Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 227
Filtrar
1.
Nat Commun ; 13(1): 3586, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35739107

RESUMO

Impaired activity of the chloride channel CFTR is the cause of cystic fibrosis. 14-3-3 proteins have been shown to stabilize CFTR and increase its biogenesis and activity. Here, we report the identification and mechanism of action of a macrocycle stabilizing the 14-3-3/CFTR complex. This molecule rescues plasma membrane localization and chloride transport of F508del-CFTR and works additively with the CFTR pharmacological chaperone corrector lumacaftor (VX-809) and the triple combination Trikafta®. This macrocycle is a useful tool to study the CFTR/14-3-3 interaction and the potential of molecular glues in cystic fibrosis therapeutics.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Aminofenóis/metabolismo , Aminopiridinas/metabolismo , Aminopiridinas/farmacologia , Membrana Celular/metabolismo , Fibrose Cística/tratamento farmacológico , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Mutação
2.
Protein Expr Purif ; 170: 105589, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32027983

RESUMO

The cation-independent mannose-6-phosphate receptor (CI-M6PR, aka insulin-like growth factor II receptor or IGFIIR) is a membrane protein that plays a central role in the trafficking of lysosomal acid hydrolases into lysosomes via mannose-6-phosphate (M6P) binding domains. In order to maintain cellular metabolic/catabolic homeostasis, newly synthesized lysosomal acid hydrolases are required to bind to M6PR for transit. Acid hydrolases secreted by cells can also be internalized via M6PR residing on the cell membrane and are transported to the lysosomes, a feature that enables enzyme replacement therapy for the treatment of several lysosomal storage disorders. Therefore, a thorough characterization of this receptor is critical to the development of lysosomal enzyme-based therapeutics that utilize M6PR for drug delivery to the lysosome. However, the extracellular domain (ECD) of M6PR is highly complex, containing 15-mannose receptor homology (MRH) domains. In addition, homodimerization of the receptor can occur at the membrane, making its characterization challenging. In this study, a novel human M6PR (hM6PR)-overexpressing cell line originally established for hM6PR cellular uptake assay was utilized for production of hM6PR-ECD, and a novel small molecule biomimetic (aminophenyl-M6P) affinity resin was developed for the purification of M6PR-ECD. The affinity-purified hM6PR-ECD was monomeric, contained 14 intact MRH domains (1-14) and a partial MRH domain 15, and was successfully employed in ELISA-based and surface plasmon resonance-based binding assays to demonstrate its ligand-binding functionality, making it suitable for the evaluation of biotherapeutics that utilize M6PR for cellular internalization.


Assuntos
Aminofenóis/química , Materiais Biomiméticos/química , Membrana Celular/enzimologia , Manosefosfatos/química , Receptor IGF Tipo 2/isolamento & purificação , Sequência de Aminoácidos , Aminofenóis/metabolismo , Materiais Biomiméticos/metabolismo , Linhagem Celular Tumoral , Membrana Celular/química , Cromatografia de Afinidade , Ensaios Enzimáticos , Ensaio de Imunoadsorção Enzimática , Fibroblastos/química , Fibroblastos/enzimologia , Expressão Gênica , Humanos , Cinética , Manosefosfatos/metabolismo , Domínios Proteicos , Receptor IGF Tipo 2/genética , Receptor IGF Tipo 2/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Ressonância de Plasmônio de Superfície
3.
Nat Prod Rep ; 37(3): 425-463, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-31650156

RESUMO

Covering: up to July 2019 Terpene synthases (TSs) are responsible for generating much of the structural diversity found in the superfamily of terpenoid natural products. These elegant enzymes mediate complex carbocation-based cyclization and rearrangement cascades with a variety of electron-rich linear and cyclic substrates. For decades, two main classes of TSs, divided by how they generate the reaction-triggering initial carbocation, have dominated the field of terpene enzymology. Recently, several novel and unconventional TSs that perform TS-like reactions but do not resemble canonical TSs in sequence or structure have been discovered. In this review, we identify 12 families of non-canonical TSs and examine their sequences, structures, functions, and proposed mechanisms. Nature provides a wide diversity of enzymes, including prenyltransferases, methyltransferases, P450s, and NAD+-dependent dehydrogenases, as well as completely new enzymes, that utilize distinctive reaction mechanisms for TS chemistry. These unique non-canonical TSs provide immense opportunities to understand how nature evolved different tools for terpene biosynthesis by structural and mechanistic characterization while affording new probes for the discovery of novel terpenoid natural products and gene clusters via genome mining. With every new discovery, the dualistic paradigm of TSs is contradicted and the field of terpene chemistry and enzymology continues to expand.


Assuntos
Alquil e Aril Transferases/química , Alquil e Aril Transferases/metabolismo , Aminofenóis/química , Aminofenóis/metabolismo , Canabinoides/química , Canabinoides/metabolismo , Ciclização , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Dimetilaliltranstransferase/química , Dimetilaliltranstransferase/metabolismo , Iridoides/química , Iridoides/metabolismo , Toxinas de Lyngbya/química , Toxinas de Lyngbya/metabolismo , Estrutura Molecular , Fenazinas/química , Fenazinas/metabolismo , Compostos Policíclicos/química , Compostos Policíclicos/metabolismo , Conformação Proteica , Terpenos/química , Terpenos/metabolismo
4.
Molecules ; 24(17)2019 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-31480486

RESUMO

Elucidation of the structure and function of biomolecules provides us knowledge that can be transferred into the generation of new materials and eventually applications in e.g., catalysis or bioassays. The main problems, however, concern the complexity of the natural systems and their limited availability, which necessitates utilization of simple biomimetic analogues that are, to a certain degree, similar in terms of structure and thus behaviour. We have, therefore, devised a small library of six tridentate N-heterocyclic coordinating agents (L1-L6), which, upon complexation, form two groups of artificial, monometallic non-heme iron species. Utilization of iron(III) chloride leads to the formation of the 1:1 (Fe:Ln) 'open' complexes, whereas iron(II) trifluoromethanosulfonate allows for the synthesis of 1:2 (M:Ln) 'closed' systems. The structural differences between the individual complexes are a result of the information encoded within the metallic centre and the chosen counterion, whereas the organic scaffold influences the observed properties. Indeed, the number and nature of the external hydrogen bond donors coming from the presence of (benz)imidazole moieties in the ligand framework are responsible for the observed biological behaviour in terms of mimicking phenoxazinone synthase activity and interaction with DNA.


Assuntos
Benzimidazóis/química , Materiais Biomiméticos/química , DNA/metabolismo , Ferro/química , Oxirredutases/metabolismo , Bases de Schiff/química , Aminofenóis/metabolismo , Animais , Ligação Competitiva , Catálise , Bovinos , Fluorescência , Imidazóis , Cinética , Ligantes , Oxazinas , Oxirredução , Bases de Schiff/síntese química , Elementos de Transição/metabolismo
5.
J Am Chem Soc ; 141(31): 12406-12412, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31291107

RESUMO

Nonheme diiron monooxygenases make up a rapidly growing family of oxygenases that are rarely identified in secondary metabolism. Herein, we report the in vivo, in vitro, and structural characterizations of a nonheme diiron monooxygenase, PtmU3, that installs a C-5 ß-hydroxyl group in the unified biosynthesis of platensimycin and platencin, two highly functionalized diterpenoids that act as potent and selective inhibitors of bacterial and mammalian fatty acid synthases. This hydroxylation sets the stage for the subsequent A-ring cleavage step key to the unique diterpene-derived scaffolds of platensimycin and platencin. PtmU3 adopts an unprecedented triosephosphate isomerase (TIM) barrel structural fold for this class of enzymes and possesses a noncanonical diiron active site architecture with a saturated six-coordinate iron center lacking a µ-oxo bridge. This study reveals the first member of a previously unidentified superfamily of TIM-barrel-fold enzymes for metal-dependent dioxygen activation, with the majority predicted to act on CoA-linked substrates, thus expanding our knowledge of nature's repertoire of nonheme diiron monooxygenases and TIM-barrel-fold enzymes.


Assuntos
Adamantano/metabolismo , Aminobenzoatos/metabolismo , Aminofenóis/metabolismo , Anilidas/metabolismo , Ferro/metabolismo , Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Compostos Policíclicos/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Hidroxilação , Modelos Moleculares
6.
J Am Chem Soc ; 141(9): 4043-4050, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30735041

RESUMO

Platensimycin (PTM) and platencin (PTN) are highly functionalized bacterial diterpenoids of ent-kauranol and ent-atiserene biosynthetic origin. C7 oxidation in the B-ring plays a key biosynthetic role in generating structural complexity known for ent-kaurane and ent-atisane derived diterpenoids. While all three oxidation patterns, α-hydroxyl, ß-hydroxyl, and ketone, at C7 are seen in both the ent-kaurane and ent-atisane derived diterpenoids, their biosynthetic origins remain largely unknown. We previously established that PTM and PTN are produced by a single biosynthetic machinery, featuring cryptic C7 oxidations at the B-rings that transform the ent-kauranol and ent-atiserene derived precursors into the characteristic PTM and PTN scaffolds. Here, we report a three-enzyme cascade affording C7 α-hydroxylation in PTM and PTN biosynthesis. Combining in vitro and in vivo studies, we show that PtmO3 and PtmO6 are two functionally redundant α-ketoglutarate-dependent dioxygenases that generate a cryptic C7 ß-hydroxyl on each of the ent-kauranol and ent-atiserene scaffolds, and PtmO8 and PtmO1, a pair of NAD+/NADPH-dependent dehydrogenases, subsequently work in concert to invert the C7 ß-hydroxyl to α-hydroxyl via a C7 ketone intermediate. PtmO3 and PtmO6 represent the first dedicated C7 ß-hydroxylases characterized to date and, together with PtmO8 and PtmO1, provide an account for the biosynthetic origins of all three C7 oxidation patterns that may shed light on other B-ring modifications in bacterial, plant, and fungal diterpenoid biosynthesis. Given their unprecedented activities in C7 oxidations, PtmO3, PtmO6, PtmO8, and PtmO1 enrich the growing toolbox of novel enzymes that could be exploited as biocatalysts to rapidly access complex diterpenoid natural products.


Assuntos
Adamantano/metabolismo , Aminobenzoatos/metabolismo , Aminofenóis/metabolismo , Anilidas/metabolismo , Compostos Policíclicos/metabolismo , Adamantano/química , Aminobenzoatos/química , Aminofenóis/química , Anilidas/química , Hidroxilação , Conformação Molecular , Oxirredução , Compostos Policíclicos/química , Estereoisomerismo
7.
J Chem Inf Model ; 59(5): 2274-2286, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-30516382

RESUMO

The α,ß-tubulin is the building block of microtubules, which is associated with and dissociated from the microtubular architecture complying with the dynamic instability of the microtubules. This dynamic instability has a direct relation with the spindle formation by the microtubules and cell division kinetics. E7010 is one of the promising ligands of an α,ß-tubulin protein that binds at the core of this protein and can diminish the protein's ability to fit to a growing microtubule, thus frustrating cell division. Although X-ray crystallography has reported a specific binding conformation of E7010 in PDB, molecular dynamics (MD) simulations have revealed two other conformational states of the ligand capable of binding to tubulin with stabilities close to that state reported in PDB. To rationalize this quasidegeneracy of ligand binding modes, MD simulations have further revealed that the understanding of the mechanism of E7010-tubulin binding remains incomplete unless the role of water molecules to bridge this interaction is taken into consideration, a very critical insight that was not visible from the PDB structure. Further, these water molecules differ from the standard examples of "bridging" waters which generally exist as isolated water molecules between the receptor and the ligand. In the present case, the water molecules sandwiched between ligand and protein, sequestered from the bulk solvent, integrate with each other by an H-bonds network forming a group, which appear as microclusters of water. The structural packing with the ligand binding pocket and the bridging interactions between protein and ligand take place through such clusters. The presence of this microcluster of water is not just cosmetic, instead they have a crucial impact on the ligand binding thermodynamics. Only with the explicit consideration of these water clusters in the binding energy calculations (MMGBSA) is the stability of the native mode of ligand binding reported in PDB rationalized. At the same time, two other binding modes are elucidated to be quasi-degenerate with the native state and that indicates the further possibility in gaining more entropic stabilization of the complex. The role of such "bridging" water clusters to enhance the protein-ligand interaction will be insightful for designing the next generation prospective compounds in the field of cancer therapeutics.


Assuntos
Aminofenóis/química , Simulação de Dinâmica Molecular , Sulfonamidas/química , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Água/química , Aminofenóis/metabolismo , Apoproteínas/química , Apoproteínas/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Microtúbulos/metabolismo , Conformação Proteica , Sulfonamidas/metabolismo
8.
PLoS Comput Biol ; 14(12): e1006672, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30532237

RESUMO

Kynurenines, the products of tryptophan oxidative degradation, are involved in multiple neuropathologies, such as Huntington's chorea, Parkinson's disease, senile dementia, etc. The major cause for hydroxykynurenines's neurotoxicity is the oxidative stress induced by the reactive oxygen species (ROS), the by-products of L-3-hydroxykynurenine (L-3HOK) and 3-hydroxyanthranilic acid (3HAA) oxidative self-dimerization. 2-aminophenol (2AP), a structural precursor of L-3HOK and 3HAA, undergoes the oxidative conjugation to form 2-aminophenoxazinone. There are several modes of 2AP dimerization, including both enzymatic and non-enzymatic stages. In this study, the free energies for 2AP, L-3HOK and 3HAA dimerization stages have been calculated at B3LYP/6-311G(d,p)//6-311+(O)+G(d) level, both in the gas phase and in heptane or water solution. For the intermediates, ionization potentials and electron affinities were calculated, as well as free energy and kinetics of molecular oxygen interaction with several non-enzymatically formed dimers. H-atom donating power of the intermediates increases upon the progress of the oxidation, making possible generation of hydroperoxyl radical or hydrogen peroxide from O2 at the last stages. Among the dimerization intermediates, 2-aminophenoxazinole derivatives have the lowest ionization potential and can reduce O2 to superoxide anion. The rate for O-H homolytic bond dissociation is significantly higher than that for C-H bond in non-enzymatic quinoneimine conjugate. However, the last reaction passes irreversibly, reducing O2 to hydroperoxyl radical. The inorganic ferrous iron and the heme group of Drosophila phenoxazinone synthase significantly reduce the energy cost of 2AP H-atom abstraction by O2. We have also shown experimentally that total antioxidant capacity decreases in Drosophila mutant cardinal with L-3HOK excess relative to the wild type Canton-S, and lipid peroxidation decreases in aged cardinal. Taken together, our data supports the conception of hydroxykynurenines' dual role in neurotoxicity: serving as antioxidants themselves, blocking lipid peroxidation by H-atom donation, they also can easily generate ROS upon dimerization, leading to the oxidative stress development.


Assuntos
Cinurenina/química , Cinurenina/metabolismo , Modelos Biológicos , Aminofenóis/química , Aminofenóis/metabolismo , Animais , Antioxidantes/metabolismo , Biologia Computacional , Dimerização , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Humanos , Cinurenina/toxicidade , Redes e Vias Metabólicas , Modelos Moleculares , Conformação Molecular , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/metabolismo , Oxirredução , Estresse Oxidativo , Oxirredutases/química , Oxirredutases/genética , Oxirredutases/metabolismo , Oxigênio/química , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Termodinâmica , Triptofano/metabolismo
9.
Nat Commun ; 9(1): 2362, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29915173

RESUMO

Thiocarboxylic acid-containing natural products are rare and their biosynthesis and biological significance remain unknown. Thioplatensimycin (thioPTM) and thioplatencin (thioPTN), thiocarboxylic acid congeners of the antibacterial natural products platensimycin (PTM) and platencin (PTN), were recently discovered. Here we report the biosynthetic origin of the thiocarboxylic acid moiety in thioPTM and thioPTN. We identify a thioacid cassette encoding two proteins, PtmA3 and PtmU4, responsible for carboxylate activation by coenzyme A and sulfur transfer, respectively. ThioPTM and thioPTN bind tightly to ß-ketoacyl-ACP synthase II (FabF) and retain strong antibacterial activities. Density functional theory calculations of binding and solvation free energies suggest thioPTM and thioPTN bind to FabF more favorably than PTM and PTN. Additionally, thioacid cassettes are prevalent in the genomes of bacteria, implicating that thiocarboxylic acid-containing natural products are underappreciated. These results suggest that thiocarboxylic acid, as an alternative pharmacophore, and thiocarboxylic acid-containing natural products may be considered for future drug discovery.


Assuntos
Produtos Biológicos , Streptomyces/metabolismo , Adamantano/metabolismo , Aminobenzoatos/metabolismo , Aminofenóis/metabolismo , Anilidas/metabolismo , Produtos Biológicos/química , Escherichia coli , Família Multigênica , Compostos Policíclicos/metabolismo , Streptomyces/genética , Enxofre/metabolismo
10.
Biodegradation ; 29(3): 259-270, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29603052

RESUMO

The pentafluorosulfanyl (SF5-) substituent conveys properties that are beneficial to drugs and agrochemicals. As synthetic methodologies improve the number of compounds containing this group will expand and these chemicals may be viewed as emerging pollutants. As many microorganisms can degrade aromatic xenobiotics, we investigated the catabolism of SF5-substituted aminophenols by bacteria and found that some Pseudomonas spp. can utilise these compounds as sole carbon and energy sources. GC-MS analysis of the culture supernatants from cultures grown in 5-(pentafluorosulfanyl) 2-aminophenol demonstrated the presence of the N-acetylated derivative of the starting substrate and 4-(pentafluorosulfanyl)catechol. Biotransformation experiments with re-suspended cells were also conducted and fluorine-19 NMR analyses of the organic extract and aqueous fraction from suspended cell experiments revealed new resonances of SF5-substituted intermediates. Supplementation of suspended cell cultures with yeast extract dramatically improved the degradation of the substrate as well as the release of fluoride ion. 4-(Pentafluorosulfanyl)catechol was shown to be a shunt metabolite and toxic to some of the bacteria. This is the first study to demonstrate that microorganisms can biodegrade SF5-substituted aromatic compounds releasing fluoride ion, and biotransform them generating a toxic metabolite.


Assuntos
Aminofenóis/metabolismo , Pseudomonas/metabolismo , Compostos de Enxofre/metabolismo , Aminofenóis/química , Biodegradação Ambiental , Biotransformação , Catecóis/metabolismo , Flúor/metabolismo , Espectroscopia de Ressonância Magnética , Metaboloma , Compostos de Enxofre/química
11.
Drug Metab Lett ; 12(1): 71-74, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29595119

RESUMO

BACKGROUND & OBJECTIVE: Since the release of ivacaftor-lumacaftor, several red-flags have been raised that highlight the clinical efficacy of this combination strategy that may be limited due to antagonistic drug-drug interactions. METHOD: The effect of ivacaftor, its major metabolites M1 and M6, lumacaftor and the novel cystic fibrosis transmembrane conductance regulator (CFTR) modulator tezacaftor at 10 µg/mL on the enzymatic activity of the major xenobiotic metabolizing enzymes CYP1A2 and CYP3A4 as well as the minor enzymes CYP2B6 and CYP2C9 was assayed. RESULTS: Lumacaftor (3.74 x 105 ± 3.11 x 104 RLU), and ivacaftor-M6 (3.43 x 105 ± 7.61 x 103 RLU) markedly induced the activity of CYP3A4. Ivacaftor (2.22 x 105 ± 3.94 x 104 RLU) showed a lower relative ratio of luminescence units compared to chloramphenicol (3.17 x 105 ± 1.55 x 104 RLU). Interestingly, ivacaftor-M1 (6.74 x 104 ± 3.09 x 104 RLU) and the novel CFTR modulator tezacaftor (2.40 x 104 ± 8.14 x 104 RLU) did not show CYP3A4 induction. In the CYP1A2 and CYP2C9 assay, all metabolites showed a decrease in the ratio of luminescence units compared to the controls. Ivacaftor, its major metabolites, lumacaftor and tezacaftor all showed a slight increase in the ratio of luminescence units compared to the control rifampin with CYP2B6. CONCLUSION: All in all, present findings would suggest that lumacaftor and ivacaftor-M6 are strong inducers of CYP3A4, potentially reducing ivacaftor concentrations; ivacaftor itself induces CYP3A4 to some extent.


Assuntos
Aminofenóis/farmacologia , Aminopiridinas/farmacologia , Benzodioxóis/farmacologia , Fibrose Cística/tratamento farmacológico , Citocromo P-450 CYP3A/biossíntese , Interações Medicamentosas , Quinolonas/farmacologia , Aminofenóis/metabolismo , Aminofenóis/uso terapêutico , Aminopiridinas/metabolismo , Aminopiridinas/uso terapêutico , Benzodioxóis/metabolismo , Benzodioxóis/uso terapêutico , Fibrose Cística/sangue , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Citocromo P-450 CYP1A2/biossíntese , Citocromo P-450 CYP2C9/biossíntese , Combinação de Medicamentos , Ensaios Enzimáticos , Indução Enzimática/efeitos dos fármacos , Feminino , Humanos , Indóis/farmacologia , Quinolonas/metabolismo , Quinolonas/uso terapêutico
12.
Org Biomol Chem ; 16(5): 698-702, 2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29319101

RESUMO

Selective androgen receptor modulators (SARMs) are a class of androgen receptor drugs, which have a high potential to be performance enhancers in human and animal sports. Arylpropionamides are one of the major SARM classes and get rapidly metabolized significantly complicating simple detection of misconduct in blood or urine sample analysis. Specific drug-derived metabolites are required as references due to a short half-life of the parent compound but are generally lacking. The difficulty in metabolism studies is the determination of the correct regio and stereoselectivity during metabolic conversion processes. In this study, we have elucidated and verified the chemical structure of two major equine arylpropionamide-based SARM metabolites using a combination of chemical synthesis and liquid chromatography-mass spectrometry (LC-MS) analysis. These synthesized SARM-derived metabolites can readily be utilized as reference standards for routine mass spectrometry-based doping control analysis of at least three commonly used performance-enhancing drugs to unambigously identify misconduct.


Assuntos
Acetamidas/metabolismo , Amidas/metabolismo , Aminofenóis/metabolismo , Anabolizantes/metabolismo , Anilidas/metabolismo , Receptores Androgênicos/metabolismo , Acetamidas/química , Acetamidas/urina , Amidas/química , Amidas/urina , Aminofenóis/química , Aminofenóis/urina , Anabolizantes/química , Anabolizantes/urina , Anilidas/química , Anilidas/urina , Animais , Cromatografia Líquida de Alta Pressão/métodos , Dopagem Esportivo , Cavalos , Humanos , Espectrometria de Massas/métodos , Detecção do Abuso de Substâncias/métodos
13.
Chembiochem ; 19(3): 256-262, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29193538

RESUMO

The ast gene cluster (GenBank accession numbers KF813023.1 and KP284551) was characterized to be responsible for the biosynthesis of ansatrienins in Streptomyces sp. XZQH13, which contains astC, astF1, and astF2 genes involved in the assembly of the N-cyclohexanoyl d-alanyl side chain and the hydroxylation of C-19, respectively. Further to investigating the biosynthetic mechanism of ansatrienins, herein we constructed the mutant strains XZQH13OEΔastF2 and XZQH13OEΔastCΔastF2. Three new ansatrienin analogues, namely, ansatrienols I-K (1-3), along with trienomycinol (4) and 3-O-demethyltrienomycinol (5), were isolated from the XZQH13OEΔastCΔastF2 strain, and trienomycin A (6) and trienomycin G (7) were isolated from the XZQH13OEΔastF2 strain. Their structures were determined by a combination of high-resolution MS (ESI) and 1D and 2D NMR spectroscopy. Accordingly, a pathway for the biosynthesis of these new ansatrienins was proposed.


Assuntos
Alanina/análogos & derivados , Aminofenóis/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/metabolismo , Policetídeos/metabolismo , Streptomyces/química , Alanina/biossíntese , Alanina/química , Alanina/isolamento & purificação , Aminofenóis/química , Aminofenóis/isolamento & purificação , Compostos Bicíclicos Heterocíclicos com Pontes/química , Compostos Bicíclicos Heterocíclicos com Pontes/isolamento & purificação , Espectroscopia de Ressonância Magnética , Conformação Molecular , Policetídeos/química , Policetídeos/isolamento & purificação , Estereoisomerismo , Streptomyces/metabolismo
14.
Protist ; 168(6): 686-696, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29125937

RESUMO

Mating pheromones (gamone 1 and gamone 2) in the ciliate Blepharisma are biologically active substances that trigger sexual reproduction (conjugation) under starvation conditions. Gamone 1 is a glycoprotein secreted by type I cells, and gamone 2 is a tryptophan (Trp)-derivative compound secreted by type II cells. Both gamones stimulate complementary mating type cells to promote each gamone production and induce pair formation. To elucidate the biosynthetic pathway of gamone 2, we investigated the enzymes involved in the pathway and the specificity of the enzymes. An RNA-seq analysis revealed that Blepharisma stoltei (Heterotrichea) possesses four indoleamine 2,3-dioxygenase (IDO) genes showing distinct expression patterns. Along with results from real-time PCR, these findings demonstrated that each IDO gene has different expression patterns that depend on the cellular conditions. Expression of IDO-I was correlated with the intensity of gamone 2 expression, and the recombinant IDO-I protein showed catalytic activity for 5-hydroxy-L-Trp (5-HTP) but very weak activity for L-Trp. Our results indicate that IDO-I is an enzyme evolutionary specialized to gamone 2 production in Blepharisma, and that the biosynthetic pathway for gamone 2 uses 5-HTP as an intermediate.


Assuntos
Aminofenóis/metabolismo , Cilióforos/genética , Conjugação Genética , Lactatos/metabolismo , Feromônios/biossíntese , Proteínas de Protozoários/genética , Cilióforos/enzimologia , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Proteínas de Protozoários/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Reprodução , Transcrição Gênica , Triptofano Oxigenase/genética , Triptofano Oxigenase/metabolismo
15.
Chemosphere ; 188: 337-344, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28888859

RESUMO

We developed an electrochemical microalgal bioassay for the determination of heavy metal toxicity in water on the basis of the alkaline phosphatase (ALP) enzyme inhibition of Chlamydomonas reinhardtii. Five heavy metals were chosen as toxicants: Hg, Cd, Pb, Zn, and Cu. The induced ALP activity of C. reinhardtii was inhibited using the phosphate starvation method, and the results were evaluated by measuring the electrochemical oxidation of p-aminophenol (PAP) following the enzymatic conversion of p-aminophenyl phosphate (PAPP) as a substrate. The rapid determination of enzymatic activity was achieved using hydrodynamic voltammetry in a 50 µL micro-droplet with a rotating disk electrode (RDE). Enzymatic activity over a PAPP substrate is affected by heavy metal ions, and this phenomenon decreases the chronoamperometric current signal. The concentrations of Hg, Cd, Pb, Zn, and Cu in which the ALP activity was half that of the control (EC50) were found to be 0.017, 0.021, 0.27, 1.30, and 1.36 µM, respectively. The RDE system was demonstrated to be capable of detecting enzymatic activity by using a small amount of regent, a reaction time of only 60 s, and a detection limit of 5.4 × 10-7 U.


Assuntos
Fosfatase Alcalina/antagonistas & inibidores , Bioensaio/métodos , Poluentes Ambientais/análise , Metais Pesados/toxicidade , Microalgas/efeitos dos fármacos , Fosfatase Alcalina/metabolismo , Aminofenóis/metabolismo , Chlamydomonas reinhardtii/enzimologia , Chlamydomonas reinhardtii/metabolismo , Eletroquímica/métodos , Poluentes Ambientais/toxicidade , Hidrodinâmica , Metais Pesados/análise , Oxirredução
16.
Talanta ; 174: 507-513, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28738615

RESUMO

Diseases caused by enterotoxicogenic Escherichia coli F4 (K88) (ETEC F4) are a problem in swine production establishments. Due to the high rate of mortality and morbidity of E. coli infections, a rapid and accurate diagnosis is important in order to choose an appropriate treatment to reduce the economic impact. Therefore, an electrochemical magneto-immunosensor (EMI) was developed to detect and quantify ETEC F4 in swine feces samples through a direct non-competitive immunoassay. ETEC F4 was selectively captured by immunomagnetic separation. The detection principle was based on the activity of ß-galactosidase endogenous enzyme (ß-gal), which hydrolyses the p-aminophenyl-ß-D-galactopyranoside (p-APG) producing p-aminophenol (p-AP), which was oxidized on a carbon screen printed electrode (CSPE) using square wave voltammetry (SWV). All parameters related to construction and electrochemical responses were optimized. The total analysis time to quantify ETEC F4 using the EMI was less than 2h and the limit of detection (LOD) was 33CFUmL-1. The perceptual relative error (%Er) was 20%. The magneto-immunosensor was validated versus conventional method of culture and plate count, obtaining a very good agreement. The EMI is simple, fast and economical to detect and quantify ETEC F4 in swine feces samples, being thus a valuable tool in swine production.


Assuntos
Técnicas Biossensoriais/métodos , Escherichia coli Enterotoxigênica/isolamento & purificação , Fezes/microbiologia , Imunoensaio/métodos , Separação Imunomagnética , beta-Galactosidase/metabolismo , Aminofenóis/química , Aminofenóis/metabolismo , Animais , Calibragem , Carbono/química , Eletroquímica , Eletrodos , Oxirredução , Permeabilidade , Suínos
17.
Org Biomol Chem ; 15(13): 2791-2796, 2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-28272634

RESUMO

Nitric oxide (NO) has been known as a gaseous chemical mediator, which modulates several physiological functions. Spatial and temporal control of NO release facilitates further study and medical application of NO. Herein, we report design and synthesis of a novel NO donor, NO-Rosa. NO-Rosa has a rosamine moiety, which absorbs yellowish green light. Upon irradiation with yellowish green light (530-590 nm), NO is released from NO-Rosa, presumably via photoinduced electron transfer from the N-nitrosoaminophenol moiety to the rosamine moiety. NO release from NO-Rosa was detected by ESR spin trapping and a NO fluorescent probe. Cellular NO release control was achieved in HEK293 cells using a NO fluorescent probe, DAF-FM DA. Furthermore, temporally controlled NO-induced vasodilation was demonstrated by treatment of a rat aortic strip with NO-Rosaex vivo and irradiation by yellowish green light. NO-Rosa is expected to be utilized for further study of NO-related physiological functions, utilizing its ability of spatiotemporal release of NO as a photocontrollable compound with harmless yellowish-green light.


Assuntos
Aminofenóis/metabolismo , Luz , Doadores de Óxido Nítrico/metabolismo , Compostos Nitrosos/metabolismo , Aminofenóis/química , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Células HEK293 , Humanos , Estrutura Molecular , Doadores de Óxido Nítrico/química , Compostos Nitrosos/química , Processos Fotoquímicos
18.
Anal Chem ; 89(3): 1650-1657, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28208254

RESUMO

In this study, an enzyme-based electrochemical method was developed for the detection of Escherichia coli (E. coli) using the T7 bacteriophages engineered with lacZ operon encoding for beta-galactosidase (ß-gal). The T7lacZ phages can infect E. coli, and have the ability to trigger the overexpression of ß-gal during the infection of E. coli. The use of the engineered phages resulted in a more sensitive detection of E. coli by (1) overexpression of ß-gal in E. coli during the specific infection and (2) release of the endogenous intracellular ß-gal from E. coli following infection. The endogenous and phage-induced ß-gal was detected using the electrochemical method with 4-aminophenyl-ß-galactopyranoside (PAPG) as a substrate. The ß-gal catalyzed PAPG to an electroactive species p-aminophenol (PAP) which could be monitored on an electrode. The electrochemical signal was proportional to the concentration of E. coli in the original sample. We demonstrated the application of our strategy in aqueous samples (drinking water, apple juice, and skim milk). Using this method, we were able to detect E. coli at the concentration of approximately 105 CFU/mL in these aqueous samples in 3 h and 102 CFU/mL after 7 h. This strategy has the potential to be extended to detect different bacteria using specific bacteriophages engineered with gene encoding for appropriate enzymes.


Assuntos
Bacteriófagos/genética , Técnicas Eletroquímicas , Escherichia coli/isolamento & purificação , Aminofenóis/química , Aminofenóis/metabolismo , Bebidas/microbiologia , Eletrodos , Escherichia coli/enzimologia , Galactosídeos/química , Galactosídeos/metabolismo , Concentração de Íons de Hidrogênio , Microbiologia da Água , beta-Galactosidase/genética
19.
Biochem Pharmacol ; 133: 139-151, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27865713

RESUMO

Natural products have served as the main source of drugs and drug leads, and natural products produced by microorganisms are one of the most prevalent sources of clinical antibiotics. Their unparalleled structural and chemical diversities provide a basis to investigate fundamental biological processes while providing access to a tremendous amount of chemical space. There is a pressing need for novel antibiotics with new mode of actions to combat the growing challenge of multidrug resistant pathogens. This review begins with the pioneering discovery and biological activities of platensimycin (PTM) and platencin (PTN), two antibacterial natural products isolated from Streptomyces platensis. The elucidation of their unique biochemical mode of action, structure-activity relationships, and pharmacokinetics is presented to highlight key aspects of their biological activities. It then presents an overview of how microbial genomics has impacted the field of PTM and PTN and revealed paradigm-shifting discoveries in terpenoid biosynthesis, fatty acid metabolism, and antibiotic and antidiabetic therapies. It concludes with a discussion covering the future perspectives of PTM and PTN in regard to natural products discovery, bacterial diterpenoid biosynthesis, and the pharmaceutical promise of PTM and PTN as antibiotics and for the treatment of metabolic disorders. PTM and PTN have inspired new discoveries in chemistry, biology, enzymology, and medicine and will undoubtedly continue to do so.


Assuntos
Adamantano/química , Adamantano/metabolismo , Aminobenzoatos/química , Aminobenzoatos/metabolismo , Aminofenóis/química , Aminofenóis/metabolismo , Anilidas/química , Anilidas/metabolismo , Anti-Infecciosos/química , Anti-Infecciosos/metabolismo , Compostos Policíclicos/química , Compostos Policíclicos/metabolismo , Adamantano/uso terapêutico , Aminobenzoatos/uso terapêutico , Aminofenóis/uso terapêutico , Anilidas/uso terapêutico , Animais , Anti-Infecciosos/uso terapêutico , Doenças Transmissíveis/tratamento farmacológico , Doenças Transmissíveis/enzimologia , Doenças Transmissíveis/metabolismo , Humanos , Compostos Policíclicos/uso terapêutico , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
20.
Artigo em Inglês | MEDLINE | ID: mdl-27792891

RESUMO

ORKAMBI (ivacaftor-lumacaftor [LUMA]) and KALYDECO (ivacaftor; IVA) are two new breakthrough cystic fibrosis (CF) drugs that directly modulate the activity and trafficking of the defective CFTR underlying the CF disease state. Currently, no therapeutic drug monitoring assays exist for these very expensive, albeit, important drugs. In this study, for the first time HPLC and LC-MS methods were developed and validated for rapid detection and quantification of IVA and its major metabolites hydroxymethyl-IVA M1 (active) and IVA-carboxylate M6 (inactive); and LUMA in the plasma and sputum of CF patients. With a mobile phase consisting of acetonitrile/water:0.1% formic acid (60:40v/v) at a flow rate of 1mL/min, a linear correlation was observed over a concentration range from 0.01 to 10µg/mL in human plasma (IVA R2>0.999, IVA M1 R2>0.9961, IVA M6 R2>0.9898, LUMA R2>0.9954). The assay was successfully utilized to quantify the concentration of LUMA, IVA, M1 and M6 in the plasma and sputum of CF patients undergoing therapy with KALYDECO (IVA 150mg/q12h) or ORKAMBI (200mg/q12h LUMA-125mg/q12h IVA). The KALYDECO patient exhibited an IVA plasma concentration of 0.97µg/mL at 2.5h post dosage. M1 and M6 plasma concentrations were 0.50µg/mL and 0.16µg/mL, respectively. Surprisingly, the ORKAMBI patient displayed very low plasma concentrations of IVA (0.06µg/mL) and M1 (0.07µg/mL). The M6 concentrations (0.15µg/mL) were comparable to those of the KALYDECO patient. However, we observed a relatively high plasma concentration of LUMA (4.42µg/mL). This reliable and novel method offers a simple and sensitive approach for therapeutic drug monitoring of KALYDECO and ORKAMBI in plasma and sputum. The introduction of the assay into the clinical setting will facilitate pharmacokinetics/pharmacodynamic analysis and assist clinicians to develop more cost effective and efficacious dosage regimens for these breakthrough CF drugs.


Assuntos
Aminofenóis/sangue , Aminopiridinas/sangue , Benzodioxóis/sangue , Cromatografia Líquida de Alta Pressão/métodos , Quinolonas/sangue , Escarro/química , Espectrometria de Massas em Tandem/métodos , Aminofenóis/metabolismo , Cromatografia Líquida de Alta Pressão/economia , Fibrose Cística/tratamento farmacológico , Humanos , Limite de Detecção , Quinolonas/metabolismo , Espectrometria de Massas em Tandem/economia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA