Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 199
Filtrar
1.
Oncotarget ; 14: 910-918, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37921652

RESUMO

Breast cancer is the leading cancer among females worldwide. Disease outcome depends on the hormonal status of the cancer and whether or not it is metastatic, but there is a need for more efficacious therapeutic strategies where first line treatment fails. In this study, Fatty Acid Amide Hydrolase (FAAH) inhibition and endocannabinoids were examined as therapeutic alternatives. FAAH is an integral membrane enzyme that hydrolyzes endocannabinoids, rendering them inactive, and FAAH inhibition is predicted to increase cancer cell death. To test this, breast cancer cells were probed for FAAH expression using Western blot analysis, treated with FAAH inhibitors, exogenous endocannabinoids, and combinations of the two treatments, and assessed for viability. High levels of FAAH were observed in different breast cancer cell lines. FAAH inhibition was more effective than exogenous endocannabinoid treatment, and the combination of FAAH inhibitors and endocannabinoids was the most effective in inducing apoptosis of breast cancer cells in vitro. In addition, in vivo FAAH inhibition reduced breast cancer growth in immunodeficient mice. FAAH inhibition is a promising approach, and tremendous progress has been made in the field to validate this mechanism as an alternative to chemotherapy. Further research exploring the therapeutic potential and impact of FAAH expression on cancer cells is warranted.


Assuntos
Endocanabinoides , Neoplasias , Feminino , Camundongos , Animais , Endocanabinoides/farmacologia , Endocanabinoides/metabolismo , Modelos Animais de Doenças , Amidoidrolases/metabolismo , Amidoidrolases/farmacologia , Morte Celular , Alcamidas Poli-Insaturadas/farmacologia
2.
J Chemother ; 35(7): 583-595, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37211822

RESUMO

Pyrazinamide (PZA) is an essential first-line tuberculosis drug for its unique mechanism of action active against multidrug-resistant-TB (MDR-TB). Thus, the aim of updated meta-analysis was to estimate the PZA weighted pooled resistance (WPR) rate in M. tuberculosis isolates based on publication date and WHO regions. We systematically searched the related reports in PubMed, Scopus, and Embase (from January 2015 to July 2022). Statistical analyses were performed using STATA software. The 115 final reports in the analysis investigated phenotypic PZA resistance data. The WPR of PZA was 57% (95% CI 48-65%) in MDR-TB cases. According to the WHO regions, the higher WPRs of PZA were reported in the Western Pacific (32%; 95% CI 18-46%), South East Asian region (37%; 95% CI 31-43%), and the Eastern Mediterranean (78%; 95% CI 54-95%) among any-TB patients, high risk of MDR-TB patients, and MDR-TB patients, respectively. A negligible increase in the rate of PZA resistance were showed in MDR-TB cases (55% to 58%). The rate of PZA resistance has been rising in recent years among MDR-TB cases, underlines the essential for both standard and novel drug regimens development.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Humanos , Pirazinamida/farmacologia , Pirazinamida/uso terapêutico , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Farmacorresistência Bacteriana Múltipla , Amidoidrolases/genética , Amidoidrolases/farmacologia , Mutação , Testes de Sensibilidade Microbiana , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia
3.
Food Funct ; 13(2): 725-736, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-34935837

RESUMO

Hypercholesterolemia is a major risk factor for cardiovascular diseases worldwide. Healthy intestinal microbiota can contribute to reducing the high cholesterol symptoms by producing bile salt hydrolase (BSH). In this study, recombinant BSH from the strain L. johnsonii 334 with high cholesterol reduction ability was selected to study the cholesterol-lowering mechanism mediated by farnesoid X receptor (FXR) regulation in mice. In the presence of recombinant BSH, mice had a larger bile acid pool. Analysis of individual bile acids revealed that bile acid composition was affected not only by recombinant BSH but also by the modulated gut microbiota. We confirmed a marked reduction in the transcription of FXR and its molecular targets in the ileum and a significant increase in the transcription of cholesterol 7a-hydroxylase (CYP7A1), which resulted in the increased bile acid synthesis and cholesterol-lowering effects. Notably, our work reveals the importance of BSH substrate specificity.


Assuntos
Amidoidrolases/farmacologia , Anticolesterolemiantes/farmacologia , Lactobacillus johnsonii , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Colesterol/sangue , Microbioma Gastrointestinal/efeitos dos fármacos , Lactobacillus johnsonii/enzimologia , Lactobacillus johnsonii/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores Citoplasmáticos e Nucleares/genética , Transdução de Sinais/efeitos dos fármacos
4.
J Glob Antimicrob Resist ; 29: 507-512, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34818592

RESUMO

OBJECTIVES: Next-generation sequencing (NGS) can provide a comprehensive analysis of the genetic alterations most commonly linked with pyrazinamide (PZA) resistance. However, there are no studies reporting the molecular background of PZA resistance in Mycobacterium tuberculosis (TB) isolates from the Balkan Peninsula. We aimed to examine the feasibility of full-length analysis of a gene linked with PZA resistance (pncA) using Ion Torrent technology compared with phenotypic BACTEC MGIT 960 drug susceptibility testing (DST) in clinical TB isolates from two countries of the Balkan Peninsula. METHODS: Between 1996 and 2017, we retrospectively selected 61 TB isolates. To identify gene variants related to drug resistance in genomic DNA extracted from TB isolates, AmpliSeq libraries were generated automatically using an AmpliSeq™ Kit for Chef DL8 and Ion AmpliSeq TB Research Panel. RESULTS: Of the 61 TB isolates, 56 were phenotypically resistant to any antibiotic. Among them, 38/56 isolates (67.9%) were phenotypically resistant to pyrazinamide, and pncA mutations were detected in 34/38 cases (89.5%). A mutation in the pncA promoter region was the most prevalent genetic alteration, detected in eight TB isolates. Comparison of NGS data with conventional BACTEC MGIT 960 DST revealed very strong agreement (91.8%) between the two methods in identifying PZA resistance, with high sensitivity (89.5%) and specificity (95.7%) for NGS. CONCLUSION: Detection of PZA resistance using NGS appears to be a valuable tool for surveillance of TB drug resistance in the Balkan Peninsula, with great potential to provide useful information at least 1 weak earlier than is possible with phenotypic DST.


Assuntos
Mycobacterium tuberculosis , Pirazinamida , Amidoidrolases/genética , Amidoidrolases/farmacologia , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Península Balcânica , Farmacorresistência Bacteriana Múltipla/genética , Sequenciamento de Nucleotídeos em Larga Escala , Testes de Sensibilidade Microbiana , Pirazinamida/farmacologia , Estudos Retrospectivos
5.
Biotechnol Appl Biochem ; 69(5): 2195-2204, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34731907

RESUMO

The pncA gene encodes pyrazinamidase enzyme which converts drug pyrazinamide to active form pyrazinoic acid, but mutations in this gene can prevent enzyme activity which leads to pyrazinamide resistance. The cross-sectional study was carried out during 2016-2017 for 12 months. The purpose of the study was to detect mutation at codon 12 and codon 85 in the pncA gene in local multidrug-resistant tuberculosis (MDR-TB) patients by developing a simple molecular test so that disease could be detected timely in the local population. DNA extracted from sputum-cultured samples from MDR-TB patients and subjected to semi-multiplex allele-specific PCR by using self-designed primers against the pncA gene. Among 75 samples, 53 samples were subjected to molecular analysis based on purified DNA quantity and quality. The primers produced 250 and 480 bp fragments, indicating the mutations at codon 12 (aspartate to alanine) and codon 85 (leucine to proline) respectively. MDR-TB was more common in the age group 21-40 years. Fifty-seven percent of samples (n = 30) were found positive for pncA mutations, whereas 43% of samples (n = 23) showed negative results. Thirteen percent of samples (n = 4) had mutations at codon 12 in which aspartate was converted to alanine, and they produced an amplified product of 480 bp. Eighty-seven percent of samples (n = 26) had mutations at codon 85 in which leucine was converted to proline and amplified product size was 250 bp. The mutations were simple nucleotide substitutions. The prevalence of mutations in which leucine was substituted by proline was higher than the mutations in which aspartate was substituted by alanine. A high prevalence of substitution mutation (CTG → CCG; leucine to proline) was detected in MDR-TB cases. Earlier detection of MDR-TB via an effective molecular diagnostic method can control the MDR tuberculosis spread in the population.


Assuntos
Amidoidrolases , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Adulto , Humanos , Adulto Jovem , Alanina , Amidoidrolases/genética , Amidoidrolases/farmacologia , Antituberculosos/farmacologia , Ácido Aspártico/genética , Ácido Aspártico/farmacologia , Proteínas de Bactérias/genética , Códon , Estudos Transversais , Leucina/genética , Leucina/farmacologia , Testes de Sensibilidade Microbiana , Mutação , Mycobacterium tuberculosis/genética , Prolina , Pirazinamida/farmacologia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/genética , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia
6.
J Neuroimmunol ; 358: 577654, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34265624

RESUMO

Increasing evidence suggests that SARS-CoV-2, the virus responsible for the COVID-19 pandemic, is associated with increased risk of developing neurological or psychiatric conditions such as depression, anxiety or dementia. While the precise mechanism underlying this association is unknown, aberrant activation of toll-like receptor (TLR)3, a viral recognizing pattern recognition receptor, may play a key role. Synthetic cannabinoids and enhancing cannabinoid tone via inhibition of fatty acid amide hydrolase (FAAH) has been demonstrated to modulate TLR3-induced neuroimmune responses and associated sickness behaviour. However, the role of individual FAAH substrates, and the receptor mechanisms mediating these effects, are unknown. The present study examined the effects of intracerebral or systemic administration of the FAAH substrates N-oleoylethanolamide (OEA), N-palmitoylethanolamide (PEA) or the anandamide (AEA) analogue meth-AEA on hyperthermia and hypothalamic inflammatory gene expression following administration of the TLR3 agonist, and viral mimetic, poly I:C. The data demonstrate that meth-AEA does not alter TLR3-induced hyperthermia or hypothalamic inflammatory gene expression. In comparison, OEA and PEA attenuated the TLR3-induced hyperthermia, although only OEA attenuated the expression of hyperthermia-related genes (IL-1ß, iNOS, COX2 and m-PGES) in the hypothalamus. OEA, but not PEA, attenuated TLR3-induced increases in the expression of all IRF- and NFκB-related genes examined in the hypothalamus, but not in the spleen. Antagonism of PPARα prevented the OEA-induced attenuation of IRF- and NFκB-related genes in the hypothalamus following TLR3 activation but did not significantly alter temperature. PPARα agonism did not alter TLR3-induced hyperthermia or hypothalamic inflammatory gene expression. These data indicate that OEA may be the primary FAAH substrate that modulates TLR3-induced neuroinflammation and hyperthermia, effects partially mediated by PPARα.


Assuntos
Etanolaminas/farmacologia , Hipertermia Induzida/métodos , Mediadores da Inflamação/metabolismo , PPAR alfa/metabolismo , Receptor 3 Toll-Like/administração & dosagem , Amidoidrolases/farmacologia , Animais , Feminino , Expressão Gênica , PPAR alfa/agonistas , PPAR alfa/antagonistas & inibidores , Poli I-C/toxicidade , Ratos , Ratos Sprague-Dawley
7.
Mar Drugs ; 19(1)2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33401388

RESUMO

Although Psychrobacter strain M9-54-1 had been previously isolated from the microbiota of holothurians and shown to degrade quorum sensing (QS) signal molecules C6 and C10-homoserine lactone (HSL), little was known about the gene responsible for this activity. In this study, we determined the whole genome sequence of this strain and found that the full 16S rRNA sequence shares 99.78-99.66% identity with Psychrobacter pulmonis CECT 5989T and P. faecalis ISO-46T. M9-54-1, evaluated using the agar well diffusion assay method, showed high quorum quenching (QQ) activity against a wide range of synthetic N-acylhomoserine lactone (AHLs) at 4, 15, and 28 °C. High-performance liquid chromatography-mass-spectrometry (HPLC-MS) confirmed that QQ activity was due to an AHL-acylase. The gene encoding for QQ activity in strain M9-54-1 was identified from its genome sequence whose gene product was named AhaP. Purified AhaP degraded substituted and unsubstituted AHLs from C4- to C14-HSL. Furthermore, heterologous expression of ahaP in the opportunistic pathogen Pseudomonas aeruginosa PAO1 reduced the expression of the QS-controlled gene lecA, encoding for a cytotoxic galactophilic lectin and swarming motility protein. Strain M9-54-1 also reduced brine shrimp mortality caused by Vibrio coralliilyticus VibC-Oc-193, showing potential as a biocontrol agent in aquaculture.


Assuntos
Amidoidrolases/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade , Psychrobacter/química , Percepção de Quorum/efeitos dos fármacos , Vibrio/efeitos dos fármacos , Vibrio/patogenicidade , Virulência/efeitos dos fármacos , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Acil-Butirolactonas/metabolismo , Animais , Artemia , Genoma Bacteriano/genética , Estrutura Molecular , Psychrobacter/genética , RNA Ribossômico 16S
8.
J Pharmacol Exp Ther ; 376(2): 181-189, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33214214

RESUMO

Multiple clinical and preclinical studies have demonstrated that plasma levels of asymmetric dimethylarginine (ADMA) are strongly associated with hypertension, diabetes, and cardiovascular and renal disease. Genetic studies in rodents have provided evidence that ADMA metabolizing dimethylarginine dimethylaminohydrolase (DDAH)-1 plays a role in hypertension and cardiovascular disease. However, it remains to be established whether ADMA is a bystander, biomarker, or sufficient contributor to the pathogenesis of hypertension and cardiovascular and renal disease. The goal of the present investigation was to develop a pharmacological molecule to specifically lower ADMA and determine the physiologic consequences of ADMA lowering in animal models. Further, we sought to determine whether ADMA lowering will produce therapeutic benefits in vascular disease in which high ADMA levels are produced. A novel long-acting recombinant DDAH (M-DDAH) was produced by post-translational modification, which effectively lowered ADMA in vitro and in vivo. Treatment with M-DDAH improved endothelial function as measured by increase in cGMP and in vitro angiogenesis. In a rat model of hypertension, M-DDAH significantly reduced blood pressure (vehicle: 187 ± 19 mm Hg vs. M-DDAH: 157 ± 23 mm Hg; P < 0.05). Similarly, in a rat model of ischemia-reperfusion injury, M-DDAH significantly improved renal function as measured by reduction in serum creatinine (vehicle: 3.14 ± 0.74 mg/dl vs. M-DDAH: 1.1 ± 0.75 mg/dl; P < 0.01), inflammation, and injured tubules (vehicle: 73.1 ± 11.1% vs. M-DDAH: 22.1 ± 18.4%; P < 0.001). These pharmacological studies have provided direct evidence for a pathologic role of ADMA and the therapeutic benefits of ADMA lowering in preclinical models of endothelial dysfunction, hypertension, and ischemia-reperfusion injury. SIGNIFICANCE STATEMENT: High levels of ADMA occur in patients with cardiovascular and renal disease. A novel modified dimethylarginine dimethylaminohydrolase by PEGylation effectively lowers ADMA, improves endothelial function, reduces blood pressure and protects from ischemia-reperfusion renal injury.


Assuntos
Amidoidrolases/farmacologia , Anti-Hipertensivos/farmacologia , Arginina/análogos & derivados , Hipertensão/tratamento farmacológico , Traumatismo por Reperfusão/tratamento farmacológico , Amidoidrolases/uso terapêutico , Animais , Anti-Hipertensivos/uso terapêutico , Arginina/metabolismo , Pressão Sanguínea , GMP Cíclico/metabolismo , Feminino , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Rim/irrigação sanguínea , Masculino , Ratos , Ratos Endogâmicos Dahl , Ratos Sprague-Dawley , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico
9.
Bioorg Chem ; 101: 104034, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32599361

RESUMO

In experimental animals, inhibition of fatty acid amide hydrolase (FAAH) reduces the gastrointestinal damage produced by non-steroidal anti-inflammatory agents that act by inhibition of cyclooxygenase (COX). This suggests that compounds able to inhibit both enzymes may be potentially useful therapeutic agents. In the present study, we have investigated eight novel amide analogues of carprofen, ketoprofen and fenoprofen as potential FAAH/COX dual action inhibitors. Carpro-AM1 (2-(6-Chloro-9H-carbazol-2-yl)-N-(3-methylpyridin-2-yl)propenamide) and Carpro-AM6 (2-(6-Chloro-9H-carbazol-2-yl)-N-(3-chloropyridin-2-yl)propenamide) were found to be fully reversible inhibitors of the hydrolysis of 0.5 µM [3H]anandamide in rat brain homogenates with IC50 values of 94 and 23 nM, respectively, i.e. 2-3 orders of magnitude more potent than carprofen in this respect. Both compounds inhibited the cyclooxygenation of arachidonic acid by ovine COX-1, and were more potent inhibitors of human recombinant COX-2 when 2-arachidonoylglycerol was used as substrate than when arachidonic acid was used. It is concluded that Carpro-AM1 and Carpro-AM6 are dual-acting FAAH/substrate-selective COX inhibitors.


Assuntos
Amidoidrolases/uso terapêutico , Anti-Inflamatórios não Esteroides/uso terapêutico , Carbazóis/uso terapêutico , Inibidores de Ciclo-Oxigenase/uso terapêutico , Amidoidrolases/farmacologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Carbazóis/farmacologia , Inibidores de Ciclo-Oxigenase/farmacologia , Humanos , Camundongos
10.
J Biosci ; 452020.
Artigo em Inglês | MEDLINE | ID: mdl-32020908

RESUMO

With the emergence of multidrug-resistant 'superbug', conventional treatments become obsolete. Quorum quenching (QQ), enzyme-dependent alteration of quorum sensing (QS), is now considered as a promising antimicrobial therapy because of its potentiality to impede virulence gene expression without resulting in growth inhibition and antibiotic resistance. In our study, we intended to compare between two major QQ enzyme groups (i.e., AHL lactonases and AHL acylases) in terms of their structural and functional aspects. The amino acid composition-based principal component analysis (PCA) suggested that probably there is no structural and functional overlapping between the two groups of enzymes as well as within the lactonase enzymes but the acylases may functionally be affected by one another. In subcellular localization analysis, we also found that most lactonases are cytoplasmic while acylases are periplasmic. Investigation on the secondary structural features showed random coil dominates over alpha-helix and beta-sheet in all evaluated enzymes. For structural comparison, the tertiary structures of the selected proteins were modelled and submitted to the PMDB database (Accession ID: PM0081007 to PM0081018). Interestingly, sequence alignment revealed the presence of several conserved domains important for functions in both protein groups. In addition, three amino acid residues, namely aspartic acid, histidine, and isoleucine, were common in the active sites of all protein models while most frequent ligands were found to be 3C7, FEO, and PAC. Importantly, binding interactions of predicted ligands were similar to that of native QS signal molecules. Furthermore, hydrogen bonds analysis suggested six proteins are more stable than others. We believe that the knowledge of this comparative study could be useful for further research in the development of QSbased universal antibacterial strategies.


Assuntos
Acil-Butirolactonas/metabolismo , Amidoidrolases/farmacologia , Hidrolases de Éster Carboxílico/farmacologia , Percepção de Quorum/efeitos dos fármacos , Química Computacional , Filogenia
11.
Clin Epigenetics ; 12(1): 20, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-32014019

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a complex disorder caused by a combination of genetic and non-genetic risk factors. In addition, an increasing evidence suggests that epigenetic mechanisms also accompany AD. Genetic and epigenetic factors are not independent, but multiple loci show genetic-epigenetic interactions, the so-called quantitative trait loci (QTLs). Recently, we identified the first QTL association with AD, namely Peptidase M20 Domain Containing 1 (PM20D1). We observed that PM20D1 DNA methylation, RNA expression, and genetic background are correlated and, in turn, associated with AD. We provided mechanistic insights for these correlations and had shown that by genetically increasing and decreasing PM20D1 levels, AD-related pathologies were decreased and accelerated, respectively. However, since the PM20D1 QTL region encompasses also other genes, namely Nuclear Casein Kinase and Cyclin Dependent Kinase Substrate 1 (NUCKS1); RAB7, member RAS oncogene family-like 1 (RAB7L1); and Solute Carrier Family 41 Member 1 (SLC41A1), we investigated whether these genes might also contribute to the described AD association. RESULTS: Here, we report a comprehensive analysis of these QTL genes using a repertoire of in silico methods as well as in vivo and in vitro experimental approaches. First, we analyzed publicly available databases to pinpoint the major QTL correlations. Then, we validated these correlations using a well-characterized set of samples and locus-specific approaches-i.e., Sanger sequencing for the genotype, cloning/sequencing and pyrosequencing for the DNA methylation, and allele-specific and real-time PCR for the RNA expression. Finally, we defined the functional relevance of the observed alterations in the context of AD in vitro. Using this approach, we show that only PM20D1 DNA methylation and expression are significantly correlated with the AD-risk associated background. We find that the expression of SLC41A1 and PM20D1-but not NUCKS1 and RAB7L1-is increased in mouse models and human samples of AD, respectively. However, SLC41A1 and PM20D1 are differentially regulated by AD-related stressors, with only PM20D1 being upregulated by amyloid-ß and reactive oxygen species, and with only PM20D1 being neuroprotective when overexpressed in cell and primary cultures. CONCLUSIONS: Our findings reinforce PM20D1 as the most likely gene responsible of the previously reported PM20D1 QTL association with AD.


Assuntos
Doença de Alzheimer/genética , Amidoidrolases/metabolismo , Metilação de DNA/genética , Locos de Características Quantitativas/genética , Idoso , Doença de Alzheimer/tratamento farmacológico , Amidoidrolases/farmacologia , Peptídeos beta-Amiloides/metabolismo , Animais , Autopsia , Proteínas de Transporte de Cátions/metabolismo , Epigênese Genética , Epigenômica , Feminino , Expressão Gênica , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , RNA/genética , Espécies Reativas de Oxigênio/metabolismo , Fatores de Risco , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
12.
Gut ; 68(10): 1791-1800, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30816855

RESUMO

OBJECTIVE: Faecal microbiota transplant (FMT) effectively treats recurrent Clostridioides difficile infection (rCDI), but its mechanisms of action remain poorly defined. Certain bile acids affect C. difficile germination or vegetative growth. We hypothesised that loss of gut microbiota-derived bile salt hydrolases (BSHs) predisposes to CDI by perturbing gut bile metabolism, and that BSH restitution is a key mediator of FMT's efficacy in treating the condition. DESIGN: Using stool collected from patients and donors pre-FMT/post-FMT for rCDI, we performed 16S rRNA gene sequencing, ultra performance liquid chromatography mass spectrometry (UPLC-MS) bile acid profiling, BSH activity measurement, and qPCR of bsh/baiCD genes involved in bile metabolism. Human data were validated in C. difficile batch cultures and a C57BL/6 mouse model of rCDI. RESULTS: From metataxonomics, pre-FMT stool demonstrated a reduced proportion of BSH-producing bacterial species compared with donors/post-FMT. Pre-FMT stool was enriched in taurocholic acid (TCA, a potent C. difficile germinant); TCA levels negatively correlated with key bacterial genera containing BSH-producing organisms. Post-FMT samples demonstrated recovered BSH activity and bsh/baiCD gene copy number compared with pretreatment (p<0.05). In batch cultures, supernatant from engineered bsh-expressing E. coli and naturally BSH-producing organisms (Bacteroides ovatus, Collinsella aerofaciens, Bacteroides vulgatus and Blautia obeum) reduced TCA-mediated C. difficile germination relative to culture supernatant of wild-type (BSH-negative) E. coli. C. difficile total viable counts were ~70% reduced in an rCDI mouse model after administration of E. coli expressing highly active BSH relative to mice administered BSH-negative E. coli (p<0.05). CONCLUSION: Restoration of gut BSH functionality contributes to the efficacy of FMT in treating rCDI.


Assuntos
Amidoidrolases/farmacologia , Clostridioides difficile/genética , Infecções por Clostridium/terapia , DNA Bacteriano/genética , Transplante de Microbiota Fecal/métodos , Microbioma Gastrointestinal/fisiologia , Animais , Infecções por Clostridium/microbiologia , Modelos Animais de Doenças , Feminino , Ácido Glicocólico , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Recidiva , Espectrometria de Massas em Tandem
13.
J Psychopharmacol ; 33(5): 606-614, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30789299

RESUMO

BACKGROUND: The dorsal hippocampus has a central role in modulating cardiovascular responses and behavioral adaptation to stress. The dorsal hippocampus also plays a key role in stress-associated mental disorders. The endocannabinoid system is widely expressed in the dorsal hippocampus and modulates defensive behaviors under stressful conditions. The endocannabinoid anandamide activates cannabinoid type 1 receptors and is metabolized by the fatty acid amide hydrolase enzyme. AIMS: We sought to verify whether cannabinoid type 1 receptors modulate stress-induced cardiovascular changes, and if pharmacological fatty acid amide hydrolase inhibition in the dorsal hippocampus would prevent the cardiovascular responses and the delayed anxiogenic-like behavior evoked by restraint stress in rats via cannabinoid type 1 receptors. METHODS: Independent groups received intra-dorsal-hippocampal injections of N-(piperidin-1yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-hpyrazole-3-carboxamide (AM251; cannabinoid type 1 receptor antagonist/inverse agonist, 10-300 pmol) and/or cyclohexyl carbamic acid 3'-carbamoyl-biphenyl-3-yl ester (URB597; fatty acid amide hydrolase inhibitor, 10 pmol) before the restraint stress session. Cardiovascular response during restraint stress or later behavioral parameters were evaluated. RESULTS: Acute restraint stress altered the cardiovascular response, characterized by increased heart rate and mean arterial pressure, as well as decreased tail cutaneous temperature. It also induced a delayed anxiogenic-like effect, evidenced by reduced open arm exploration in the elevated plus maze 24 h after stress. AM251 exacerbated the stress-induced cardiovascular responses after injection into the dorsal hippocampus. In contrast, local injection of URB597 prevented the cardiovascular response and the delayed (24 h) behavioral consequences of restraint stress, effects attenuated by pretreatment with AM251. CONCLUSION: Our data corroborate previous results indicating that the hippocampal endocannabinoid system modulates the outcome of stress exposure and suggest that this could involve modulation of the cardiovascular response during stress exposure.


Assuntos
Ansiedade , Pressão Arterial/fisiologia , Comportamento Animal/fisiologia , Agonistas de Receptores de Canabinoides/farmacologia , Antagonistas de Receptores de Canabinoides/farmacologia , Endocanabinoides/fisiologia , Frequência Cardíaca/fisiologia , Hipocampo/metabolismo , Receptor CB1 de Canabinoide/fisiologia , Estresse Psicológico , Amidoidrolases/farmacologia , Animais , Ansiedade/induzido quimicamente , Ansiedade/etiologia , Ansiedade/metabolismo , Ácidos Araquidônicos/farmacologia , Pressão Arterial/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Benzamidas/farmacologia , Agonistas de Receptores de Canabinoides/administração & dosagem , Antagonistas de Receptores de Canabinoides/administração & dosagem , Carbamatos/farmacologia , Modelos Animais de Doenças , Endocanabinoides/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Masculino , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Pirazóis/farmacologia , Ratos , Ratos Wistar , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/antagonistas & inibidores , Restrição Física/efeitos adversos , Temperatura Cutânea/efeitos dos fármacos , Temperatura Cutânea/fisiologia , Estresse Psicológico/complicações , Estresse Psicológico/metabolismo , Estresse Psicológico/fisiopatologia
14.
Prep Biochem Biotechnol ; 49(2): 151-157, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30712466

RESUMO

Acylase AiiO is a novel quorum quenching enzyme with a broad substrate spectrum of acyl-homoserine lactones (AHLs) and has promising prospects in pathogen control. In this work, acylase AiiO production by a recombinant E. coli strain and its characterization were investigated; the acylase powder was further prepared and evaluated for effectiveness. A strategy of auto-induction combined with temperature regulation was developed to improve AiiO production. For the soluble AiiO protein in the cells, maximum production of 214.3 ± 9.4 mg/L was obtained in the fermenter. The purified acylase displayed an obvious AHL-degrading specific activity of 19.2 ± 0.56 U/mg. Sucrose, as the protective agent, maintained good stability of the acylase powder, in which the acylase remained 89.6 and 71.9% of its initial specific activity after storage at 4 °C for 3 and 6 months, respectively. The acylase powder could prominently decrease the expression levels of virulence-related factors of Pseudomonas aeruginosa. Based on the high-yield production and effective powder preparation, the quorum quenching acylase AiiO has the potential to be used in the clinical treatments of pathogenic infections.


Assuntos
Acil-Butirolactonas/metabolismo , Amidoidrolases/metabolismo , Proteínas de Bactérias/metabolismo , Ochrobactrum/metabolismo , Amidoidrolases/genética , Amidoidrolases/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Clonagem Molecular , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentação , Humanos , Ochrobactrum/genética , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia
15.
Mol Nutr Food Res ; 62(24): e1800728, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30346664

RESUMO

SCOPE: Lactobacillus casei F0822-fermented milk has exhibited significant hypocholesterolemic activity in hamsters in the previous study. Under this premise, the objective of this study is to further explore whether bile salt hydrolase (BSH) and S-layer protein (SLP) of the strain have a significant influence on hypocholesterolemic activity of the fermented milk. METHODS AND RESULTS: Independent and double interposon mutants of BSH and SLP genes are constructed from wild-type L. casei F0822 via chromosomal insertion of chloramphenicol or/and erythromycin resistance genes based on double-crossover homologous recombination. The mutants- and the wild-type strain-fermented milk is prepared (viable counts of approximately 8.0 × 108 colony-forming units mL-1 each) and intragastrically administered to high-cholesterol-fed hamsters once daily at a dose of 1.25 mL d-1 for 28 d, respectively. Both the BSH-deficient mutant- and the SLP-deficient mutant-fermented milk significantly (p < 0.05) increase serum total and LDL-cholesterol levels in hamsters compared with the wild-type strain-fermented milk. However, only the BSH-deficient mutant-fermented milk could significantly (p < 0.05) increase hepatic total and esterified cholesterol levels in hamsters. CONCLUSION: Both BSH and SLP have a significant influence on the hypocholesterolemic activity of L. casei F0822-fermented milk in hamsters. Nevertheless, the BSH is greater than the SLP in this regard.


Assuntos
Amidoidrolases/farmacologia , Anticolesterolemiantes/farmacologia , Produtos Fermentados do Leite , Lacticaseibacillus casei/química , Glicoproteínas de Membrana/farmacologia , Amidoidrolases/genética , Animais , Proteínas de Bactérias/farmacologia , Ácidos e Sais Biliares/metabolismo , Colesterol/sangue , Colesterol/genética , Colesterol/metabolismo , Fezes/química , Regulação da Expressão Gênica , Lacticaseibacillus casei/genética , Fígado/metabolismo , Masculino , Glicoproteínas de Membrana/genética , Mesocricetus , Mutação
16.
J Biol Regul Homeost Agents ; 32(3): 705-709, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29921403

RESUMO

Pyrazinamide (PZA) is a key first-line antibiotic used for the short-course treatment of drug-sensitive and multidrug-resistant (MDR) isolates of tuberculosis. PZA exhibits potent action against semi-dormant bacilli in acidic environments. However, mutations that occur in target genes may cause technical difficulties in the diagnosis of PZA resistance during drug susceptibility testing. The objective of the current study is to identify mutations in pncAWT rpsA and rpsAWT panD genes among PZA-resistant isolates of Mycobacterium tuberculosis (MTB) circulating in the Pashtun dominant region, Khyber Pakhtunkhwa, Pakistan. We selected 18 PZA-resistant pncAWT strains from the Provincial Tuberculosis Reference Laboratory (PTRL) Khyber Pakhtunkhwa to investigate mutations in the coding region of rpsA and panD genes. The experiments were repeated for drug susceptibility testing using MGIT 960 automated system. In addition, eighteen PZA-resistant rpsA genes along with 5 susceptible strains and one H37Rv strain were sequenced. All 18 isolates were PZA-resistant. The majority of these isolates exhibited multidrug resistance (MDR) (13/18). We identified 14 non-synonymous and one synonymous mutation in the coding region of rpsA in 11 strains. All mutations were scattered throughout the gene and not reported previously. Further, we did not identify any mutation in 7 rpsAWT panD genes. Mutations in rpsA but not in panD occur in PZA-resistant pncAWT MTB isolates circulating in Khyber Pakhtunkhwa, Pakistan.


Assuntos
Amidoidrolases/farmacologia , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/genética , Mutação , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , Humanos , Paquistão
17.
Am J Physiol Renal Physiol ; 315(4): F967-F976, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29846106

RESUMO

The kidneys contribute to the control of body fluid and electrolytes and the long-term regulation of blood pressure through various systems, including the endocannabinoid system. Previously, we showed that inhibition of the two major endocannabinoid-hydrolyzing enzymes, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase, in the renal medulla increased the rate of urine excretion (UV) and salt excretion without affecting mean arterial pressure (MAP). The present study evaluated the effects of a selective FAAH inhibitor, N-3-pyridinyl-4-[[3-[[5-(trifluoromethyl)-2-pyridinyl]oxy]phenyl]methyl]-1-piperidine carboxamide (PF-3845) on MAP and renal functions. Infusion of PF-3845 into the renal medulla of C57BL/6J mice reduced MAP during the posttreatment phases and increased UV at 15 and 30 nmol/min per gram kidney weight (g kwt), relative to the pretreatment control phase. Intravenous PF-3845 administration reduced MAP at the 7.5, 15, and 30 doses and increased UV at the 15 and 30 nmol⋅min-1⋅g-1 kwt doses. PF-3845 treatment elevated sodium and potassium urinary excretion and medullary blood flow. Homozygous FAAH knockout mice were refractory to intramedullary PF-3845-induced changes in MAP, but UV was increased. Both MAP and UV responses to intramedullary PF-3845 in C57BL/6J mice were diminished by pretreatment with the cannabinoid type 1 receptor-selective antagonist, rimonabant (3 mg/kg, ip) but not the cyclooxygenase 2-selective inhibitor, celecoxib (15 mg/kg, iv). Liquid chromatography-tandem mass spectrometry analyses showed increased anandamide in kidney tissue and 2-arachidonoyl glycerol in plasma after intramedullary PF-3845. These data suggest that inhibition of FAAH in the renal medulla leads to both a diuretic and blood pressure-lowering response mediated by elevated anandamide in kidney tissue or 2-arachidonoyl glycerol in plasma.


Assuntos
Amidoidrolases/farmacologia , Pressão Arterial/efeitos dos fármacos , Medula Renal/efeitos dos fármacos , Piperidinas/farmacologia , Piridinas/farmacologia , Amidoidrolases/metabolismo , Animais , Ácidos Araquidônicos/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Diurese/efeitos dos fármacos , Endocanabinoides/farmacologia , Inibidores Enzimáticos/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Monoacilglicerol Lipases/antagonistas & inibidores , Alcamidas Poli-Insaturadas/farmacologia
18.
Metab Brain Dis ; 33(3): 939-948, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29504066

RESUMO

2-Arachidonoylglycerol (2-AG) and anandamide are two major endocannabinoids produced, released and eliminated by metabolic pathways. Anticonvulsive effect of 2-AG and CB1 receptor is well-established. Herein, we designed to investigate the anticonvulsive influence of key components of the 2-AG and anandamide metabolism. Tonic-clonic seizures were induced by an injection of Pentylenetetrazol (80 mg/kg, i.p.) in adult male Wistar rats. Delay and duration for the seizure stages were considered for analysis. Monoacylglycerol lipase blocker (JJKK048; 1 mg/kg) or alpha/beta hydroxylase domain 6 blocker (WWL70; 5 mg/kg) were administrated alone or with 2-AG to evaluate the anticonvulsive potential of these enzymes. To determine the CB1 receptor involvement, its blocker (MJ15; 3 mg/kg) was administrated associated with JJKK048 or WWL70. To assess anandamide anticonvulsive effect, anandamide membrane transporter blocker (LY21813240; 2.5 mg/kg) was used alone or associated with MJ15. Also, fatty acid amide hydrolase blocker (URB597; 1 mg/kg; to prevent intracellular anandamide hydrolysis) were used alone or with AMG21629 (transient receptor potential vanilloid; TRPV1 antagonist; 3 mg/kg). All compounds were dissolved in DMSO and injected i.p., before the Pentylenetetrazol. Both JJKK048 and WWL70 revealed anticonvulsive effect. Anticonvulsive effect of JJKK048 but not WWL70 was CB1 receptor dependent. LY2183240 showed CB1 receptor dependent anticonvulsive effect. However, URB597 revealed a TRPV1 dependent proconvulsive effect. It seems extracellular accumulation of 2-AG or anandamide has anticonvulsive effect through the CB1 receptor, while intracellular anandamide accumulation is proconvulsive through TRPV1.


Assuntos
Ácidos Araquidônicos/farmacologia , Endocanabinoides/farmacologia , Pentilenotetrazol/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Convulsões/tratamento farmacológico , Amidoidrolases/farmacologia , Animais , Modelos Animais de Doenças , Endocanabinoides/metabolismo , Glicerídeos/farmacologia , Masculino , Piperidinas/farmacologia , Ratos Wistar , Receptor CB1 de Canabinoide/efeitos dos fármacos , Receptor CB1 de Canabinoide/metabolismo , Convulsões/induzido quimicamente , Canais de Cátion TRPV/efeitos dos fármacos , Canais de Cátion TRPV/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-28713777

RESUMO

Cysteine/histidine-dependent amidohydrolase/peptidase (CHAP) and amidase are known as catalytic domains of the bacteriophage-derived endolysin LysK and were previously reported to show lytic activity against methicillin-resistant Staphylococcus aureus (MRSA). In the current study, the in silico design and analysis of chimeric CHAP-amidase model was applied to enhance the stability and solubility of protein, which was achieved through improving the properties of primary, secondary and tertiary structures. The coding gene sequence of the chimeric CHAP-amidase was synthesized and subcloned into the pET-22(+) expression vector, and the recombinant protein was expressed in E. coli BL21 (DE3) strain. Subsequent affinity-based purification yielded ~12 mg soluble protein per liter of E. coli culture. Statistical analysis indicated that concentrations of ≥1 µg/mL of the purified protein have significant antibacterial activity against S. aureus MRSA252 cells. The engineered chimeric CHAP-amidase exhibited 3.2 log reduction of MRSA252 cell counts at the concentration of 10 µg/mL. A synergistic interaction between CHAP-amidase and vancomycin was detected by using checkerboard assay and calculating the fractional inhibitory concentration (FIC) index. This synergistic effect was shown by 8-fold reduction in the minimum inhibitory concentration of vancomycin. The chimeric CHAP-amidase displayed strong antibacterial activity against S. aureus, S. epidermidis, and enterococcus. However, it did not indicate any significant antibacterial activity against E. coli and Lactococcus lactis. Taken together, these findings suggest that our chimeric CHAP-amidase might represent potential to be used for the development of efficient antibacterial therapies targeting MRSA and certain Gram-positive bacteria.


Assuntos
Amidoidrolases/farmacologia , Antibacterianos/farmacologia , Endopeptidases/química , Endopeptidases/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Proteínas Virais/farmacologia , Amidoidrolases/química , Amidoidrolases/genética , Sequência de Aminoácidos , Bacteriófagos/química , Bacteriófagos/enzimologia , Bacteriófagos/genética , Sequência de Bases , Linhagem Celular , Clonagem Molecular , Simulação por Computador , DNA Bacteriano , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Combinação de Medicamentos , Sinergismo Farmacológico , Endopeptidases/genética , Enterococcus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Concentração de Íons de Hidrogênio , Lactococcus lactis/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estabilidade Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/genética , Análise de Sequência , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus epidermidis , Temperatura , Vancomicina/farmacologia , Proteínas Virais/química , Proteínas Virais/genética
20.
Curr Top Med Chem ; 16(21): 2379-430, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27072691

RESUMO

The bacterial enzyme UDP-3-O-[(R)-3-hydroxymyristoyl]-N-acetylglucosamine deacetylase (LpxC), catalyzing the first committed step of lipid A biosynthesis, represents a promising target in the development of novel antibiotics against Gram-negative bacteria. Structure, catalytic reaction mechanism and regulation of the Zn2+-dependent metalloamidase have been intensively investigated. The enzyme is required for growth and viability of Gram-negative bacteria, displays no sequence homology with any mammalian protein, but is highly conserved in Gram-negative bacteria, thus permitting the development of Gram-negative selective antibacterial agents with limited off-target effects. Several smallmolecule LpxC inhibitors have been developed, like the substrate analog TU-514 (12a), the aryloxazoline L-161,240 (13w), the sulfonamide BB-78485 (23a), the N-aroyl-L-threonine derivative CHIR-090 (24a), the sulfone-containing pyridone LpxC-3 (43e), and the uridine-based inhibitor 1-68A (47a), displaying diverse inhibitory and antibacterial activities. Most of these compounds share a Zn2+-binding hydroxamate moiety attached to a structural element addressing the hydrophobic tunnel or the UDP binding site. The butadiynyl derivative ACHN-975 (28) is the first LpxC inhibitor entering clinical trials.


Assuntos
Amidoidrolases/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Zinco/metabolismo , Amidoidrolases/farmacologia , Sequência de Aminoácidos , Catálise , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA