interactions with the recently identified region that binds known sGC stimulators, while the presence of either a N6-H or N6-methyl group pointed to enhanced binding affinity. Moreover, the in vitro functional effects of our newly identified sGC stimulators were compatible with a beneficial role in vascular homeostasis. Specifically, derivative 14b reduced A7r5 cell proliferation, while 16a dampened the expression of adhesion molecules ICAM-1 and P/E-Selectin in Human Umbilical Vein Endothelial Cells (HUVECs), as well as the subsequent adhesion of U937 leukocytes to the HUVECs, triggered by tumor necrosis factor alpha (TNF-α) or interleukin-1 beta (IL-1ß). The fact that these compounds elevate cGMP only in the presence of NO may indicate a novel way of interaction with the enzyme and may make them less prone than other direct sGC agonists to induce characteristic hypotension in vivo.


Assuntos
Células Endoteliais , Guanilato Ciclase , Humanos , Células Endoteliais/metabolismo , Ativação Enzimática , Guanilato Ciclase/metabolismo , Heme , Óxido Nítrico/metabolismo , Guanilil Ciclase Solúvel/metabolismo , Vasodilatadores , Alquilação
17.
Molecules ; 29(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38338376

RESUMO

This review article discusses the recent progress in synthesizing seven-membered ring 1,3,5-triazepine and benzo[f][1,3,5]triazepine derivatives. These derivatives can be either unsaturated, saturated, fused, or separated. This review covers strategies and procedures developed over the past two decades, including cyclo-condensation, cyclization, methylation, chlorination, alkylation, addition, cross-coupling, ring expansions, and ring-closing metathesis. This review discusses the synthesis of 1,3,5-triazepine derivatives using nucleophilic or electrophilic substitution reactions with various reagents such as o-phenylenediamine, 2-aminobenzamide, isothiocyanates, pyrazoles, thiazoles, oxadiazoles, oxadiazepines, and hydrazonoyl chloride. This article systematically presents new approaches and techniques for preparing these compounds. It also highlights the biological importance of benzo[f][1,3,5]triazepine derivatives, which have been used as drugs for treating nervous system diseases. This review aims to provide researchers with the necessary information to create and develop new derivatives of these compounds as quickly as possible.


Assuntos
Ciclização , Alquilação
18.
J Org Chem ; 89(3): 1556-1566, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38227951

RESUMO

Over the last century, nucleoside-based therapeutics have demonstrated remarkable effectiveness in the treatment of a wide variety of diseases from cancer to HIV. In addition, boron-containing drugs have recently emerged as an exciting and fruitful avenue for medicinal therapies. However, borononucleosides have largely been unexplored in the context of medicinal applications. Herein, we report the synthesis, isolation, and characterization of two novel boron-containing nucleoside compound libraries which may find utility as therapeutic agents. Our synthetic strategy employs efficient one-step substitution reactions between a diverse variety of nucleoside scaffolds and an assortment of n-alkyl potassium trifluoroborate-containing electrophiles. We demonstrated that these alkylation reactions are compatible with cyclic and acyclic nucleoside substrates, as well as increasing alkyl chain lengths. Furthermore, regioselective control of product formation can be readily achieved through manipulation of base identity and reaction temperature conditions.


Assuntos
Boro , Nucleosídeos , Nucleosídeos/química , Boro/química , Compostos de Boro , Alquilação
19.
Chemistry ; 30(13): e202303130, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38224207

RESUMO

Anilines are core motifs in a variety of important molecules including medicines, materials and agrochemicals. We report a straightforward procedure that allows access to new chemical space of anilines via their para-C-H alkylation. The method utilizes commercially available catalytic H2 O ⋅ B(C6 F5 )3 and is highly selective for para-C-alkylation (over N-alkylation and ortho-C-alkylation) of anilines, with a wide scope in both the aniline substrates and alkene coupling partners. Readily available alkenes are used, and include new classes of alkene for the first time. The mild reaction conditions have allowed the procedure to be applied to the late-stage-functionalization of non-steroidal anti-inflammatory drugs (NSAIDs), including fenamic acids and diclofenac. The formed novel NSAID derivatives display improved anti-inflammatory properties over the parent NSAID structure.


Assuntos
Alcenos , Compostos de Anilina , Alcenos/química , Compostos de Anilina/química , Alquilação , Anti-Inflamatórios não Esteroides , Catálise
20.
J Am Soc Mass Spectrom ; 35(2): 386-396, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38287222

RESUMO

To improve the coverage in bottom-up proteomics, S-aminoethylation of cysteine residues (AE-Cys) was carried out with 2-bromoethylamine, followed by cleavage with lysyl endopeptidase (Lys-C) or Lys-C/trypsin. A model study with bovine serum albumin showed that the C-terminal side of AE-Cys was successfully cleaved by Lys-C. The frequency of side reactions at amino acids other than Cys was less than that in the case of carbamidomethylation of Cys with iodoacetamide. Proteomic analysis of A549 cell extracts in the data-dependent acquisition mode after AE-Cys modification afforded a greater number of identified protein groups, especially membrane proteins. In addition, label-free quantification of proteins in mouse nonsmall cell lung cancer (NSCLC) tissue in the data-independent acquisition mode after AE-Cys modification showed improved NSCLC pathway coverage and greater reproducibility. Furthermore, the AE-Cys method could identify an epidermal growth factor receptor peptide containing the T790 M mutation site, a well-established lung-cancer-related mutation site that has evaded conventional bottom-up methods. Finally, AE-Cys was found to fully mimic Lys in terms of collision-induced dissociation fragmentation, ion mobility separation, and cleavage by Lys-C/trypsin, except for sulfoxide formation during sample preparation.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Camundongos , Sequência de Aminoácidos , Cisteína/química , Proteínas de Membrana , Proteômica/métodos , Reprodutibilidade dos Testes , Tripsina/metabolismo , Alquilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA