Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
J Biol Chem ; 300(4): 107174, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38499153

RESUMO

AL amyloidosis is a life-threatening disease caused by deposition of immunoglobulin light chains. While the mechanisms underlying light chains amyloidogenesis in vivo remain unclear, several studies have highlighted the role that tissue environment and structural amyloidogenicity of individual light chains have in the disease pathogenesis. AL natural deposits contain both full-length light chains and fragments encompassing the variable domain (VL) as well as different length segments of the constant region (CL), thus highlighting the relevance that proteolysis may have in the fibrillogenesis pathway. Here, we investigate the role of major truncated species of the disease-associated AL55 light chain that were previously identified in natural deposits. Specifically, we study structure, molecular dynamics, thermal stability, and capacity to form fibrils of a fragment containing both the VL and part of the CL (133-AL55), in comparison with the full-length protein and its variable domain alone, under shear stress and physiological conditions. Whereas the full-length light chain forms exclusively amorphous aggregates, both fragments generate fibrils, although, with different kinetics, aggregate structure, and interplay with the unfragmented protein. More specifically, the VL-CL 133-AL55 fragment entirely converts into amyloid fibrils microscopically and spectroscopically similar to their ex vivo counterpart and increases the amorphous aggregation of full-length AL55. Overall, our data support the idea that light chain structure and proteolysis are both relevant for amyloidogenesis in vivo and provide a novel biocompatible model of light chain fibrillogenesis suitable for future mechanistic studies.


Assuntos
Amiloide , Cadeias Leves de Imunoglobulina , Amiloide/metabolismo , Amiloide/química , Humanos , Cadeias Leves de Imunoglobulina/metabolismo , Cadeias Leves de Imunoglobulina/química , Cadeias Leves de Imunoglobulina/genética , Simulação de Dinâmica Molecular , Regiões Constantes de Imunoglobulina/metabolismo , Regiões Constantes de Imunoglobulina/genética , Regiões Constantes de Imunoglobulina/química , Amiloidose de Cadeia Leve de Imunoglobulina/metabolismo , Amiloidose de Cadeia Leve de Imunoglobulina/patologia , Cinética , Domínios Proteicos
2.
J Mol Biol ; 435(18): 168215, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37516426

RESUMO

Immunoglobulin light chain amyloidosis (AL) is caused by the aberrant production of amyloidogenic light chains (LC) that accumulate as amyloid deposits in vital organs. Distinct LC sequences in each patient yield distinct amyloid structures. However different tissue microenvironments may also cause identical protein precursors to adopt distinct amyloid structures. To address the impact of the tissue environment on the structural polymorphism of amyloids, we extracted fibrils from the kidney of an AL patient (AL55) whose cardiac amyloid structure was previously determined by our group. Here we show that the 4.0 Å resolution cryo-EM structure of the renal fibril is virtually identical to that reported for the cardiac fibril. These results provide the first structural evidence that LC amyloids independently deposited in different organs of the same AL patient share a common fold.


Assuntos
Amiloide , Amiloidose de Cadeia Leve de Imunoglobulina , Humanos , Amiloide/química , Microscopia Crioeletrônica/métodos , Amiloidose de Cadeia Leve de Imunoglobulina/metabolismo , Rim/metabolismo , Microambiente Tumoral
3.
Nat Commun ; 14(1): 3755, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37353525

RESUMO

Systemic antibody light chain (AL) amyloidosis is characterized by deposition of amyloid fibrils. Prior to fibril formation, soluble oligomeric AL protein has a direct cytotoxic effect on cardiomyocytes. We focus on the patient derived λ-III AL variable domain FOR005 which is mutated at five positions with respect to the closest germline protein. Using solution-state NMR spectroscopy, we follow the individual steps involved in protein misfolding from the native to the amyloid fibril state. Unfavorable mutations in the complementary determining regions introduce a strain in the native protein structure which yields partial unfolding. Driven by electrostatic interactions, the protein converts into a high molecular weight, oligomeric, molten globule. The high local concentration of aggregation prone regions in the oligomer finally catalyzes the conversion into fibrils. The topology is determined by balanced electrostatic interactions in the fibril core implying a 180° rotational switch of the beta-sheets around the conserved disulfide bond.


Assuntos
Amiloidose , Amiloidose de Cadeia Leve de Imunoglobulina , Humanos , Cadeias Leves de Imunoglobulina/química , Amiloidose/metabolismo , Amiloidose de Cadeia Leve de Imunoglobulina/metabolismo , Amiloide/metabolismo , Mutação
4.
Commun Biol ; 6(1): 209, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823438

RESUMO

Light chain (AL) amyloidosis is a debilitating disease in which mutant antibody light chains (LC), secreted by aberrant plasma cell clones, misfold and form insoluble fibrils, which can be deposited in various organs. In the majority of cases, the fibrillar deposits consist of LC variable domains (VL) containing destabilizing mutations compared to their germline counterparts. This is also true for the patient LC FOR005. However, this pathogenic LC sequence contains an additional mutation in the constant domain (CL). The mechanistic impact of CL mutations is not yet understood in the context of AL amyloidosis. Our analysis reveals that the FOR005 CL mutation influences the amyloid pathway in specific ways: (1) folding and stability of the patient CL domain are strongly impaired; (2) the mutation disrupts the LC dimer interface and weakens dimerization; (3) the CL mutation promotes proteolytic cleavage of the LC monomers resulting in an isolated, amyloidogenic VL domain while dimeric LCs are not cleaved. The enhanced proteolysis rates and the inability of full-length LCs to form amyloid fibrils even in the presence of a destabilized CL domain support a model for AL amyloidosis in which the CL domain plays a protective role and in which proteolytic cleavage precedes amyloid formation.


Assuntos
Amiloidose de Cadeia Leve de Imunoglobulina , Humanos , Amiloide/genética , Amiloide/metabolismo , Proteínas Amiloidogênicas/genética , Proteínas Amiloidogênicas/metabolismo , Cadeias Leves de Imunoglobulina/genética , Cadeias Leves de Imunoglobulina/metabolismo , Amiloidose de Cadeia Leve de Imunoglobulina/genética , Amiloidose de Cadeia Leve de Imunoglobulina/metabolismo , Mutação
5.
Nat Commun ; 13(1): 7261, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36433936

RESUMO

Systemic AA amyloidosis is a debilitating protein misfolding disease in humans and animals. In humans, it occurs in two variants that are called 'vascular' and 'glomerular', depending on the main amyloid deposition site in the kidneys. Using cryo electron microscopy, we here show the amyloid fibril structure underlying the vascular disease variant. Fibrils purified from the tissue of such patients are mainly left-hand twisted and contain two non-equal stacks of fibril proteins. They contrast in these properties to the fibrils from the glomerular disease variant which are right-hand twisted and consist of two structurally equal stacks of fibril proteins. Our data demonstrate that the different disease variants in systemic AA amyloidosis are associated with different fibril morphologies.


Assuntos
Amiloidose , Amiloidose de Cadeia Leve de Imunoglobulina , Nefropatias , Animais , Humanos , Amiloide/metabolismo , Amiloidose/metabolismo , Amiloidose de Cadeia Leve de Imunoglobulina/metabolismo , Microscopia Crioeletrônica
6.
PLoS One ; 17(2): e0264407, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35213605

RESUMO

Light chain amyloidosis is one of the most common forms of systemic amyloidosis. The disease is caused by the misfolding and aggregation of immunoglobulin light chains to insoluble fibrils. These fibrils can deposit in different tissues and organs such as heart and kidney and cause organ impairments that define the clinical presentation. In this study, we present an overview of IGLV-IGLJ and IGLC germline utilization in 85 patients classified in three clinically important subgroups with dominant cardiac, renal as well as cardiac and renal involvement. We found that IGLV3 was the most frequently detected IGLV-family in patients with dominant cardiac involvement, whereas in renal patients IGLV1 were most frequently identified. For patients with dominant heart and kidney involvement IGLV6 was the most frequently detected IGLV-family. In more detailed analysis IGLV3-21 was observed as the most dominant IGLV-subfamily for patients with dominant heart involvement and IGLV1-44 as the most frequent IGLV-subfamily in the group of patients with dominant kidney involvement. For patients with dominant heart and kidney involvement IGLV6-57 was the most frequently detected IGLV-subfamily. Additionally, we were able to show an exclusive linkage between IGLJ1 and IGLC1 as well as between IGLJ2 and IGLC2 in the fully assembled IGL mRNA.


Assuntos
Amiloidose de Cadeia Leve de Imunoglobulina , Cadeias lambda de Imunoglobulina , Rim/metabolismo , Miocárdio/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Amiloidose de Cadeia Leve de Imunoglobulina/genética , Amiloidose de Cadeia Leve de Imunoglobulina/metabolismo , Cadeias lambda de Imunoglobulina/genética , Cadeias lambda de Imunoglobulina/metabolismo , Masculino , Pessoa de Meia-Idade , Especificidade de Órgãos
7.
Biochem Biophys Res Commun ; 596: 22-28, 2022 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-35108650

RESUMO

AL amyloidosis is a life-threatening disease characterized by the deposition of amyloidogenic immunoglobulin light chain secreted from clonal plasma cells. Here we established an in-vitro screening system of amyloid inhibition of a variable domain in λ6 light chain mutant (Vλ6), Wil, and screened a food-additive compound library to identify compounds inhibiting the fibril formation. We found gossypetin and isoquercitrin as novel inhibitors. NMR analysis showed that both compounds directly interacted with natively-folded Wil, and proteolysis experiments demonstrated that these compounds conferred proteolytic resistance, suggesting that the compounds enhance the kinetic stability of Wil. Since gossypetin and isoquercitrin specifically interacted with the protein at micromolar concentrations, these compounds could be used as lead to further develop inhibitors against AL amyloidosis.


Assuntos
Amiloide/antagonistas & inibidores , Flavonoides/farmacologia , Amiloidose de Cadeia Leve de Imunoglobulina/metabolismo , Cadeias lambda de Imunoglobulina/metabolismo , Quercetina/análogos & derivados , Amiloide/genética , Amiloide/metabolismo , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Catequina/análogos & derivados , Catequina/metabolismo , Catequina/farmacologia , Relação Dose-Resposta a Droga , Flavonoides/química , Humanos , Amiloidose de Cadeia Leve de Imunoglobulina/genética , Cadeias lambda de Imunoglobulina/química , Cadeias lambda de Imunoglobulina/genética , Cinética , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Mutação , Ligação Proteica , Estabilidade Proteica/efeitos dos fármacos , Quercetina/química , Quercetina/farmacologia , Fatores de Tempo
8.
Int J Mol Sci ; 23(2)2022 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35055136

RESUMO

Light chain amyloidosis (AL) is caused by the aberrant overproduction of immunoglobulin light chains (LCs). The resulting abnormally high LC concentrations in blood lead to deposit formation in the heart and other target organs. Organ damage is caused not only by the accumulation of bulky amyloid deposits, but extensive clinical data indicate that circulating soluble LCs also exert cardiotoxic effects. The nematode C. elegans has been validated to recapitulate LC soluble toxicity in vivo, and in such a model a role for copper ions in increasing LC soluble toxicity has been reported. Here, we applied microscale thermophoresis, isothermal calorimetry and thermal melting to demonstrate the specific binding of Cu2+ to the variable domain of amyloidogenic H7 with a sub-micromolar affinity. Histidine residues present in the LC sequence are not involved in the binding, and yet their mutation to Ala reduces the soluble toxicity of H7. Copper ions bind to and destabilize the variable domains and induce a limited stabilization in this domain. In summary, the data reported here, elucidate the biochemical bases of the Cu2+-induced toxicity; moreover, they also show that copper binding is just one of the several biochemical traits contributing to LC soluble in vivo toxicity.


Assuntos
Cobre/metabolismo , Cadeias Leves de Imunoglobulina/química , Cadeias Leves de Imunoglobulina/metabolismo , Amiloidose de Cadeia Leve de Imunoglobulina/metabolismo , Substituição de Aminoácidos , Animais , Caenorhabditis elegans , Calorimetria , Modelos Animais de Doenças , Histidina/metabolismo , Humanos , Cadeias Leves de Imunoglobulina/toxicidade , Modelos Moleculares , Conformação Proteica , Espécies Reativas de Oxigênio/metabolismo
9.
Biophys Chem ; 280: 106699, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34773861

RESUMO

Dynamic and disordered regions in native proteins are often critical for their function, particularly in ligand binding and signaling. In certain proteins, however, such regions can contribute to misfolding and pathologic deposition as amyloid fibrils in vivo. For example, dynamic and disordered regions can promote amyloid formation by destabilizing the native structure, by directly triggering the aggregation, by promoting protein condensation, or by acting as sites of early proteolytic cleavage that favor a release of aggregation-prone fragments or facilitate fibril maturation. At the same time, enhanced dynamics in the native protein state accelerates proteolytic degradation that counteracts amyloid accumulation in vivo. Therefore, the functional need for dynamic protein regions must be balanced against their inherently labile nature. How exactly this balance is achieved and how is it shifted upon amyloidogenic mutations or post-translational modifications? To illustrate possible scenarios, here we review the beneficial and pathologic roles of dynamic and disordered regions in the native states of three families of human plasma proteins that form amyloid precursors in systemic amyloidoses: immunoglobulin light chain, apolipoproteins, and serum amyloid A. Analysis of structure, stability and local dynamics of these diverse proteins and their amyloidogenic variants exemplifies how disordered/dynamic regions can provide a functional advantage as well as an Achilles heel in pathologic amyloid formation.


Assuntos
Amiloidose , Amiloidose de Cadeia Leve de Imunoglobulina , Amiloide/química , Proteínas Amiloidogênicas , Amiloidose/metabolismo , Humanos , Cadeias Leves de Imunoglobulina/química , Amiloidose de Cadeia Leve de Imunoglobulina/metabolismo
11.
J Investig Med ; 70(2): 348-353, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34848562

RESUMO

Amyloidosis is a rare group of diseases characterized by abnormal folding of proteins and extracellular deposition of insoluble fibrils. It can be localized to one organ system or can have systemic involvement. The kidney is the most common organ to be involved in systemic amyloidosis often leading to renal failure and the nephrotic syndrome. The two most common types of renal amyloidosis are immunoglobulin light chain-derived amyloidosis (AL) and reactive amyloidosis (AA). A novel form of amyloidosis (ALECT2) derived from leukocyte chemotactic factor 2 (LECT-2) and primarily involving the kidneys was first described by Benson et al in 2008. The liver was subsequently identified as the second most common organ involved in ALECT2 amyloidosis. LECT-2 is a unique protein that can form amyloid deposits even in its unmutated form. Patients with ALECT2 present with minimal proteinuria in contrast to other forms of amyloidosis especially AL and AA. They may present with slightly elevated serum creatinine. Nephrotic syndrome and hematuria are rare. ALECT2 can be found in association with other types of amyloidosis as well as malignancies or autoimmune diseases. ALECT2 may be confused with amyloidosis associated with light and heavy chain monoclonal gammopathy if the immunofluorescence is positive with anti-light chain and anti-AA sera. The other organs involved are the duodenum, adrenal gland, spleen, prostate, gall bladder, pancreas, small bowel, parathyroid gland, heart, and pulmonary alveolar septa, but consistently uninvolved organs included brain and fibroadipose tissue. A renal biopsy along with characteristic features found on immunohistochemistry and mass spectrometry is diagnostic of ALECT2. ALECT2 should be suspected when all markers for AL and AA are negative. Proper diagnosis of ALECT2 can determine need for supportive care versus more aggressive interventions.


Assuntos
Amiloidose , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Rim/patologia , Síndrome Nefrótica , Amiloidose/diagnóstico , Humanos , Amiloidose de Cadeia Leve de Imunoglobulina/metabolismo , Masculino , Proteinúria/etiologia
12.
Nat Commun ; 12(1): 6516, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34764275

RESUMO

In antibody light chain (AL) amyloidosis, overproduced light chain (LC) fragments accumulate as fibrils in organs and tissues of patients. In vitro, AL fibril formation is a slow process, characterized by a pronounced lag phase. The events occurring during this lag phase are largely unknown. We have dissected the lag phase of a patient-derived LC truncation and identified structural transitions that precede fibril formation. The process starts with partial unfolding of the VL domain and the formation of small amounts of dimers. This is a prerequisite for the formation of an ensemble of oligomers, which are the precursors of fibrils. During oligomerization, the hydrophobic core of the LC domain rearranges which leads to changes in solvent accessibility and rigidity. Structural transitions from an anti-parallel to a parallel ß-sheet secondary structure occur in the oligomers prior to amyloid formation. Together, our results reveal a rate-limiting multi-step mechanism of structural transitions prior to fibril formation in AL amyloidosis, which offers, in the long run, opportunities for therapeutic intervention.


Assuntos
Amiloide/metabolismo , Amiloidose de Cadeia Leve de Imunoglobulina/metabolismo , Amiloide/química , Estrutura Secundária de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier
13.
Nat Commun ; 12(1): 6434, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34741031

RESUMO

Systemic AL amyloidosis is a rare disease that is caused by the misfolding of immunoglobulin light chains (LCs). Potential drivers of amyloid formation in this disease are post-translational modifications (PTMs) and the mutational changes that are inserted into the LCs by somatic hypermutation. Here we present the cryo electron microscopy (cryo-EM) structure of an ex vivo λ1-AL amyloid fibril whose deposits disrupt the ordered cardiomyocyte structure in the heart. The fibril protein contains six mutational changes compared to the germ line and three PTMs (disulfide bond, N-glycosylation and pyroglutamylation). Our data imply that the disulfide bond, glycosylation and mutational changes contribute to determining the fibril protein fold and help to generate a fibril morphology that is able to withstand proteolytic degradation inside the body.


Assuntos
Amiloidose de Cadeia Leve de Imunoglobulina/metabolismo , Microscopia Crioeletrônica , Glicosilação , Amiloidose de Cadeia Leve de Imunoglobulina/genética , Mutação , Conformação Proteica , Dobramento de Proteína
14.
Molecules ; 26(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203841

RESUMO

Screening for systemic amyloidosis is typically carried out with abdominal fat aspirates with varying reported sensitivities. Fat aspirates are preferred for use in primary screening instead of organ biopsies as they are less invasive and thereby minimize the potential risk of complications. At Odense Amyloidosis Center, we performed a prospective study on whether the combined use of fat aspirate and tru-cut skin biopsy could increase the diagnostic sensitivity. Both fat aspirates and skin biopsies were screened with Congo Red staining, and positive biopsies were subsequently subtyped using immunoelectron microscopy and mass spectrometry. Seventy-six patients were included. In total, 24 patients had systemic amyloidosis (11 AL, 12 wtATTR, 1 AA), and 6 patients had localized amyloidosis. Combined fat aspirate and skin biopsy were Congo Red-positive in 15 patients (overall sensitivity (OS) 62.5%). Fat aspirates were positive in 14 patients (OS 58.3%), and the skin biopsy was positive in 5 patients (OS 20.8%). In only one patient did the skin biopsy add extra diagnostic information. The sensitivity differed between AL and ATTR amyloidosis-81.8% and 41.7%, respectively. Using skin biopsy as the only screening method is not recommended.


Assuntos
Proteínas Amiloidogênicas/análise , Amiloidose/diagnóstico , Amiloidose de Cadeia Leve de Imunoglobulina/diagnóstico , Tecido Adiposo/patologia , Adulto , Idoso , Amiloide/análise , Amiloidose/metabolismo , Biópsia/efeitos adversos , Feminino , Humanos , Amiloidose de Cadeia Leve de Imunoglobulina/metabolismo , Masculino , Espectrometria de Massas/métodos , Pessoa de Meia-Idade , Estudos Prospectivos , Pele/patologia , Coloração e Rotulagem/métodos , Gordura Subcutânea/patologia
15.
Molecules ; 26(12)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208058

RESUMO

Inhibition of amyloid fibril formation could benefit patients with systemic amyloidosis. In this group of diseases, deposition of amyloid fibrils derived from normally soluble proteins leads to progressive tissue damage and organ failure. Amyloid formation is a complex process, where several individual steps could be targeted. Several small molecules have been proposed as inhibitors of amyloid formation. However, the exact mechanism of action for a molecule is often not known, which impedes medicinal chemistry efforts to develop more potent molecules. Furthermore, commonly used assays are prone to artifacts that must be controlled for. Here, potential mechanisms by which small molecules could inhibit aggregation of immunoglobulin light-chain dimers, the precursor proteins for amyloid light-chain (AL) amyloidosis, are studied in assays that recapitulate different aspects of amyloidogenesis in vitro. One molecule reduced unfolding-coupled proteolysis of light chains, but no molecules inhibited aggregation of light chains or disrupted pre-formed amyloid fibrils. This work demonstrates the challenges associated with drug development for amyloidosis, but also highlights the potential to combine therapies that target different aspects of amyloidosis.


Assuntos
Proteínas Amiloidogênicas/metabolismo , Descoberta de Drogas/métodos , Cadeias Leves de Imunoglobulina/química , Amiloidose de Cadeia Leve de Imunoglobulina/tratamento farmacológico , Proteínas Recombinantes/isolamento & purificação , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas Amiloidogênicas/química , Humanos , Amiloidose de Cadeia Leve de Imunoglobulina/metabolismo , Proteólise , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Bibliotecas de Moléculas Pequenas/química
17.
Biochem Soc Trans ; 49(2): 977-985, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33929491

RESUMO

Systemic amyloidosis is defined as a protein misfolding disease in which the amyloid is not necessarily deposited within the same organ that produces the fibril precursor protein. There are different types of systemic amyloidosis, depending on the protein constructing the fibrils. This review will focus on recent advances made in the understanding of the structural basis of three major forms of systemic amyloidosis: systemic AA, AL and ATTR amyloidosis. The three diseases arise from the misfolding of serum amyloid A protein, immunoglobulin light chains or transthyretin. The presented advances in understanding were enabled by recent progress in the methodology available to study amyloid structures and protein misfolding, in particular concerning cryo-electron microscopy (cryo-EM) and nuclear magnetic resonance (NMR) spectroscopy. An important observation made with these techniques is that the structures of previously described in vitro formed amyloid fibrils did not correlate with the structures of amyloid fibrils extracted from diseased tissue, and that in vitro fibrils were typically more protease sensitive. It is thus possible that ex vivo fibrils were selected in vivo by their proteolytic stability.


Assuntos
Amiloide/metabolismo , Amiloidose/metabolismo , Microscopia Crioeletrônica/métodos , Espectroscopia de Ressonância Magnética/métodos , Pré-Albumina/metabolismo , Deficiências na Proteostase/metabolismo , Amiloide/ultraestrutura , Amiloidose/patologia , Humanos , Cadeias Leves de Imunoglobulina/metabolismo , Cadeias Leves de Imunoglobulina/ultraestrutura , Amiloidose de Cadeia Leve de Imunoglobulina/metabolismo , Amiloidose de Cadeia Leve de Imunoglobulina/patologia , Pré-Albumina/ultraestrutura , Deficiências na Proteostase/patologia , Proteína Amiloide A Sérica/metabolismo , Proteína Amiloide A Sérica/ultraestrutura
18.
Eur J Haematol ; 106(6): 836-841, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33725381

RESUMO

BACKGROUND: Cast nephropathy (CN) is associated with a unfavourable outcome in monoclonal light chain (mLC) disease, but also more possible LC-related renal diseases as well as non-LC-related disease can occur. Thus, it is crucial to understand the underlying renal disease. On the other hand, LC can interfere with coagulation preventing kidney biopsy as the gold standard. We sought to develop a non-invasive algorithm to diagnose CN with a good sensitivity and specificity. METHOD: We analysed data from patients with mLC disease who underwent kidney biopsy. The patients were classified in 4 groups according the renal histology: CN, AL amyloidosis, light chain deposition disease, and other renal disease. Afterwards, different algorithms were calculated for their sensitivity and specificity. RESULTS: CN showed a significant higher concentration of serum-free LC and urine LC (LCu), but there was a wide and overlapping range with the other groups. The best accuracy was achieved for a LCu/GFR ratio >2 in patients with lambda LC and either a LCu/GFR > 1 and proteinuria <8 g/24 h or a LCu/GFR > 5 in patients with proteinuria >8 g/24 h in patients with kappa LC. In lambda LC, the sensitivity and specificity for CN was 94% and 90%, respectively; in kappa LC 87% and 81%, respectively. DISCUSSION: In patients with coagulation disturbances due to LC, a non-invasive algorithm can separate patients with CN from other renal disease in mLC disease.


Assuntos
Taxa de Filtração Glomerular , Cadeias Leves de Imunoglobulina/metabolismo , Amiloidose de Cadeia Leve de Imunoglobulina , Nefropatias , Rim/metabolismo , Mieloma Múltiplo , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Amiloidose de Cadeia Leve de Imunoglobulina/diagnóstico , Amiloidose de Cadeia Leve de Imunoglobulina/metabolismo , Nefropatias/diagnóstico , Nefropatias/metabolismo , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/metabolismo
19.
Nat Commun ; 12(1): 875, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33558536

RESUMO

Systemic AL amyloidosis is a debilitating and potentially fatal disease that arises from the misfolding and fibrillation of immunoglobulin light chains (LCs). The disease is patient-specific with essentially each patient possessing a unique LC sequence. In this study, we present two ex vivo fibril structures of a λ3 LC. The fibrils were extracted from the explanted heart of a patient (FOR005) and consist of 115-residue fibril proteins, mainly from the LC variable domain. The fibril structures imply that a 180° rotation around the disulfide bond and a major unfolding step are necessary for fibrils to form. The two fibril structures show highly similar fibril protein folds, differing in only a 12-residue segment. Remarkably, the two structures do not represent separate fibril morphologies, as they can co-exist at different z-axial positions within the same fibril. Our data imply the presence of structural breaks at the interface of the two structural forms.


Assuntos
Amiloide/ultraestrutura , Microscopia Crioeletrônica , Amiloidose de Cadeia Leve de Imunoglobulina/metabolismo , Sequência de Aminoácidos , Feminino , Humanos , Cadeias Leves de Imunoglobulina/metabolismo , Pessoa de Meia-Idade , Mutação/genética , Agregados Proteicos , Conformação Proteica
20.
J Clin Invest ; 131(4)2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33444292

RESUMO

DREAM (Dp, Rb-like, E2F, and MuvB) is a transcriptional repressor complex that regulates cell proliferation, and its loss causes neonatal lethality in mice. To investigate DREAM function in adult mice, we used an assembly-defective p107 protein and conditional deletion of its redundant family member p130. In the absence of DREAM assembly, mice displayed shortened survival characterized by systemic amyloidosis but no evidence of excessive cellular proliferation. Amyloid deposits were found in the heart, liver, spleen, and kidneys but not the brain or bone marrow. Using laser-capture microdissection followed by mass spectrometry, we identified apolipoproteins as the most abundant components of amyloids. Intriguingly, apoA-IV was the most detected amyloidogenic protein in amyloid deposits, suggesting apoA-IV amyloidosis (AApoAIV). AApoAIV is a recently described form, whereby WT apoA-IV has been shown to predominate in amyloid plaques. We determined by ChIP that DREAM directly regulated Apoa4 and that the histone variant H2AZ was reduced from the Apoa4 gene body in DREAM's absence, leading to overexpression. Collectively, we describe a mechanism by which epigenetic misregulation causes apolipoprotein overexpression and amyloidosis, potentially explaining the origins of nongenetic amyloid subtypes.


Assuntos
Amiloide/metabolismo , Apolipoproteínas A/metabolismo , Amiloidose de Cadeia Leve de Imunoglobulina/metabolismo , Complexos Multiproteicos/imunologia , Proteína p107 Retinoblastoma-Like/deficiência , Amiloide/genética , Animais , Apolipoproteínas A/genética , Amiloidose de Cadeia Leve de Imunoglobulina/genética , Amiloidose de Cadeia Leve de Imunoglobulina/patologia , Camundongos , Camundongos Knockout , Complexos Multiproteicos/genética , Especificidade de Órgãos/genética , Proteína p107 Retinoblastoma-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA