Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
3.
Regul Toxicol Pharmacol ; 109: 104501, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31629781

RESUMO

This article presents the Grouping and Assessment Strategy for Organic Pigments (GRAPE). GRAPE is driven by the hypotheses that low (bio)dissolution and low permeability indicate absence of systemic bioavailability and hence no systemic toxicity potential upon oral exposure, and, for inhalation exposure, that low (bio)dissolution (and absence of surface reactivity, dispersibility and in vitro effects) indicate that the organic pigment is a 'poorly soluble particle without intrinsic toxicity potential'. In GRAPE Tier 1, (bio)solubility and (bio)dissolution are assessed, and in Tier 2, in vitro Caco-2 permeability and in vitro alveolar macrophage activation. Thereafter, organic pigments are grouped by common properties (further considering structural similarity depending on the regulatory requirements). In Tier 3, absence of systemic bioavailability is verified by limited in vivo screening (rat 28-day oral and 5-day inhalation toxicity studies). If Tier 3 confirms no (or only very low) systemic bioavailability, all higher-tier endpoint-specific animal testing is scientifically not-relevant. Application of the GRAPE can serve to reduce animal testing needs for all but few representative organic pigments within a group. GRAPE stands in line with the EU REACH Regulation (Registration, Evaluation, Authorisation and Restriction of Chemicals). An ongoing research project aims at establishing a proof-of-concept of the GRAPE.


Assuntos
Alternativas ao Uso de Animais/legislação & jurisprudência , Corantes/toxicidade , Tomada de Decisões , Exposição por Inalação/efeitos adversos , Testes de Toxicidade/normas , Disponibilidade Biológica , Células CACO-2 , Permeabilidade da Membrana Celular , Corantes/química , Corantes/farmacocinética , União Europeia , Humanos , Relação Quantitativa Estrutura-Atividade , Solubilidade
4.
Toxicol Pathol ; 47(7): 789-798, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31648619

RESUMO

Pathologists are trained medical professionals with special expertise in diagnostics, research, and pathophysiology. In these roles, pathologists are well qualified and positioned to engage in conversations about animal use replacement, reduction, and refinement (3Rs), thereby championing the guiding principles of the 3Rs. In particular, toxicology or nonclinical safety assessment is an important area where the discipline of toxicologic pathology can have a critical role in adopting 3Rs principles. As such, a working group of the Society of Toxicologic Pathology Scientific and Regulatory Policy Committee was formed to investigate and summarize some of the areas where veterinary pathologists working in the field of toxicology can increase involvement and impact on 3Rs. This "Points to Consider" publication provides an overview of areas within toxicology where the veterinary pathologist's perspective may maximize animal value, including refinement of study design, optimizing sample collection, the development of 3Rs focused regulatory policy, and humane end point determination.[Box: see text].


Assuntos
Alternativas ao Uso de Animais/legislação & jurisprudência , Patologistas , Papel do Médico , Toxicologia , Bem-Estar do Animal , Animais , Humanos , Projetos de Pesquisa , Manejo de Espécimes
5.
Toxicol Pathol ; 47(5): 649-655, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31280699

RESUMO

The recent Scientific Committee on Health, Environmental and Emerging Risks Final Opinion on "The need for nonhuman primates in biomedical research, production and testing of products and devices" (2017 SCHEER) highlights approaches that could significantly contribute to the replacement, reduction, and refinement of nonhuman primate (NHP) studies. Initiatives that have the potential to affect NHP welfare and/or their use are expected to be appropriate, fair, and objective and publicly disseminated information focused on NHPs in biomedical research, which includes toxicologic and pathologic research and testing, should be objectively evaluated by stakeholder scientists, researchers, and veterinarians. Thus, IQ Consortium member companies convened to develop an informed and objective response, focusing on identifying areas of agreement, potential gaps, or missing information in 2017 SCHEER. Overall, the authors agree that many positions in the 2017 SCHEER Opinion generally align with industry views on the use of NHPs in research and testing, including the ongoing need of NHPs in many areas of research. From the perspective of the IQ Consortium, there are several topics in the 2017 SCHEER that merit additional comment, attention, or research, as well as consideration in future opinions.


Assuntos
Alternativas ao Uso de Animais/tendências , Pesquisa Biomédica/métodos , Avaliação Pré-Clínica de Medicamentos/tendências , Primatas , Alternativas ao Uso de Animais/ética , Alternativas ao Uso de Animais/legislação & jurisprudência , Bem-Estar do Animal , Animais , Bioética , Pesquisa Biomédica/ética , Pesquisa Biomédica/legislação & jurisprudência , Avaliação Pré-Clínica de Medicamentos/ética , Avaliação Pré-Clínica de Medicamentos/métodos , União Europeia , Regulamentação Governamental
6.
Toxicol Pathol ; 47(3): 329-338, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30270765

RESUMO

The U.S. Food and Drug Administration Center for Devices and Radiological Health (FDA/CDRH) has recently published several in vivo test guidance documents that mention refinements, reductions, or replacement animal testing strategies to facilitate the leveraging of data from large animal safety tests for conventional rodent testing. In response to the recently enacted Food and Drug Administration Safety and Innovation Act Section 907, which facilitates expedited access to novel therapies commonly described as Breakthrough Therapy Designation, FDA/CDRH has discussed efficient regulatory strategies for first-in-human investigation, including early feasibility study guidance. Large gains in humane care and translational research could also be attained by examples in FDA's Guidance for the Use of International Organization for Standardization 10993-1, which states that large animal safety studies may be considered as replacement rodent tests if the scientific principles, methods, and end points (SPME) are considered and applied. This article discusses SPME for the replacement of conventional rodent testing by the inclusion and integration of clinical, diagnostic, and pathologic data obtained from well-designed large animal studies. The recommendations include consideration for study designs that utilize methods for an overall more comprehensive interrogation of animal systems.


Assuntos
Alternativas ao Uso de Animais/métodos , Segurança de Equipamentos , Equipamentos e Provisões , Monitorização Fisiológica/métodos , Patologia/métodos , Pesquisa Translacional Biomédica/métodos , Alternativas ao Uso de Animais/legislação & jurisprudência , Animais , Equipamentos e Provisões/efeitos adversos , Equipamentos e Provisões/normas , Regulamentação Governamental , Humanos , Pesquisa Translacional Biomédica/legislação & jurisprudência , Estados Unidos , United States Food and Drug Administration
7.
J Exp Biol ; 220(Pt 17): 3007-3016, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28855318

RESUMO

The 3Rs - Replacement, Reduction and Refinement - are embedded into the legislation and guidelines governing the ethics of animal use in experiments. Here, we consider the advantages of adopting key aspects of the 3Rs into experimental biology, represented mainly by the fields of animal behaviour, neurobiology, physiology, toxicology and biomechanics. Replacing protected animals with less sentient forms or species, cells, tissues or computer modelling approaches has been broadly successful. However, many studies investigate specific models that exhibit a particular adaptation, or a species that is a target for conservation, such that their replacement is inappropriate. Regardless of the species used, refining procedures to ensure the health and well-being of animals prior to and during experiments is crucial for the integrity of the results and legitimacy of the science. Although the concepts of health and welfare are developed for model organisms, relatively little is known regarding non-traditional species that may be more ecologically relevant. Studies should reduce the number of experimental animals by employing the minimum suitable sample size. This is often calculated using power analyses, which is associated with making statistical inferences based on the P-value, yet P-values often leave scientists on shaky ground. We endorse focusing on effect sizes accompanied by confidence intervals as a more appropriate means of interpreting data; in turn, sample size could be calculated based on effect size precision. Ultimately, the appropriate employment of the 3Rs principles in experimental biology empowers scientists in justifying their research, and results in higher-quality science.


Assuntos
Experimentação Animal/legislação & jurisprudência , Alternativas ao Uso de Animais , Modelos Animais , Alternativas ao Uso de Animais/legislação & jurisprudência , Alternativas ao Uso de Animais/normas , Animais , Animais de Laboratório , Etologia , Neurobiologia , Fisiologia , Toxicologia
8.
Hum Vaccin Immunother ; 13(11): 2522-2530, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-28857652

RESUMO

The current test of acellular Bordetella pertussis (aP) vaccines for residual pertussis toxin (PTx) is the Histamine Sensitization test (HIST), based on the empirical finding that PTx sensitizes mice to histamine. Although HIST has ensured the safety of aP vaccines for years, it is criticized for the limited understanding of how it works, its technical difficulty, and for animal welfare reasons. To estimate the number of mice used worldwide for HIST, we surveyed major aP manufacturers and organizations performing, requiring, or recommending the test. The survey revealed marked regional differences in regulatory guidelines, including the number of animals used for a single test. Based on information provided by the parties surveyed, we estimated the worldwide number of mice used for testing to be 65,000 per year: ∼48,000 by manufacturers and ∼17,000 by national control laboratories, although the latter number is more affected by uncertainty, due to confidentiality policies. These animals covered the release of approximately 850 final lots and 250 in-process lots of aP vaccines yearly. Although there are several approaches for HIST refinement and reduction, we discuss why the efforts needed for validation and implementation of these interim alternatives may not be worthwhile, when there are several in vitro alternatives in various stages of development, some already fairly advanced. Upon implementation, one or more of these replacement alternatives can substantially reduce the number of animals currently used for the HIST, although careful evaluation of each alternative's mechanism and its suitable validation will be necessary in the path to implementation.


Assuntos
Alternativas ao Uso de Animais/legislação & jurisprudência , Alternativas ao Uso de Animais/estatística & dados numéricos , Vacina contra Coqueluche/efeitos adversos , Vacinas Acelulares/efeitos adversos , Experimentação Animal/ética , Experimentação Animal/legislação & jurisprudência , Experimentação Animal/estatística & dados numéricos , Alternativas ao Uso de Animais/métodos , Alternativas ao Uso de Animais/normas , Animais , Células CHO , Cricetinae , Cricetulus , Histamina/análise , Humanos , Camundongos , Toxina Pertussis/efeitos adversos , Vacina contra Coqueluche/administração & dosagem , Vacina contra Coqueluche/toxicidade , Vacinas Acelulares/administração & dosagem , Vacinas Acelulares/toxicidade
9.
ILAR J ; 57(2): 221-225, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-28053074

RESUMO

One mechanism to advance the application of novel safety assessment methodologies in drug development, including in silico or in vitro approaches that reduce the use of animals in toxicology studies, is regulatory qualification. Regulatory qualification, a formal process defined at the the U. S. Food and Drug Administration and the European Medicines Agency, hinges on a central concept of stating an appropriate "context of use" for a novel drug development tool (DDT) that precisely defines how that DDT can be used to support decision making in a regulated drug development setting. When accumulating the data to support a particular "context-of-use," the concept of "fit-for-purpose" often guides assay validation, as well as the type and amount of data or evidence required to evaluate the tool. This paper will review pathways for regulatory acceptance of novel DDTs and discuss examples of safety projects considered for regulatory qualification. Key concepts to be considered when defining the evidence required to formally adopt and potentially replace animal-intensive traditional safety assessment methods using qualified DDTs are proposed. Presently, the use of qualified translational kidney safety biomarkers can refine and reduce the total numbers of animals used in drug development. We propose that the same conceptual regulatory framework will be appropriate to assess readiness of new technologies that may eventually replace whole animal models.


Assuntos
Alternativas ao Uso de Animais , Descoberta de Drogas/legislação & jurisprudência , United States Food and Drug Administration/legislação & jurisprudência , Alternativas ao Uso de Animais/legislação & jurisprudência , Animais , Biomarcadores , Modelos Animais , Estados Unidos
10.
J Vet Med Educ ; 42(5): 425-40, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26673210

RESUMO

Since the inception of the Association of American Veterinary Medical Colleges (AAVMC), the use of animals in research and education has been a central element of the programs of member institutions. As veterinary education and research programs have evolved over the past 50 years, so too have societal views and regulatory policies. AAVMC member institutions have continually responded to these events by exchanging best practices in training their students in the framework of comparative medicine and the needs of society. Animals provide students and faculty with the tools to learn the fundamental knowledge and skills of veterinary medicine and scientific discovery. The study of animal models has contributed extensively to medicine, veterinary medicine, and basic sciences as these disciplines seek to understand life processes. Changing societal views over the past 50 years have provided active examination and continued refinement of the use of animals in veterinary medical education and research. The future use of animals to educate and train veterinarians will likely continue to evolve as technological advances are applied to experimental design and educational systems. Natural animal models of both human and animal health will undoubtedly continue to serve a significant role in the education of veterinarians and in the development of new treatments of animal and human disease. As it looks to the future, the AAVMC as an organization will need to continue to support and promote best practices in the humane care and appropriate use of animals in both education and research.


Assuntos
Animais de Laboratório , Educação em Veterinária/história , Modelos Animais , Experimentação Animal/história , Experimentação Animal/legislação & jurisprudência , Alternativas ao Uso de Animais/história , Alternativas ao Uso de Animais/legislação & jurisprudência , Alternativas ao Uso de Animais/tendências , Bem-Estar do Animal/história , Bem-Estar do Animal/legislação & jurisprudência , Animais , Educação em Veterinária/métodos , Educação em Veterinária/tendências , História do Século XVIII , História do Século XIX , História do Século XX , História do Século XXI , História Antiga , Vínculo Humano-Animal , Humanos , Estados Unidos
11.
Artigo em Alemão | MEDLINE | ID: mdl-26431722

RESUMO

For the development of medicinal products animal models are still indispensable to demonstrate efficacy and safety prior to first use in humans. Advanced therapy medicinal products (ATMP), which include cell-based medicinal products (CBMP), differ in their pharmacology and toxicology compared to conventional pharmaceuticals, and thus, require an adapted regime for non-clinical development. Developers are, therefore, challenged to develop particular individual concepts and to reconcile these with regulatory agencies. Guidelines issued by the European Medicines Agency (EMA), the U.S. Food and Drug Administration (FDA) and other sources can provide direction.The published approaches for non-clinical testing of efficacy document that homologous animal models where the therapeutic effect is investigated in a disease-relevant animal model utilizing cells derived from the same species are commonly used. The challenge is that the selected model should reflect the human disease in all critical features and that the cells should be comparable to the investigated human medicinal product in terms of quality and biological activity. This is not achievable in all cases. In these cases, alternative methods may provide supplemental information. To demonstrate the scientific proof-of-concept (PoC), small animal models such as mice or rats are preferred. During the subsequent product development phase, large animal models (i.e. sheep, minipigs, dogs) must be considered, as they may better reflect the anatomical or physiological situation in humans. In addition to efficacy, those models may also be suitable to prove some safety aspects of ATMP (e.g. regarding dose finding, local tolerance, or undesired interactions and effects of the administered cells in the target tissue). In contrast, for evaluation of the two prominent endpoints for characterizing the safety of ATMP (i.e. biodistribution, tumorigenicity) heterologous small animal models, especially immunodeficient mouse strains, are favourable due to their tolerance to the human cell therapy product. The execution of non-clinical studies under the principles of good laboratory practice (GLP) increases the acceptance of the results by authorities and the scientific community.


Assuntos
Produtos Biológicos/efeitos adversos , Produtos Biológicos/farmacologia , Terapia Baseada em Transplante de Células e Tecidos/efeitos adversos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Modelos Animais , Academias e Institutos , Alternativas ao Uso de Animais/legislação & jurisprudência , Alternativas ao Uso de Animais/métodos , Animais , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Alemanha , Humanos
12.
Eur J Pharmacol ; 759: 3-13, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25818943

RESUMO

Nonclinical studies in animals are conducted to demonstrate proof-of-concept, mechanism of action and safety of new drugs. For a large part, in particular safety assessment, studies are done in compliance with international regulatory guidance. However, animal models supporting the initiation of clinical trials have their limitations, related to uncertainty regarding the predictive value for a clinical condition. The 3Rs principles (refinement, reduction and replacement) are better applied nowadays, with a more comprehensive application with respect to the original definition. This regards also regulatory guidance, so that opportunities exist to revise or reduce regulatory guidance with the perspective that the optimal balance between scientifically relevant data and animal wellbeing or a reduction in animal use can be achieved. In this manuscript we review the connections in the triangle between nonclinical efficacy/safety studies and regulatory aspects, with focus on in vivo testing of drugs. These connections differ for different drugs (chemistry-based low molecular weight compounds, recombinant proteins, cell therapy or gene therapy products). Regarding animal models and their translational value we focus on regulatory aspects and indications where scientific outcomes warrant changes, reduction or replacement, like for, e.g., biosimilar evaluation and safety testing of monoclonal antibodies. On the other hand, we present applications where translational value has been clearly demonstrated, e.g., immunosuppressives in transplantation. Especially for drugs of more recent date like recombinant proteins, cell therapy products and gene therapy products, a regulatory approach that allows the possibility to conduct combined efficacy/safety testing in validated animal models should strengthen scientific outcomes and improve translational value, while reducing the numbers of animals necessary.


Assuntos
Alternativas ao Uso de Animais/métodos , Bem-Estar do Animal , Avaliação Pré-Clínica de Medicamentos/métodos , Modelos Animais , Pesquisa Translacional Biomédica/métodos , Alternativas ao Uso de Animais/legislação & jurisprudência , Bem-Estar do Animal/legislação & jurisprudência , Bem-Estar do Animal/normas , Animais , Avaliação Pré-Clínica de Medicamentos/normas , Regulamentação Governamental , Pesquisa Translacional Biomédica/legislação & jurisprudência , Pesquisa Translacional Biomédica/normas
15.
Altern Lab Anim ; 40(2): 109-13, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22762195

RESUMO

The British Government's proposals for the transposition of European Directive 2010/63/EU are discussed under five main headings: direct transposition without major effects on the UK legislation, introduction of stricter requirements in the Directive, retention of stricter controls in the Animals [Scientific Procedures] Act 1986, questions requiring further consideration, and matters of concern. The Home Office had published a consultation on the options in 2011, which resulted in 98 responses from organisations and 13,458 responses from individuals. Our main concerns relate to the use of non-human primates, the annual publication of the UK statistics on laboratory animal use, and the provision of greater transparency on how animals are used, and why. Finally, we conclude that the new Directive and its transposition into the national laws of the Member states provide a renewed opportunity for genuine commitment to the Three Rs, leading to progressive and significant Reduction, Refinement and Replacement.


Assuntos
Alternativas ao Uso de Animais/legislação & jurisprudência , Bem-Estar do Animal , Animais , Reino Unido
16.
Eur J Pharm Biopharm ; 77(3): 338-49, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21195172

RESUMO

Mechanistic toxicology has evolved by relying, to a large extent, on methodologies that substitute or complement traditional animal tests. The biotechnology and informatics revolutions of the last decades have made such technologies broadly available and useful, but regulatory toxicology has been slow to embrace these new approaches. Major validation efforts, however, have delivered the evidence that new approaches do not lower safety standards and can be integrated into regulatory safety assessments. Particularly in the EU, political pressures, such as the REACH legislation and the 7th Amendment to the cosmetic legislation, have prompted the need of new approaches. In the US, the NRC vision report calling for a toxicology for the 21st century (and its most recent adaptation by EPA for their toxicity testing strategy) have initiated a debate about how to create a novel approach based on human cell cultures, lower species, high-throughput testing, and modeling. Lessons learned from the development, validation, and acceptance of alternative methods support the creation of a new approach based on identified toxicity pathways. Conceptual steering and an objective assessment of current practices by evidence-based toxicology (EBT) are required. EBT is modeled on evidence-based medicine, which has demonstrated that rigorous systematic reviews of current practices and meta-analyses of studies provide powerful tools to provide health care professionals and patients with the current best scientific evidence. Similarly, a portal for high-quality reviews of toxicological approaches and tools for the quantitative meta-analyses of data promise to serve as door opener for a new regulatory toxicology.


Assuntos
Alternativas ao Uso de Animais/tendências , Toxicologia/tendências , Alternativas ao Uso de Animais/economia , Alternativas ao Uso de Animais/legislação & jurisprudência , Alternativas ao Uso de Animais/métodos , Bem-Estar do Animal/legislação & jurisprudência , Animais , Cosméticos/normas , Cosméticos/toxicidade , Medicina Baseada em Evidências , Regulamentação Governamental , Humanos , Medição de Risco , Testes de Toxicidade/economia , Testes de Toxicidade/métodos , Testes de Toxicidade/normas , Testes de Toxicidade/tendências , Toxicologia/economia , Toxicologia/legislação & jurisprudência , Toxicologia/métodos
17.
Klin Khir ; (6): 8-13, 2010 Jun.
Artigo em Russo | MEDLINE | ID: mdl-20734814

RESUMO

The principles of humane attitude toward laboratory animals, the main rules of defense and application of vertebral animals in scientific investigations, which are coordinated with European convention content, were presented. Recommendations for organization and activities of bioethics committees and commissions, which conduct the expert estimation of scientific investigations, using laboratory animals, were presented.


Assuntos
Experimentação Animal/ética , Bem-Estar do Animal/ética , Temas Bioéticos , Ética em Pesquisa , Experimentação Animal/legislação & jurisprudência , Alternativas ao Uso de Animais/ética , Alternativas ao Uso de Animais/legislação & jurisprudência , Bem-Estar do Animal/legislação & jurisprudência , Animais , Temas Bioéticos/legislação & jurisprudência , Regulamentação Governamental , Ucrânia
18.
Altern Lab Anim ; 38(3): 221-30, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20602538

RESUMO

Two new Korean laws regulating animal welfare and the humane use of animals in science came into effect in 2008 and 2009. Both these laws impose ethical committee review prior to the performance of animal experiments in research, testing and education. This study briefly summarises the new Korean laws, and investigates the current status regarding the numbers of animals used, the alternatives to animals which are used, the curricula relating to the humane use of animals, and ethical review practices in Korean veterinary education. Approximately 4,845 animals, representing 20 different species, were used in veterinary medical education in Korea in 2007. Korea has begun to introduce formal courses on animal welfare for the humane treatment of animals used in experiments, and an ethical protocol review system prior to animal use in education. Korea is moving toward better animal welfare, by incorporating practices consistent with international standards. The information presented represents the first such data gathered in Korea, which should prove useful for monitoring the implementation of replacement, reduction, and refinement measures in animal use for education purposes.


Assuntos
Experimentação Animal/legislação & jurisprudência , Alternativas ao Uso de Animais/legislação & jurisprudência , Animais de Laboratório , Educação em Veterinária/legislação & jurisprudência , Faculdades de Medicina Veterinária , Experimentação Animal/ética , Experimentação Animal/estatística & dados numéricos , Alternativas ao Uso de Animais/estatística & dados numéricos , Alternativas ao Uso de Animais/tendências , Animais , Educação em Veterinária/ética , Educação em Veterinária/estatística & dados numéricos , República da Coreia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA