Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 807
Filtrar
1.
Ann Plast Surg ; 93(5): 624-630, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39445881

RESUMO

BACKGROUND: Hypoxia-inducible factor-1α (HIF-1α), regulated by prolyl hydroxylase, plays a central role in tissue adaptation to ischemia. This study investigates the impact of HIF-1α on angiogenesis in the Choke II zone of multiterritory perforator flaps. METHODS: Ninety male Wistar rats were allocated into 3 groups, with 30 rats in each group: the dimethyloxalylglycine (DMOG) group, the 3-(5-hydroxymethyl-2-furyl)-1-benzylindazole (YC-1) group, and the normal saline (NS) group. All rats underwent multiterritory perforator flap surgeries on their dorsal side. Subsequently, they received intraperitoneal injections of DMOG (40 mg/kg), YC-1 (10 mg/kg), and normal saline on postoperative days 1, 2, and 3, respectively. After treatment, angiogenesis in the Choke II zone of the flap on day 7 was observed through transillumination tests and lead oxide/gelatin x-ray angiography. Histological features were determined using hematoxylin and eosin staining, and the expression of HIF-1α and vascular endothelial growth factor (VEGF) in the Choke II region of the flap was assessed via immunohistochemistry and western blotting. RESULTS: Compared to the YC-1 and NS groups, the DMOG group exhibited significant angiogenesis, resulting in a denser vascular network in the Choke II zone of the flap. The DMOG group showed significantly higher microvessel density in the Choke II zone than the YC-1 and NS groups (7.10 ± 0.99 vs 24.30 ± 3.65; 14.30 ± 2.40 vs 24.30 ± 3.65, both P<0.05). Additionally, the DMOG group demonstrated higher expression of VEGF and HIF-1α in the flaps than the other groups (P < 0.05). CONCLUSIONS: In summary, HIF-1α enhances the expression of VEGF, promoting angiogenesis in the Choke II zone of the multiterritory perforator flap, thus increasing the survival area.


Assuntos
Sobrevivência de Enxerto , Subunidade alfa do Fator 1 Induzível por Hipóxia , Neovascularização Fisiológica , Retalho Perfurante , Ratos Wistar , Fator A de Crescimento do Endotélio Vascular , Animais , Masculino , Retalho Perfurante/irrigação sanguínea , Retalho Perfurante/transplante , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Ratos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Aminoácidos Dicarboxílicos/farmacologia , Indazóis/farmacologia , Distribuição Aleatória
2.
FASEB J ; 38(19): e70091, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39383062

RESUMO

Impaired wound healing in diabetic patients is the leading cause of diabetes-associated hospitalizations and approximately 50% of lower limb amputations. This is due to multiple factors, including elevated glucose, sustained hypoxia, and cell dysfunction. Previously, diabetic wounds were found to contain excessive levels of the matricellular protein thrombospondin-2 (TSP2) and genetic ablation of TSP2 in diabetic mice or treatment of wounds with a hydrogel derived from TSP2-null mouse skin improved healing. Previously, TSP2 has been shown to be repressed by hypoxia, but in the present study we observed sustained hypoxia and overlapping TSP2 deposition in diabetic wounds. We determined this observation was due to the insufficient HIF-1α activation verified by western blot and immunofluorescent analysis of wound tissues and in vitro hypoxia experiments. Application of Dimethyloxalylglycine (DMOG), which can stabilize HIF-1α, inhibited TSP2 expression in diabetic fibroblasts in hypoxic conditions. Therefore, we prepared DMOG-containing TSP2KO hydrogel and applied it to the wounds of diabetic mice. In comparison to empty TSP2KO hydrogel or DMOG treatment, we observed improved wound healing associated with a reduction of TSP2, reduced hypoxia, and increased neovascularization. Overall, our findings shed light on the intricate interplay between hyperglycemia, hypoxia, and TSP2 in the complex environment of diabetic wounds.


Assuntos
Diabetes Mellitus Experimental , Subunidade alfa do Fator 1 Induzível por Hipóxia , Trombospondinas , Cicatrização , Animais , Cicatrização/efeitos dos fármacos , Trombospondinas/metabolismo , Trombospondinas/genética , Camundongos , Diabetes Mellitus Experimental/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Aminoácidos Dicarboxílicos/farmacologia , Masculino , Camundongos Knockout , Hipóxia/metabolismo , Camundongos Endogâmicos C57BL , Fibroblastos/metabolismo , Hipóxia Celular
3.
Sci Adv ; 10(35): eadq2366, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39196939

RESUMO

Adoptive cell transfer (ACT) is a therapeutic strategy to augment antitumor immunity. Here, we report that ex vivo treatment of mouse CD8+ T cells with dimethyloxalylglycine (DMOG), a stabilizer of hypoxia-inducible factors (HIFs), induced HIF binding to the genes encoding the costimulatory receptors CD81, GITR, OX40, and 4-1BB, leading to increased expression. DMOG treatment increased T cell killing of melanoma cells, which was further augmented by agonist antibodies targeting each costimulatory receptor. In tumor-bearing mice, ACT using T cells treated ex vivo with DMOG and agonist antibodies resulted in decreased tumor growth compared to ACT using control T cells and increased intratumoral markers of CD8+ T cells (CD7, CD8A, and CD8B1), natural killer cells (NCR1 and KLRK1), and cytolytic activity (perforin-1 and tumor necrosis factor-α). Costimulatory receptor gene expression was also induced when CD8+ T cells were treated with three highly selective HIF stabilizers that are currently in clinical use.


Assuntos
Linfócitos T CD8-Positivos , Imunoterapia Adotiva , Animais , Camundongos , Imunoterapia Adotiva/métodos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/efeitos dos fármacos , Aminoácidos Dicarboxílicos/farmacologia , Linhagem Celular Tumoral , Receptores OX40/metabolismo , Proteína Relacionada a TNFR Induzida por Glucocorticoide/metabolismo , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Camundongos Endogâmicos C57BL , Melanoma Experimental/terapia , Melanoma Experimental/imunologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Citotoxicidade Imunológica/efeitos dos fármacos
4.
Ecotoxicol Environ Saf ; 279: 116481, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38788562

RESUMO

Manganese (Mn) overexposure has been associated with the development of neurological damage reminiscent of Parkinson's disease, while the underlying mechanisms have yet to be fully characterized. This study aimed to investigate the mechanisms leading to injury in dopaminergic neurons induced by Mn and identify novel treatment approaches. In the in vivo and in vitro models, ICR mice and dopaminergic neuron-like PC12 cells were exposed to Mn, respectively. We treated them with anti-ferroptotic agents ferrostatin-1 (Fer-1), deferoxamine (DFO), HIF-1α activator dimethyloxalylglycine (DMOG) and inhibitor LW6. We also used p53-siRNA to verify the mechanism underlying Mn-induced neurotoxicity. Fe and Mn concentrations increased in ICR mice brains overexposed to Mn. Additionally, Mn-exposed mice exhibited movement impairment and encephalic pathological changes, with decreased HIF-1α, SLC7A11, and GPX4 proteins and increased p53 protein levels. Fer-1 exhibited protective effects against Mn-induced both behavioral and biochemical changes. Consistently, in vitro, Mn exposure caused ferroptosis-related changes and decreased HIF-1α levels, all ameliorated by Fer-1. Upregulation of HIF-1α by DMOG alleviated the Mn-associated ferroptosis, while LW6 exacerbated Mn-induced neurotoxicity through downregulating HIF-1α. p53 knock-down also rescued Mn-induced ferroptosis without altering HIF-1α protein expression. Mn overexposure resulted in ferroptosis in dopaminergic neurons, mediated through the HIF-1α/p53/SLC7A11 pathway.


Assuntos
Sistema y+ de Transporte de Aminoácidos , Encéfalo , Ferroptose , Subunidade alfa do Fator 1 Induzível por Hipóxia , Manganês , Camundongos Endogâmicos ICR , Proteína Supressora de Tumor p53 , Animais , Ferroptose/efeitos dos fármacos , Células PC12 , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Camundongos , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Manganês/toxicidade , Encéfalo/efeitos dos fármacos , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Ratos , Masculino , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Cicloexilaminas/farmacologia , Fenilenodiaminas/toxicidade , Fenilenodiaminas/farmacologia , Desferroxamina/farmacologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Aminoácidos Dicarboxílicos
5.
Int J Mol Sci ; 25(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38612687

RESUMO

Dimethyloxalylglycine (DMOG) has been found to stimulate osteogenesis and angiogenesis of stem cells, promoting neo-angiogenesis in bone tissue regeneration. In this review, we conducted a comprehensive search of the literature to investigate the effects of DMOG on osteogenesis and bone regeneration. We screened the studies based on specific inclusion criteria and extracted relevant information from both in vitro and in vivo experiments. The risk of bias in animal studies was evaluated using the SYRCLE tool. Out of the 174 studies retrieved, 34 studies met the inclusion criteria (34 studies were analyzed in vitro and 20 studies were analyzed in vivo). The findings of the included studies revealed that DMOG stimulated stem cells' differentiation toward osteogenic, angiogenic, and chondrogenic lineages, leading to vascularized bone and cartilage regeneration. Addtionally, DMOG demonstrated therapeutic effects on bone loss caused by bone-related diseases. However, the culture environment in vitro is notably distinct from that in vivo, and the animal models used in vivo experiments differ significantly from humans. In summary, DMOG has the ability to enhance the osteogenic and angiogenic differentiation potential of stem cells, thereby improving bone regeneration in cases of bone defects. This highlights DMOG as a potential focus for research in the field of bone tissue regeneration engineering.


Assuntos
Aminoácidos Dicarboxílicos , Regeneração Óssea , Diferenciação Celular , Osteogênese , Células-Tronco , Regeneração Óssea/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Humanos , Diferenciação Celular/efeitos dos fármacos , Animais , Aminoácidos Dicarboxílicos/farmacologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/metabolismo , Engenharia Tecidual/métodos , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/citologia , Glicina/análogos & derivados
6.
Commun Biol ; 5(1): 877, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36028752

RESUMO

α-ketoglutarate (αKG) is a central metabolic node with a broad influence on cellular physiology. The αKG analogue N-oxalylglycine (NOG) and its membrane-permeable pro-drug derivative dimethyl-oxalylglycine (DMOG) have been extensively used as tools to study prolyl hydroxylases (PHDs) and other αKG-dependent processes. In cell culture media, DMOG is rapidly converted to MOG, which enters cells through monocarboxylate transporter MCT2, leading to intracellular NOG concentrations that are sufficiently high to inhibit glutaminolysis enzymes and cause cytotoxicity. Therefore, the degree of (D)MOG instability together with MCT2 expression levels determine the intracellular targets NOG engages with and, ultimately, its effects on cell viability. Here we designed and characterised a series of MOG analogues with the aims of improving compound stability and exploring the functional requirements for interaction with MCT2, a relatively understudied member of the SLC16 family. We report MOG analogues that maintain ability to enter cells via MCT2, and identify compounds that do not inhibit glutaminolysis or cause cytotoxicity but can still inhibit PHDs. We use these analogues to show that, under our experimental conditions, glutaminolysis-induced activation of mTORC1 can be uncoupled from PHD activity. Therefore, these new compounds can help deconvolute cellular effects that result from the polypharmacological action of NOG.


Assuntos
Aminoácidos Dicarboxílicos , Ácidos Cetoglutáricos , Biologia , Alvo Mecanístico do Complexo 1 de Rapamicina
7.
PLoS One ; 17(5): e0268445, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35576220

RESUMO

The integrity of the intestinal barrier is critical for protecting the host against the pathogen. The role of hypoxia-inducible factor-1α (HIF-1α) in the intestinal barrier disfunction related to sepsis remained unclear. The purpose of the present study is to investigate the role of HIF-1α on oxidative damage, the intestinal mucosal permeability, structural and morphological changes during sepsis. Twenty-four Sprague Dawley (SD) rats were randomly divided into four groups of 6 rats each: the sham group (sham), sepsis group (subjected to cecal ligation and perforation, CLP), sepsis + DMOG group (40 mg/kg of DMOG by intraperitoneal injection for 7 consecutive days before CLP), and sepsis + BAY 87-2243 group (9 mg/kg of BAY 87-2243 orally administered for 3 consecutive days before CLP). Sepsis increased plasma levels of inflammatory mediators, oxidative stress markers and HIF-1α expression; caused pathological damage; increased permeability (P < 0.05); and decreased TJ protein expression in the intestinal mucosa of rats with sepsis (P < 0.05). The addition of DMOG up-regulated HIF-1α, then decreased the plasma levels of inflammatory mediators, oxidative stress markers, alleviated pathological damage to the intestinal mucosa and decreased intestinal permeability (P < 0.05); while BAY 87-2243 treatment had the opposite effects. Our findings showed that HIF-1α protects the intestinal barrier function of septic rats by inhibiting intestinal inflammation and oxidative damage, our results provide a novel insight for developing sepsis treatment.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia , Sepse , Infecção dos Ferimentos , Aminoácidos Dicarboxílicos/farmacologia , Animais , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Mediadores da Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Modelos Animais , Oxidiazóis/farmacologia , Pirazóis/farmacologia , Ratos , Ratos Sprague-Dawley , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/metabolismo
8.
Biomolecules ; 12(4)2022 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-35454130

RESUMO

Cells respond to reduced oxygen availability predominately by activation of the hypoxia-inducible factor (HIF) pathway. HIF activation upregulates hundreds of genes that help cells survive in the reduced oxygen environment. The aim of this study is to determine whether chemical-induced HIF accumulation mimics all aspects of the hypoxic response of cells. We compared the effects of dimethyloxalylglycine (DMOG) (a HIF stabiliser) on PC12 cells cultured in air oxygen (20.9% O2, AO) with those cultured in either intermittent 20.9% O2 to 2% O2 (IH) or constant 2% O2 (CN). Cell viability, cell cycle, HIF accumulation, reactive oxygen species (ROS) formation, mitochondrial function and differentiation were used to characterise the PC12 cells and evaluate the impact of DMOG. IH and CN culture reduced the increase in cell numbers after 72 and 96 h and MTT activity after 48 h compared to AO culture. Further, DMOG supplementation in AO induced a dose-dependent reduction in the increase in PC12 cell numbers and MTT activity. IH-cultured PC12 cells displayed increased and sustained HIF-1 expression over 96 h. This was accompanied by increased ROS and mitochondrial burden. PC12 cells in CN displayed little changes in HIF-1 expression or ROS levels. DMOG (0.1 mM) supplementation resulted in an IH-like HIF-1 profile. The mitochondrial burden and action potential of DMOG-supplemented PC12 cells did not mirror those seen in other conditions. DMOG significantly increased S phase cell populations after 72 and 96 h. No significant effect on PC12 cell differentiation was noted with IH and CN culture without induction by nerve growth factor (NGF), while DMOG significantly increased PC12 cell differentiation with and without NGF. In conclusion, DMOG and reduced oxygen levels stabilise HIF and affect mitochondrial activity and cell behaviour. However, DMOG does not provide an accurate replication of the reduced oxygen environments.


Assuntos
Neoplasias das Glândulas Suprarrenais , Feocromocitoma , Neoplasias das Glândulas Suprarrenais/tratamento farmacológico , Aminoácidos Dicarboxílicos , Animais , Hipóxia Celular , Hipóxia , Fator de Crescimento Neural/metabolismo , Oxigênio/metabolismo , Células PC12 , Ratos , Espécies Reativas de Oxigênio/metabolismo
9.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 36(2): 224-230, 2022 Feb 15.
Artigo em Chinês | MEDLINE | ID: mdl-35172410

RESUMO

OBJECTIVE: To study the effect of dimethyloxalylglycine (DMOG) on angiogenesis in Choke Ⅱ zone of rats cross-zone perforator flaps and its mechanism. METHODS: One hundred and twenty-six adult male Sprague Dawley rats were randomly divided into DMOG group, YC-1 group, and control group, with 42 rats in each group. Cross-zone perforator flap model with size of 12 cm×3 cm was made on the back of rats in the three groups. DMOG group was intraperitoneally injected with DMOG (40 mg/kg) at 1 day before operation, 2 hours before operation, and 1, 2, and 3 days after operation; YC-1 group and control group were intraperitoneally injected with YC-1 (10 mg/kg) and the same amount of normal saline at the same time points, respectively. The survival of flap was observed after operation. At 7 days after operation, the survival area of flap in each group was measured and the survival rate of flap was calculated. Flap transmittance test, gelatin-lead oxide angiography, and HE staining were used to observed the angiogenesis in the Choke Ⅱ zone of flaps in each group. Immunohistochemical staining and Western blot were used to detect the expressions of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor 1α (HIF-1α) in Choke Ⅱ zone of flaps in each group. The expressions of VEGF and HIF-1α were also determined by ELISA at 3, 5, and 7 days. RESULTS: At 7 days after operation, there was no obvious necrosis at the distal end of the flap in DMOG group, while necrosis occurred in both the control group and YC-1 group, mainly located at the distal end. The flap survival rate of DMOG group was 90.28%±1.37%, which was significantly higher than that of YC-1 group (84.28%±1.45%) and control group (85.83%±1.60%) ( P<0.05). DMOG group had more angiogenesis in Choke Ⅱ zone and the vascular structure was clear and complete. In YC-1 group and control group, the vessels in Choke Ⅱ zone was less and the vascular structure was disordered. The number of vessels was (25.56±1.29)/field in the DMOG group, which was significantly higher than that in the YC-1 group [(7.38±0.54)/field] and the control group [(14.48±0.91)/field] ( P<0.05). At 3, 5, and 7 days after operation, HIF-1α and VEGF expressions in ChokeⅡzone of DMOG group were significantly higher than those in YC-1 group and control group ( P<0.05). CONCLUSION: DMOG can promote angiogenesis in Choke Ⅱ zone, accelerate the early angiogenesis of the flap, improve the microcirculation and blood supply in the potential zone of the flap, reduce the injury of flap ischemia and hypoxia, and increase the survival rate of the flap.


Assuntos
Retalho Perfurante , Aminoácidos Dicarboxílicos , Animais , Sobrevivência de Enxerto , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Retalho Perfurante/irrigação sanguínea , Ratos , Ratos Sprague-Dawley , Fator A de Crescimento do Endotélio Vascular/metabolismo
10.
Brain Behav ; 12(2): e2466, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35025141

RESUMO

INTRODUCTION: Synaptic N-methyl-d-aspartate receptor subtype 2B(NR2B) is significantly reduced in prefrontal cortex (PFC) in the neurodevelopmental methylazoxymethanol (MAM) model of schizophrenia (SCZ). Recent research has shown that LY395756 can effectively restore NR2B levels and improve cognitive performance in juvenile MAM mice model. However, the underlying mechanisms of these beneficial effects remain unclear. MATERIALS AND METHODS: Juvenile MAM mice model of SCZ is used in our study. Synaptic membrane protein levels were examined by western blotting under different treatment conditions. Interaction of cAMP-response element binding protein (CREB) and the promoter of NR2B was detected by the chromatin immunoprecipitation (ChIP) assay. Further examination of signaling pathway that mediates NR2B expression was also investigated by western blotting. RESULTS: In the PFC of the juvenile MAM mice schizophrenia model, CREB was found to directly bind with the promoter of NR2B. LY395756 activated the phosphorylation of AKT. Phosphorylated AKT subsequently induced the phosphorylation of CREB, and the activated CREB promoted the expression of NR2B. Subsequent experiments showed that the dephosphorylation of CREB induced by protein phosphatase 1 (PP1) can inhibit NR2B levels. Taken together, these findings support that the AKT/CREB signaling pathway is essential for the promoting effect of LY395756 on synaptic NR2B in PFC in juvenile MAM mice SCZ model. CONCLUSIONS: Our investigation has identified a novel mechanism by which LY395756 increases NR2B expression in juvenile MAM mice SCZ model. The AKT/CREB signaling pathway warrants further research as a potential direction for clinical treatment of SCZ.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Esquizofrenia , Aminoácidos Dicarboxílicos , Animais , Compostos Bicíclicos com Pontes , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Modelos Animais de Doenças , Acetato de Metilazoximetanol/análogos & derivados , Camundongos , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/induzido quimicamente , Transdução de Sinais
11.
Pharmacol Res Perspect ; 9(5): e00872, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34617686

RESUMO

Elevation of hypoxia-inducible factor 1 protein has been shown to be protective in acute kidney injury and HIF1α enhancing drug therapies are currently in clinical trials for the treatment of anemia of chronic kidney disease. Despite its benefits, long-term HIF1 elevation seems to be associated with additional effects in the kidneys such as tubulointerstitial fibrosis. To better understand the effects of prolonged HIF1 exposure, assessment of baseline and post-therapy levels of HIF1α and other related biomarkers is essential. In this study, we assessed the effect of HIF1α enhancement using prolyl hydroxylase inhibitor (PHD-I) DMOG, on a key profibrotic marker of kidney disease. In specific, we examined the change in expression of Collagen 4 subunit A2 in cultured urinary cells of CKD patients pre and post 24-hour exposure to 1mM DMOG. Our results show that besides HIF1α enhancement, COL4A2 protein is suppressed in presence of DMOG. To determine if this effect is mediated by HIF1, we used HIF1α gene silencing in HEK293 cells and examined the effect of DMOG on protein and gene expression of COL4A2 post 24-hour exposure. We showed that silencing HIF1α reverses and amplifies the expression of COL4A2 in HEK293 cells. Our data suggest that HIF1 directly regulates the expression of COL4A2 in kidney cells and that HIF1α enhancing therapy has suppressive effects on COL4A2 that may be clinically relevant and must be considered in determining the safety and efficacy of these drugs in the treatment of anemia.


Assuntos
Aminoácidos Dicarboxílicos/farmacologia , Colágeno Tipo IV/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/efeitos dos fármacos , Inibidores de Prolil-Hidrolase/farmacologia , Insuficiência Renal Crônica/metabolismo , Urina/citologia , Idoso , Idoso de 80 Anos ou mais , Anemia/tratamento farmacológico , Anemia/etiologia , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Feminino , Células HEK293 , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Túbulos Renais/citologia , Masculino , Pessoa de Meia-Idade , Interferência de RNA , Insuficiência Renal Crônica/complicações
12.
Mol Hum Reprod ; 27(12)2021 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-34665260

RESUMO

Placental hypoxia and increased levels of maternal blood anti-angiogenic protein, soluble fms-like tyrosine kinase-1 (sFLT1), are associated with the pathogenesis of pre-eclampsia. We have demonstrated that hypoxia-inducible factor (HIF)-2α mediates the upregulation of the hypoxia-induced FLT1 gene in trophoblasts and their cell lines. Here, we investigated the involvement of HIF-1ß, which acts as a dimerization partner for HIF-α, in the upregulation of the FLT1 gene via hypoxia. We confirmed the interactions between HIF-1ß and HIF-2α in the nuclei of BeWo, JAR and JEG-3 cells under hypoxia via co-immunoprecipitation. We found that hypoxia-induced upregulation of the FLT1 gene in BeWo cells and secretion of sFLT1 in human primary trophoblasts were significantly reduced by siRNAs targeting HIF-1ß. Moreover, the upregulation of the FLT1 gene in BeWo cells induced by dimethyloxaloylglycine (DMOG) was also inhibited by silencing either HIF-2α or HIF-1ß mRNA. It was recently shown that DNA demethylation increases both basal and hypoxia-induced expression levels of the FLT1 gene in three trophoblast-derived cell lines. In the demethylated BeWo cells, siRNAs targeting HIF-2α and HIF-1ß suppressed the further increase in the expression levels of the FLT1 gene due to hypoxia or treatment with DMOG. However, luciferase reporter assays and bisulfite sequencing revealed that a hypoxia response element (-966 to -962) of the FLT1 gene is not involved in hypoxia or DMOG-induced upregulation of the FLT1 gene. These findings suggest that HIF-1ß is essential for the elevated production of sFLT1 in the hypoxic trophoblasts and that the HIF-2α/HIF-1ß complex may be a crucial therapeutic target for pre-eclampsia.


Assuntos
Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Trofoblastos/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Aminoácidos Dicarboxílicos/farmacologia , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Hipóxia Celular , Linhagem Celular Tumoral , Metilação de DNA , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Gravidez , Trofoblastos/efeitos dos fármacos , Regulação para Cima , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética
13.
Cell Cycle ; 20(18): 1812-1827, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34382917

RESUMO

The hypoxia-induced transcription factor HIF1 inhibits cell growth in normoxia through poorly understood mechanisms. A constitutive upregulation of hypoxia response is associated with increased malignancy, indicating a loss of antiproliferative effects of HIF1 in cancer cells. To understand these differences, we examined the control of cell cycle in primary human cells with activated hypoxia response in normoxia. Activated HIF1 caused a global slowdown of cell cycle progression through G1, S and G2 phases leading to the loss of mitotic cells. Cell cycle inhibition required a prolonged HIF1 activation and was not associated with upregulation of p53 or the CDK inhibitors p16, p21 or p27. Growth inhibition by HIF1 was independent of its Asn803 hydroxylation or the presence of HIF2. Antiproliferative effects of hypoxia response were alleviated by inhibition of lactate dehydrogenase and, more effectively, by boosting cellular production of NAD+, which was decreased by HIF1 activation. In comparison to normal cells, various cancer lines showed several fold-higher expressions of NAMPT, which is a rate-limiting enzyme in the main biosynthetic pathway for NAD+. Inhibition of NAMPT activity in overexpressor cancer cells sensitized them to antigrowth effects of HIF1. Thus, metabolic changes in cancer cells, such as enhanced NAD+ production, create resistance to growth-inhibitory activity of HIF1 permitting manifestation of its tumor-promoting properties.Abbreviations: DMOG: dimethyloxalylglycine, DM-NOFD: dimethyl N-oxalyl-D-phenylalanine, NMN: ß-nicotinamide mononucleotide.


Assuntos
Adenocarcinoma Bronquioloalveolar/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Hipóxia Celular/genética , Proliferação de Células/genética , Fibroblastos/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Pulmonares/metabolismo , NAD/metabolismo , Transdução de Sinais/genética , Células A549 , Adenocarcinoma Bronquioloalveolar/patologia , Aminoácidos Dicarboxílicos/farmacologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Hipóxia Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citocinas/antagonistas & inibidores , Citocinas/metabolismo , Técnicas de Silenciamento de Genes/métodos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , L-Lactato Desidrogenase/antagonistas & inibidores , L-Lactato Desidrogenase/metabolismo , Neoplasias Pulmonares/patologia , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Nicotinamida Fosforribosiltransferase/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transfecção
14.
Int Immunopharmacol ; 99: 107901, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34273637

RESUMO

Periodontitis is initiated by serious and sustained bacterial infection and ultimately results in chronic immune-mediated inflammation, tissue destruction, and bone loss. The pathogenesis of periodontitis remains unclear. Host immunological responses to periodontal bacteria ultimately determine the severity and mechanisms governing periodontitis progression. This study aimed to clarify the effect of the hypoxia-inducible factor-1α (HIF-1α) activator dimethyloxalylglycine (DMOG) on a mouse periodontitis model and its underlying role in macrophage polarization. qRT-PCR analysis showed that DMOG inhibited the M1-like polarization of both RAW264.7 macrophages and murine bone marrow macrophages (BMMs) and downregulated TNF-α, IL-6, CD86, and MCP-1 expression in vitro. Immunofluorescence staining and flow cytometry also confirmed the less percentage of F4/80 + CD86 + cells after DMOG treatment. The phosphorylation of NF-κB pathway was also inhibited by DMOG with higher level of HIF-1α expression. Furthermore, mice treated with DMOG showed decreased alveolar bone resorption in the experimental periodontitis model, with significant increases in alveolar bone volume/tissue volume (BV/TV) and bone mineral density (BMD). DMOG treatment of mice decreased the ratio of M1/M2 (CD86+/CD206+) macrophages in periodontal tissues, resulting in the downregulation of proinflammatory cytokines such as TNF-α and IL-6 and increased levels of anti-inflammatory factors such as IL-4 and IL-10. DMOG treatment promoted the number of HIF-1α-positive cells in periodontal tissues. This study demonstrated the cell-specific roles of DMOG in macrophage polarization in vitro and provided insight into the mechanism underlying the protective effect of DMOG in a model of periodontitis.


Assuntos
Perda do Osso Alveolar/tratamento farmacológico , Aminoácidos Dicarboxílicos/uso terapêutico , Macrófagos/efeitos dos fármacos , Periodontite/tratamento farmacológico , Perda do Osso Alveolar/diagnóstico por imagem , Perda do Osso Alveolar/imunologia , Perda do Osso Alveolar/patologia , Aminoácidos Dicarboxílicos/farmacologia , Animais , Citocinas/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia , Macrófagos/imunologia , Masculino , Maxila/diagnóstico por imagem , Maxila/patologia , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/imunologia , Periodontite/diagnóstico por imagem , Periodontite/imunologia , Periodontite/patologia , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Microtomografia por Raio-X
15.
Plant Cell ; 33(3): 671-696, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33955484

RESUMO

The plant shikimate pathway directs bulk carbon flow toward biosynthesis of aromatic amino acids (AAAs, i.e. tyrosine, phenylalanine, and tryptophan) and numerous aromatic phytochemicals. The microbial shikimate pathway is feedback inhibited by AAAs at the first enzyme, 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DHS). However, AAAs generally do not inhibit DHS activities from plant extracts and how plants regulate the shikimate pathway remains elusive. Here, we characterized recombinant Arabidopsis thaliana DHSs (AthDHSs) and found that tyrosine and tryptophan inhibit AthDHS2, but not AthDHS1 or AthDHS3. Mixing AthDHS2 with AthDHS1 or 3 attenuated its inhibition. The AAA and phenylpropanoid pathway intermediates chorismate and caffeate, respectively, strongly inhibited all AthDHSs, while the arogenate intermediate counteracted the AthDHS1 or 3 inhibition by chorismate. AAAs inhibited DHS activity in young seedlings, where AthDHS2 is highly expressed, but not in mature leaves, where AthDHS1 is predominantly expressed. Arabidopsis dhs1 and dhs3 knockout mutants were hypersensitive to tyrosine and tryptophan, respectively, while dhs2 was resistant to tyrosine-mediated growth inhibition. dhs1 and dhs3 also had reduced anthocyanin accumulation under high light stress. These findings reveal the highly complex regulation of the entry reaction of the plant shikimate pathway and lay the foundation for efforts to control the production of AAAs and diverse aromatic natural products in plants.


Assuntos
Plântula/metabolismo , Triptofano/metabolismo , Aminoácidos Dicarboxílicos/metabolismo , Arabidopsis/metabolismo , Cicloexenos/metabolismo , Fenilalanina/metabolismo , Ácido Chiquímico/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo
16.
Hepatology ; 74(4): 1766-1781, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33991110

RESUMO

BACKGROUND AND AIMS: Therapeutic strategies against HBV focus, among others, on the activation of the immune system to enable the infected host to eliminate HBV. Hypoxia-inducible factor 1 alpha (HIF1α) stabilization has been associated with impaired immune responses. HBV pathogenesis triggers chronic hepatitis-related scaring, leading inter alia to modulation of liver oxygenation and transient immune activation, both factors playing a role in HIF1α stabilization. APPROACH AND RESULTS: We addressed whether HIF1α interferes with immune-mediated induction of the cytidine deaminase, apolipoprotein B mRNA editing enzyme catalytic subunit 3B (APOBEC3B; A3B), and subsequent covalently closed circular DNA (cccDNA) decay. Liver biopsies of chronic HBV (CHB) patients were analyzed by immunohistochemistry and in situ hybridization. The effect of HIF1α induction/stabilization on differentiated HepaRG or mice ± HBV ± LTßR-agonist (BS1) was assessed in vitro and in vivo. Induction of A3B and subsequent effects were analyzed by RT-qPCR, immunoblotting, chromatin immunoprecipitation, immunocytochemistry, and mass spectrometry. Analyzing CHB highlighted that areas with high HIF1α levels and low A3B expression correlated with high HBcAg, potentially representing a reservoir for HBV survival in immune-active patients. In vitro, HIF1α stabilization strongly impaired A3B expression and anti-HBV effect. Interestingly, HIF1α knockdown was sufficient to rescue the inhibition of A3B up-regulation and -mediated antiviral effects, whereas HIF2α knockdown had no effect. HIF1α stabilization decreased the level of v-rel reticuloendotheliosis viral oncogene homolog B protein, but not its mRNA, which was confirmed in vivo. Noteworthy, this function of HIF1α was independent of its partner, aryl hydrocarbon receptor nuclear translocator. CONCLUSIONS: In conclusion, inhibiting HIF1α expression or stabilization represents an anti-HBV strategy in the context of immune-mediated A3B induction. High HIF1α, mediated by hypoxia or inflammation, offers a reservoir for HBV survival in vivo and should be considered as a restricting factor in the development of immune therapies.


Assuntos
Citidina Desaminase/genética , Hepatite B Crônica/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Fígado/metabolismo , Antígenos de Histocompatibilidade Menor/genética , Fator de Transcrição RelB/genética , Aminoácidos Dicarboxílicos/farmacologia , Animais , Linhagem Celular , Citidina Desaminase/metabolismo , DNA Circular/metabolismo , Regulação para Baixo , Técnicas de Silenciamento de Genes , Vírus da Hepatite B , Hepatite B Crônica/metabolismo , Hepatite B Crônica/virologia , Humanos , Hipóxia/genética , Hipóxia/metabolismo , Receptor beta de Linfotoxina/agonistas , Camundongos , Viabilidade Microbiana , Antígenos de Histocompatibilidade Menor/metabolismo , RNA Mensageiro/metabolismo , Fator de Transcrição RelB/efeitos dos fármacos , Fator de Transcrição RelB/metabolismo
17.
JCI Insight ; 6(8)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33784253

RESUMO

Anastomotic leakage (AL) accounts for a major part of in-house mortality in patients undergoing colorectal surgery. Local ischemia and abdominal sepsis are common risk factors contributing to AL and are characterized by upregulation of the hypoxia-inducible factor (HIF) pathway. The HIF pathway is critically regulated by HIF-prolyl hydroxylases (PHDs). Here, we investigated the significance of PHDs and the effects of pharmacologic PHD inhibition (PHI) during anastomotic healing. Ischemic or septic colonic anastomoses were created in mice by ligation of mesenteric vessels or lipopolysaccharide-induced abdominal sepsis, respectively. Genetic PHD deficiency (Phd1-/-, Phd2+/-, and Phd3-/-) or PHI were applied to manipulate PHD activity. Pharmacologic PHI and genetic PHD2 haplodeficiency (Phd2+/-) significantly improved healing of ischemic or septic colonic anastomoses, as indicated by increased bursting pressure and reduced AL rates. Only Phd2+/- (but not PHI or Phd1-/-) protected from sepsis-related mortality. Mechanistically, PHI and Phd2+/- induced immunomodulatory (M2) polarization of macrophages, resulting in increased collagen content and attenuated inflammation-driven immune cell recruitment. We conclude that PHI improves healing of colonic anastomoses in ischemic or septic conditions by Phd2+/--mediated M2 polarization of macrophages, conferring a favorable microenvironment for anastomotic healing. Patients with critically perfused colorectal anastomosis or abdominal sepsis could benefit from pharmacologic PHI.


Assuntos
Anastomose Cirúrgica , Colo/metabolismo , Macrófagos/metabolismo , Prolil Hidroxilases/metabolismo , Abdome/cirurgia , Aminoácidos Dicarboxílicos , Anastomose Cirúrgica/efeitos adversos , Fístula Anastomótica , Animais , Células CACO-2 , Colágeno/metabolismo , Colo/patologia , Colo/cirurgia , Feminino , Humanos , Hipóxia , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Inflamação/metabolismo , Isquemia , Masculino , Camundongos , RNA Mensageiro/metabolismo , Sepse , Cicatrização
18.
Biotechnol J ; 16(5): e2000389, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33471965

RESUMO

Strategies aiming at increasing the survival and paracrine activity of human mesenchymal stromal cells (MSCs) are of utmost importance to achieve the full therapeutic potential of these cells. Herein, we propose both physical and biochemical strategies to enhance the survival, homing, angiogenic, and immunomodulatory properties of MSCs in vitro. To that purpose, we compared the effect of exposing either 2D monolayer or 3D spheroids of MSCs to (i) hypoxia (2% O2 ) or to (ii) a hypoxic-mimetic small molecule, dimethyloxalylglycine (DMOG), with cells cultured at 21% O2 . 3D-cultured MSC spheroids evidenced higher survival upon exposure to oxidative stress and expressed higher levels of factors involved in tissue repair processes, namely tumor necrosis factor-stimulated gene-6, matrix metalloproteinase-2, and vascular endothelial growth factor. MSCs cultured as 3D spheroids and further exposed to hypoxia or hypoxic-mimetic conditions provided by DMOG synergistically favored the expression of the cell surface marker C-X-C chemokine receptor type-4, involved in homing processes to injured tissues, and adhesion to extracellular matrix components as fibronectin. These results highlight the role of ex vivo preconditioning approaches, presenting a novel strategy that combine biochemical stimuli with 3D spheroid organization of MSCs to maximize their tissue regeneration potential.


Assuntos
Células-Tronco Mesenquimais , Aminoácidos Dicarboxílicos , Células Cultivadas , Humanos , Metaloproteinase 2 da Matriz , Esferoides Celulares , Fator A de Crescimento do Endotélio Vascular
19.
Exp Clin Endocrinol Diabetes ; 129(6): 420-428, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31185507

RESUMO

It well known that long-lasting hyperglycaemia disrupts neuronal function and leads to neuropathy and other neurodegenerative diseases. The α-ketoglutarate analogue (DMOG) and the caspase-inhibitor "Ac-LETD-CHO are potential neuroprotective molecules. Whether their protections may also extend glucotoxicity-induced neuropathy is not known. Herein, we evaluated the possible cell-protective effects of DMOG and Ac-LETD-CHO against hyperglycaemia-induced reactive oxygen species and apoptosis in ND7/23 neuronal cells. The impact of glucotoxicity on the expression of HIF-1α and a panel of micro-RNAs of significance in hyperglycaemia and apoptosis was also investigated.ND7/23 cells cultured under hyperglycaemic conditions showed decreased cell viability and elevated levels of ROS production in a dose- and time-dependent manner. However, presence DMOG (500 µM) and/or Ac-LETD-CHO (50 µM) counteracted this effect and increase cell viability concomitant with reduction in ROS production, DNA damage and apoptosis. AcLETD-CHO suppressed hyperglycaemia-induced caspase 3 activation in ND7/23 cells. Both DMOG and Ac-LETD-CHO increased HIF-1α expression paralleled with the suppression of miR-126-5p, miR-128-3p and miR-181 expression and upregulation of miR-26b, 106a-5p, 106b-5p, 135a-5p, 135b-5p, 138-5p, 199a-5p, 200a-3p and 200c-3p expression.We demonstrate a mechanistic link for the DMOG and Ac-LETD-CHO protection against hyperglycaemia-induced neuronal dysfunction, DNA damage and apoptosis and thereby propose that pharmacological agents mimicking these effects may represent a promising novel therapy for the hyperglycaemia-induced neuropathy.


Assuntos
Aminoácidos Dicarboxílicos/farmacologia , Apoptose/efeitos dos fármacos , Inibidores de Caspase/farmacologia , Neuropatias Diabéticas/prevenção & controle , Hiperglicemia/complicações , Subunidade alfa do Fator 1 Induzível por Hipóxia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Células Cultivadas , Humanos
20.
Cartilage ; 13(2_suppl): 722S-733S, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33100027

RESUMO

OBJECTIVE: Articular cartilage exists in a hypoxic environment, which motivates the use of hypoxia-simulating chemical agents to improve matrix production in cartilage tissue engineering. The aim of this study was to investigate whether dimethyloxalylglycine (DMOG), a HIF-1α stabilizer, would improve matrix production in 3-dimensional (3D) porcine synovial-derived mesenchymal stem cell (SYN-MSC) co-culture with chondrocytes. DESIGN: Pellet cultures and scaffold-based engineered cartilage were grown in vitro to determine the impact of chemically simulated hypoxia on 2 types of 3D cell culture. DMOG-treated groups were exposed to DMOG from day 14 to day 21 and grown up to 6 weeks with n = 3 per condition and time point. RESULTS: The addition of DMOG resulted in HIF-1α stabilization in the exterior of the engineered constructs, which resulted in increased regional type II collagen deposition, but the stabilization did not translate to overall increased extracellular matrix deposition. There was no increase in HIF-1α stabilization in the pellet cultures. DMOG treatment also negatively affected the mechanical competency of the engineered cartilage. CONCLUSIONS: Despite previous studies that demonstrated the efficacy of DMOG, here, short-term treatment with DMOG did not have a uniformly positive impact on the chondrogenic capacity of SYN-MSCs in either pellet culture or in scaffold-based engineered cartilage, as evidenced by reduced matrix production. Such 3D constructs generally have a naturally occurring hypoxic center, which allows for the stabilization of HIF-1α in the interior tissue. Thus, short-term addition of DMOG may not further improve this in cartilage tissue engineered constructs.


Assuntos
Cartilagem Articular , Engenharia Tecidual , Aminoácidos Dicarboxílicos , Animais , Condrogênese , Suínos , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA