Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Diabetes Investig ; 15(4): 395-401, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38189639

RESUMO

The immediate and well-documented benefits of carbohydrate restriction include improved glycemic control in individuals with diabetes mellitus. Starch, a significant source of carbohydrates, is categorized as rapidly digestible, slowly digestible, or resistant starch (RS). RS, which is a non-viscous fermentable fiber, has shown promise in animal studies for antidiabetic effects by improving glucose metabolism. Although the exact mechanism by which RS affects glucose metabolism remains unclear, it is expected to positively impact glucose tolerance and insulin sensitivity. The fermentation of RS by colonic microbiota in the large bowel produces short-chain fatty acids, which exert multiple metabolic effects on glucose regulation and homeostasis. Moreover, RS may influence glucose metabolism via bile acid modulation, independent of its fermentation. Diets rich in RS could aid in blood glucose homeostasis. However, it is uncertain whether they can alter the metabolic pathology associated with glucose regulation. In essence, RS has the potential to lower postprandial glucose levels similarly to a low-glycemic index diet. Yet, its efficacy as a medical nutrition therapy for type 2 diabetes needs further investigation. To confirm the role of RS in glycemic control and to possibly recommend it as an additional dietary approach for people with type 2 diabetes mellitus, a well-designed, large-scale intervention is required.


Assuntos
Diabetes Mellitus Tipo 2 , Amido Resistente , Animais , Humanos , Amido Resistente/uso terapêutico , Insulina , Amido , Glicemia/metabolismo , Glucose , Carboidratos da Dieta
2.
Phytother Res ; 37(3): 935-948, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36379906

RESUMO

It has recently been reported that black rice (BR) extract has anti-obesity, anti-diabetic, and anti-osteoporosis effects. It has been shown to reduce obese-related kidney dysfunction in animal models. This study aimed to investigate the effect of resistant starch from BR (RS) on renal inflammation, oxidative stress, and apoptosis in obese insulin resistant rats. Male Wistar rats were divided into six groups: normal diet (ND), ND treated with 150 mg of RS (NDRS150), high-fat (HF) diet, HF treated with 100 and 150 mg of RS (HFRS100), (HFRS150), and HF treated with metformin as a positive control. Insulin resistance was shown in the HF rats by glucose intolerance, increased insulin, total area under the curve of glucose and homeostasis model assessment of insulin resistance and dyslipidemia. The resulting metabolic disturbance in the HF rats caused renal inflammation, fibrosis and apoptosis progressing to kidney injury and dysfunction. Prebiotic RS including anthocyanin from BR at doses of 100 and 150 mg ameliorated insulin resistance, dyslipidemia and liver injury. Treatment with RS reduced TGF-ß fibrotic and apoptotic pathways by inhibition of NF-κB and inflammatory cytokines which potentially restore kidney damage and dysfunction. In conclusion, prebiotic RS from BR ameliorated obesity induced renal injury and dysfunction by attenuating inflammatory, fibrotic, and apoptotic pathways in insulin resistant rats induced by HF.


Assuntos
Resistência à Insulina , Oryza , Ratos , Masculino , Animais , Insulina/metabolismo , Ratos Wistar , Amido Resistente/uso terapêutico , Obesidade/tratamento farmacológico , Dieta Hiperlipídica , Inflamação/tratamento farmacológico , Fibrose
3.
Oxid Med Cell Longev ; 2021: 4448048, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34691353

RESUMO

Kudzu is a traditional medicinal dietary supplement, and recent research has shown its significant benefits in the prevention/treatment of type 2 diabetes mellitus (T2DM). Starch is one of the main substances in Kudzu that contribute decisively to the treatment of T2DM. However, the underlying mechanism of the hypoglycemic activity is not clear. In this study, the effect of Kudzu resistant starch supplementation on the insulin resistance, gut physical barrier, and gut microbiota was investigated in T2DM mice. The result showed that Kudzu resistant starch could significantly decrease the value of fasting blood glucose and the levels of total cholesterol, total triglyceride, and high-density lipoprotein, as well as low-density lipoprotein, in the blood of T2DM mice. The insulin signaling sensitivity in liver tissue was analyzed; the result indicated that intake of different doses of Kudzu resistant starch can help restore the expression of IRS-1, p-PI3K, p-Akt, and Glut4 and thus enhance the efficiency of insulin synthesis. Furthermore, the intestinal microorganism changes before and after ingestion of Kudzu resistant starch were also analyzed; the result revealed that supplementation of KRS helps to alleviate and improve the dysbiosis of the gut microbiota caused by T2DM. These results validated that Kudzu resistant starch could improve the glucose sensitivity of T2DM mice by modulating IRS-1/PI3K/AKT/Glut4 signaling transduction. Kudzu resistant starch can be used as a promising prebiotic, and it also has beneficial effects on the gut microbiota structure of T2DM mice.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Medicina Tradicional Chinesa/métodos , Pueraria/química , Amido Resistente/uso terapêutico , Animais , Masculino , Camundongos
4.
BMC Nephrol ; 21(1): 517, 2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-33243160

RESUMO

BACKGROUND: Chronic kidney disease (CKD) is characterized by dysbiosis, elevated levels of uremic toxins, systemic inflammation, and increased markers of oxidative stress. These factors lead to an increased risk of cardiovascular disease (CVD) which is common among CKD patients. Supplementation with high amylose maize resistant starch type 2 (RS-2) can change the composition of the gut microbiota, and reduce markers of inflammation and oxidative stress in patients with end-stage renal disease. However, the impact of RS-2 supplementation has not been extensively studied in CKD patients not on dialysis. Aerobic exercise training lowers certain markers of inflammation in CKD patients. Whether combining aerobic training along with RS-2 supplementation has an additive effect on the aforementioned biomarkers in predialysis CKD patients has not been previously investigated. METHODS: The study is being conducted as a 16-week, double-blind, placebo controlled, parallel arm, randomized controlled trial. Sixty stage 3-4 CKD patients (ages of 30-75 years) are being randomized to one of four groups: RS-2 & usual care, RS-2 & aerobic exercise, placebo (cornstarch) & usual care and placebo & exercise. Patients attend four testing sessions: Two baseline (BL) sessions with follow up visits 8 (wk8) and 16 weeks (wk16) later. Fasting blood samples, resting brachial and central blood pressures, and arterial stiffness are collected at BL, wk8 and wk16. A stool sample is collected for analysis of microbial composition and peak oxygen uptake is assessed at BL and wk16. Blood samples will be assayed for p-cresyl sulphate and indoxyl sulphate, c-reactive protein, tumor necrosis factor α, interleukin 6, interleukin 10, monocyte chemoattractant protein 1, malondialdehyde, 8-isoprostanes F2a, endothelin-1 and nitrate/nitrite. Following BL, subjects are randomized to their group. Individuals randomized to conditions involving exercise will attend three supervised moderate intensity (55-65% peak oxygen uptake) aerobic training sessions (treadmills, bikes or elliptical machine) per week for 16 weeks. DISCUSSION: This study has the potential to yield information about the effect of RS-2 supplementation on key biomarkers believed to impact upon the development of CVD in patients with CKD. We are examining whether there is an additive effect of exercise training and RS-2 supplementation on these key variables. TRIAL REGISTRATION: Clinicaltrials.gov Trial registration# NCT03689569 . 9/28/2018, retrospectively registered.


Assuntos
Amilose/uso terapêutico , Exercício Físico , Microbioma Gastrointestinal , Falência Renal Crônica/terapia , Adulto , Idoso , Análise de Variância , Biomarcadores , Método Duplo-Cego , Humanos , Inflamação/diagnóstico , Pessoa de Meia-Idade , Estresse Oxidativo , Amido Resistente/uso terapêutico , Zea mays
5.
J. bras. nefrol ; 42(3): 273-279, July-Sept. 2020. tab, graf
Artigo em Inglês, Português | LILACS | ID: biblio-1134854

RESUMO

ABSTRACT Introduction: Gut microbiota imbalance is linked to high uremic toxins production such as indole-3-acetic acid (IAA) in chronic kidney disease patients. This toxin can activate the aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor involved with inflammation. Strategies to restore gut microbiota balance can be associated with reduced production of IAA and its deleterious effects. This study aimed to evaluate prebiotic resistant starch (RS) supplementation effects on IAA plasma levels and AhR mRNA expression in CKD patients on hemodialysis (HD). Methods: This randomized, double-blind and placebo-controlled clinical trial evaluated forty-two stable HD patients allocated in RS (n=22) or placebo (n=20) groups. Patients received, alternately, cookies and sachets containing 16 g/day of RS (Hi-Maize 260®) or manioc flour for four weeks. Fasting pre-dialysis blood samples were collected and IAA plasma levels measured by high performance liquid chromatography. Peripheral blood mononuclear cells were isolated and processed for AhR and nuclear factor kappa B (NF-κB) mRNA expression analyzes by quantitative real-time PCR. Anthropometric and biochemical parameters, as well as food intake were also evaluated. Results: Thirty-one patients completed the study, 15 in the RS group and 16 in the placebo group. Although there was no significant alteration in IAA plasma levels, neither in AhR mRNA expression and NF-κB mRNA expression after RS supplementation, a positive correlation (r=0.48; p=0.03) was observed between IAA plasma levels and AhR expression at baseline. Conclusion: Even though prebiotic RS supplementation did not influence IAA levels or AhR expression, their positive association reinforces a possible interaction between them.


RESUMO Introdução: O desequilíbrio da microbiota intestinal associa-se à alta produção de toxinas urêmicas tais como ácido indol-3-acético (AIA), em renais crônicos. Essa toxina ativa o receptor aril hidrocarboneto (AhR) - fator de transcrição ativado por ligante, na inflamação. Restaurar o equilíbrio da microbiota intestinal associa-se à produção reduzida de AIA e efeitos deletérios. Avaliamos os efeitos da suplementação de amido resistente prebiótico (AR) sobre AIA sérico e expressão de AhR mRNA em renais crônicos em HD. Métodos: Estudo clínico randomizado, duplo-cego, controlado por placebo, com 42 pacientes em HD, nos grupos AR (n = 22) ou placebo (n = 20). Os pacientes receberam, alternadamente, biscoitos e sachês com 16 g/dia de AR ou polvilho - 4 semanas. Coletamos amostras de sangue em jejum pré-diálise e medimos níveis séricos de AIA por cromatografia líquida de alta eficiência. Isolamos e processamos as células mononucleares do sangue periférico para avaliar expressão AhR mRNA e NF-κB por PCR quantitativo em tempo real. Avaliamos parâmetros antropométricos, bioquímicos e ingestão alimentar. Resultados: 31 pacientes, 15 AR e 16 no placebo. Apesar de não apresentarem alteração significativa nos níveis de AIA, nas expressões de AhR ou NF-κB mRNA pós- suplementação com AR, foi verificada uma correlação positiva (r = 0,48; p = 0,03) entre AIA sérico e expressão de AhR na linha basal. Conclusão: Embora a suplementação com o prebiótico de AR não tenha influenciado os níveis de AIA ou a expressão de AhR, sua associação positiva reforça possível interação entre eles.


Assuntos
Humanos , Receptores de Hidrocarboneto Arílico , Suplementos Nutricionais , Insuficiência Renal Crônica , Amido Resistente/uso terapêutico , RNA Mensageiro , Leucócitos Mononucleares , Diálise Renal , Ácidos Indolacéticos , Acetatos
6.
J Bras Nefrol ; 42(3): 273-279, 2020.
Artigo em Inglês, Português | MEDLINE | ID: mdl-32459282

RESUMO

INTRODUCTION: Gut microbiota imbalance is linked to high uremic toxins production such as indole-3-acetic acid (IAA) in chronic kidney disease patients. This toxin can activate the aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor involved with inflammation. Strategies to restore gut microbiota balance can be associated with reduced production of IAA and its deleterious effects. This study aimed to evaluate prebiotic resistant starch (RS) supplementation effects on IAA plasma levels and AhR mRNA expression in CKD patients on hemodialysis (HD). METHODS: This randomized, double-blind and placebo-controlled clinical trial evaluated forty-two stable HD patients allocated in RS (n=22) or placebo (n=20) groups. Patients received, alternately, cookies and sachets containing 16 g/day of RS (Hi-Maize 260®) or manioc flour for four weeks. Fasting pre-dialysis blood samples were collected and IAA plasma levels measured by high performance liquid chromatography. Peripheral blood mononuclear cells were isolated and processed for AhR and nuclear factor kappa B (NF-κB) mRNA expression analyzes by quantitative real-time PCR. Anthropometric and biochemical parameters, as well as food intake were also evaluated. RESULTS: Thirty-one patients completed the study, 15 in the RS group and 16 in the placebo group. Although there was no significant alteration in IAA plasma levels, neither in AhR mRNA expression and NF-κB mRNA expression after RS supplementation, a positive correlation (r=0.48; p=0.03) was observed between IAA plasma levels and AhR expression at baseline. CONCLUSION: Even though prebiotic RS supplementation did not influence IAA levels or AhR expression, their positive association reinforces a possible interaction between them.


Assuntos
Suplementos Nutricionais , Receptores de Hidrocarboneto Arílico , Insuficiência Renal Crônica , Amido Resistente , Acetatos , Humanos , Ácidos Indolacéticos , Leucócitos Mononucleares , RNA Mensageiro , Diálise Renal , Amido Resistente/uso terapêutico
7.
Biomolecules ; 11(1)2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33383727

RESUMO

Dietary patterns are well known risk factors involved in cancer initiation, progression, and in cancer protection. Previous in vitro and in vivo studies underline the link between a diet rich in resistant starch (RS) and slowing of tumor growth and gene expression in pancreatic cancer xenograft mice. The aim of this study was to investigate the impact of a diet rich in resistant starch on miRNAs and miRNAs-target genes expression profile and on biological processes and pathways, that play a critical role in pancreatic tumors of xenografted mice. miRNA expression profiles on tumor tissues displayed 19 miRNAs as dysregulated in mice fed with RS diet as compared to those fed with control diet and differentially expressed miRNA-target genes were predicted by integrating (our data) with a public human pancreatic cancer gene expression dataset (GSE16515). Functional and pathway enrichment analyses unveiled that miRNAs involved in RS diet are critical regulators of genes that control tumor growth and cell migration and metastasis, inflammatory response, and, as expected, synthesis of carbohydrate and glucose metabolism disorder. Mostly, overall survival analysis with clinical data from TCGA (n = 175) displayed that almost four miRNAs (miRNA-375, miRNA-148a-3p, miRNA-125a-5p, and miRNA-200a-3p) upregulated in tumors from mice fed with RS were a predictor of good prognosis for pancreatic cancer patients. These findings contribute to the understanding of the potential mechanisms through which resistant starch may affect cancer progression, suggesting also a possible integrative approach for enhancing the efficacy of existing cancer treatments.


Assuntos
Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias Pancreáticas/dietoterapia , Neoplasias Pancreáticas/genética , Prebióticos , Amido Resistente/uso terapêutico , Animais , Linhagem Celular Tumoral , Dieta , Feminino , Humanos , Camundongos Nus , Neoplasias Pancreáticas/diagnóstico , Prebióticos/análise , Prognóstico , Amido Resistente/análise , Análise de Sobrevida , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA