Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 386
Filtrar
1.
Eur J Med Chem ; 271: 116429, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38663284

RESUMO

Amodiaquine (AQ) is a potent antimalarial drug used in combination with artesunate as part of artemisinin-based combination therapies (ACTs) for malarial treatment. Due to the rising emergence of resistant malaria parasites, some of which have been reported for ACT, the usefulness of AQ as an efficacious therapeutic drug is threatened. Employing the organometallic hybridisation approach, which has been shown to restore the antimalarial activity of chloroquine in the form of an organometallic hybrid clinical candidate ferroquine (FQ), the present study utilises this strategy to modulate the biological performance of AQ by incorporating ferrocene. Presently, we have conceptualised ferrocenyl AQ derivatives and have developed facile, practical routes for their synthesis. A tailored library of AQ derivatives was assembled and their antimalarial activity evaluated against chemosensitive (NF54) and multidrug-resistant (K1) strains of the malaria parasite, Plasmodium falciparum. The compounds generally showed enhanced or comparable activities to those of the reference clinical drugs chloroquine and AQ, against both strains, with higher selectivity for the sensitive phenotype, mostly in the double-digit nanomolar IC50 range. Moreover, representative compounds from this series show the potential to block malaria transmission by inhibiting the growth of stage II/III and V gametocytes in vitro. Preliminary mechanistic insights also revealed hemozoin inhibition as a potential mode of action.


Assuntos
Amodiaquina , Antimaláricos , Compostos Ferrosos , Metalocenos , Plasmodium falciparum , Antimaláricos/farmacologia , Antimaláricos/química , Antimaláricos/síntese química , Compostos Ferrosos/química , Compostos Ferrosos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Metalocenos/química , Metalocenos/farmacologia , Amodiaquina/farmacologia , Amodiaquina/química , Relação Estrutura-Atividade , Estrutura Molecular , Humanos , Testes de Sensibilidade Parasitária , Relação Dose-Resposta a Droga
2.
Future Med Chem ; 15(23): 2165-2179, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37982232

RESUMO

Aim: To synthesize and explore the therapeutic potential of amodiaquine analogues. Methodology: New promising analogues were synthesized by nucleophilic substitution at the 4-amino position and were characterized using 1H NMR, 13C NMR and FT-IR spectroscopic techniques. Results: Antibacterial and cytotoxic screening revealed the high potency of these compounds; analogue AS1 had an 34.3 ± 0.18 mm zone of inhibition against Pseudomonas aeruginosa. Excellent activity against fungal strains, that is, Candida albicans (39.6 ± 0.23 mm) was shown by analogue AS2. Analogue AS1 had an IC50 = 4.2 µg/ml against the HeLa cell line (cervical cancer) and binding energy against 5GWK (-8.32688 kcal/mol), 1PFK (-6.4780 kcal/mol) and 1TUP (-6.5279 kcal/mol) in the docking study. Conclusion: The obtained results reveal that these analogues exhibit potent antimicrobial and cytotoxic potential.


Assuntos
Antineoplásicos , Neoplasias do Colo do Útero , Feminino , Humanos , Estrutura Molecular , Células HeLa , Relação Estrutura-Atividade , Amodiaquina/farmacologia , Neoplasias do Colo do Útero/tratamento farmacológico , Espectroscopia de Infravermelho com Transformada de Fourier , Antineoplásicos/farmacologia , Antineoplásicos/química , Antibacterianos/farmacologia , Antibacterianos/química , Candida albicans , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular
3.
N Engl J Med ; 389(13): 1191-1202, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37754284

RESUMO

BACKGROUND: Although the clinical efficacy of antimalarial artemisinin-based combination therapies in Africa remains high, the recent emergence of partial resistance to artemisinin in Plasmodium falciparum on the continent is troubling, given the lack of alternative treatments. METHODS: In this study, we used data from drug-efficacy studies conducted between 2016 and 2019 that evaluated 3-day courses of artemisinin-based combination therapy (artesunate-amodiaquine or artemether-lumefantrine) for uncomplicated malaria in Eritrea to estimate the percentage of patients with day-3 positivity (i.e., persistent P. falciparum parasitemia 3 days after the initiation of therapy). We also assayed parasites for mutations in Pfkelch13 as predictive markers of partial resistance to artemisinin and screened for deletions in hrp2 and hrp3 that result in variable performance of histidine rich protein 2 (HRP2)-based rapid diagnostic tests for malaria. RESULTS: We noted an increase in the percentage of patients with day-3 positivity from 0.4% (1 of 273) in 2016 to 1.9% (4 of 209) in 2017 and 4.2% (15 of 359) in 2019. An increase was also noted in the prevalence of the Pfkelch13 R622I mutation, which was detected in 109 of 818 isolates before treatment, from 8.6% (24 of 278) in 2016 to 21.0% (69 of 329) in 2019. The odds of day-3 positivity increased by a factor of 6.2 (95% confidence interval, 2.5 to 15.5) among the patients with Pfkelch13 622I variant parasites. Partial resistance to artemisinin, as defined by the World Health Organization, was observed in Eritrea. More than 5% of the patients younger than 15 years of age with day-3 positivity also had parasites that carried Pfkelch13 R622I. In vitro, the R622I mutation conferred a low level of resistance to artemisinin when edited into NF54 and Dd2 parasite lines. Deletions in both hrp2 and hrp3 were identified in 16.9% of the parasites that carried the Pfkelch13 R622I mutation, which made them potentially undetectable by HRP2-based rapid diagnostic tests. CONCLUSIONS: The emergence and spread of P. falciparum lineages with both Pfkelch13-mediated partial resistance to artemisinin and deletions in hrp2 and hrp3 in Eritrea threaten to compromise regional malaria control and elimination campaigns. (Funded by the Bill and Melinda Gates Foundation and others; Australian New Zealand Clinical Trials Registry numbers, ACTRN12618001223224, ACTRN12618000353291, and ACTRN12619000859189.).


Assuntos
Antimaláricos , Combinação Arteméter e Lumefantrina , Resistência a Medicamentos , Malária Falciparum , Plasmodium falciparum , Humanos , Amodiaquina/administração & dosagem , Amodiaquina/farmacologia , Amodiaquina/uso terapêutico , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Combinação Arteméter e Lumefantrina/farmacologia , Combinação Arteméter e Lumefantrina/uso terapêutico , Artemisininas/administração & dosagem , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Resistência a Medicamentos/genética , Eritreia/epidemiologia , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Malária Falciparum/genética , Malária Falciparum/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Prevalência
4.
Chemistry ; 29(55): e202301642, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37427863

RESUMO

Malaria is the one of the deadliest infectious diseases worldwide. Chemically, quinolines are excellent ligands for metal coordination and are deployed as drugs for malaria treatment. There is a growing body of evidence indicating that metal complexes can be conjugated with antimalarial quinolines to be used as chemical tools to overcome the disadvantages of quinolines, improving their bioactive speciation, cellular distribution, and subsequently broadening the spectrum of activity to multiple stages of the complex Plasmodium life cycle. In this study, four novel complexes of ruthenium(II)- and gold(I)-containing amodiaquine (AQ) were synthesized, and a careful chemical characterization revealed the precise coordination site of AQ to the metals. Their speciation in solution was investigated, demonstrating the stability of the quinoline-metal bond. RuII - and AuI -AQ complexes were demonstrated to be potent and efficacious in inhibiting parasite growth in multiple stages of the Plasmodium life cycle as assayed in vitro and in vivo. These properties could be attributed to the ability of the metal-AQ complexes to reproduce the suppression of heme detoxification induced by AQ, while also inhibiting other processes in the parasite life cycle; this can be attributed to the action of the metallic species. Altogether, these findings indicate that metal coordination with antimalarial quinolines is a potential chemical tool for drug design and discovery in malaria and other infectious diseases susceptible to quinoline treatment.


Assuntos
Antimaláricos , Complexos de Coordenação , Malária , Plasmodium , Quinolinas , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Amodiaquina/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/uso terapêutico , Malária/tratamento farmacológico , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Plasmodium falciparum
5.
Chem Biol Interact ; 371: 110333, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36592711

RESUMO

Visceral leishmaniasis (VL) is a progressive, debilitating, and potentially fatal disease if left untreated. As a neglected tropical disease (NTD), the available treatment is restricted to a few drugs, which typically must be administered over a long period but are associated with serious adverse effects and have variability in efficacy. In this sense, drug repositioning has been considered an excellent strategy in the search for alternative treatments, especially in reducing the time and cost of the research. In this work, the repositioning potential of amodiaquine (AQ), a well-known antimalarial drug, was investigated for the treatment of VL. AQ showed significant and selective activity against promastigotes (IC50 = 11.6 µg/mL) and intracellular amastigotes (IC50 = 2.4 µg/mL) of L. infantum, being 10 times more destructive to the intracellular parasites than the host cell. In addition, pre-treatment of macrophages with AQ caused a significant reduction in the infection index, indicating a prophylactic effect of this drug. SEM images showed that AQ induces strong shape alterations of the promastigotes with an increase in cell volume with rounding and ribbing (vertical ridges), as well as a shortened flagellum. In addition, AQ induced depolarization of the ΔΨm, an increase in ROS and neutral lipids levels, and changes in the cell cycle in promastigotes, without alterations to the permeability of the parasite plasma membrane. L. infantum-infected macrophages treated with AQ induced the activation of oxidative mechanisms by infected host cells, with an increase in ROS and NO levels. Finally, in vitro interactions between AQ and miltefosine were found to have an additive effect in both biological stages of the parasite, with the ∑FIC50 values ranging from 0.74 to 1.16 µg/mL and 0.54-1.11 µg/mL for promastigotes and intracellular amastigotes, respectively. Overall, these data highlight the utility of drug repurposing and indicate future preclinical testing for AQ itself or in combination as a potential VL treatment.


Assuntos
Antiprotozoários , Leishmania infantum , Leishmaniose Visceral , Animais , Camundongos , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/metabolismo , Amodiaquina/farmacologia , Amodiaquina/metabolismo , Amodiaquina/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Reposicionamento de Medicamentos , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Estresse Oxidativo , Mitocôndrias/metabolismo , Pontos de Checagem do Ciclo Celular , Camundongos Endogâmicos BALB C
6.
Antiviral Res ; 210: 105479, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36566117

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne viral infection caused by a bandavirus in the family of Phenuiviridae, commonly known as SFTS virus (SFTSV). We have previously isolated SFTSV from blood samples of SFTS patients and established an antiviral assay system to identify selective inhibitors of SFTSV in vitro. Using the assay system, the antimalarial agent amodiaquine was identified as a selective inhibitor of SFTSV replication. However, due to its insufficient antiviral activity, 98 amodiaquine derivatives were newly synthesized and examined for their anti-SFTSV activity. Among the derivatives, some compounds showed selective inhibitory effect on SFTSV replication in vitro. The 50% effective concentration (EC50) and cytotoxic concentration (CC50) of the most active compound (C-90) were 2.6 ± 0.6 and >50 µM, respectively. This EC50 value was comparable to or slightly better than that of favipiravir (4.1 ± 0.6 µM). On the other hand, pharmacokinetic studies in vivo revealed that C-90 was poor in its oral bioavailability in mice. Therefore, we further designed and synthesized derivatives and obtained 2 compounds with selective anti-SFTSV activity in vitro and improved pharmacokinetics in vivo.


Assuntos
Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Doenças Transmitidas por Carrapatos , Animais , Camundongos , Febre Grave com Síndrome de Trombocitopenia/tratamento farmacológico , Amodiaquina/farmacologia , Antivirais/farmacologia , Antivirais/uso terapêutico
7.
Sci Rep ; 12(1): 19934, 2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36402913

RESUMO

In this paper, we synthesized Ag/ZnO composite colloidal nanoparticles and the surface of nanoparticles was improved by amodiaquine ligand. The synthesized nanoparticles were characterized using the XRD diffraction pattern, FT-IR Spectroscopy, TEM image, and UV-Vis spectroscopy. The antibacterial, antifungal, and antiviral effects of the synthesized colloid were examined on E.coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Enterococcus hirae bacteria, and Candida Albicans and form spore aspergillus fungi, also influenza, herpes simplex, and covid 19 viruses. The results indicate more than 7 log removal of the bacteria, fungi, and viruses by synthesized colloid with a concentration of 15 µg/L (Ag)/50 µg/ml (ZnO). This removal for covid 19 virus is from 3.2 × 108 numbers to 21 viruses within 30 s. Also, irritation and toxicity tests of the synthesized colloid show harmless effects on human cells and tissues. These colloidal nanoparticles were used as mouthwash solution and their clinical tests were done on 500 people infected by the coronavirus. The results indicate that by washing their mouth and nose three times on day all patients got healthy at different times depending on the depth of the disease. Almost all people with no signs of infection and using this solution as a mouthwash didn't infect by the virus during the study.


Assuntos
Tratamento Farmacológico da COVID-19 , Desinfetantes , Nanopartículas Metálicas , Óxido de Zinco , Humanos , Óxido de Zinco/química , Desinfetantes/farmacologia , Amodiaquina/farmacologia , Nanopartículas Metálicas/química , Antivirais/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Antissépticos Bucais/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Escherichia coli
8.
Malar J ; 21(1): 331, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376921

RESUMO

BACKGROUND: Gametocytes are the sexual stages ensuring continuity of the development cycle of the parasite, as well as its transmission to humans. The efficacy of artemisinin-based anti-malarials against asexual stages of Plasmodium has been reported in Madagascar, but their effects on gametocytes are not well documented. The present study aims to determine the emergence of gametocyte and gametocyte clearance after artesunate-amodiaquine (ASAQ) or artemether-lumefantrine (AL) treatment in children with uncomplicated Plasmodium falciparum malaria in 5 regions of Madagascar. METHODS: 558 children with uncomplicated P. falciparum malaria, aged between 1 and 15 years, were assigned randomly to AL or ASAQ treatment. They come from 5 regions of Madagascar with different epidemiological facies related to malaria: Ankilivalo, Benenitra, Ampanihy, Ankazomborona and Matanga. Gametocytes were identified by microscopy, from t blood smears at day 1, day 2, day 3, day 7, day 14, day 21 and day 28 after treatment. RESULTS: At baseline, 9.7% (54/558) children [95% CI: 7.4-12.5%] had detectable gametocyte by microscopy. Among the 54 enrolled children, gametocytes emergence rate was high during the first days of treatment in both treatment arms (AL and ASAQ), especially on day 1. Gametocytes were undetectable from day 14 for AL arm while for ASAQ arm, gametocyte carriage was gradually decreased but persisted until day 21. CONCLUSION: This study demonstrates that AL has a more rapid effect on gametocyte clearance compared to ASAQ in children with uncomplicated Plasmodium falciparum malaria.


Assuntos
Antimaláricos , Malária Falciparum , Adolescente , Criança , Pré-Escolar , Humanos , Lactente , Amodiaquina/uso terapêutico , Amodiaquina/farmacologia , Antimaláricos/uso terapêutico , Antimaláricos/farmacologia , Artemeter/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Combinação Arteméter e Lumefantrina/farmacologia , Artesunato/uso terapêutico , Combinação de Medicamentos , Etanolaminas/uso terapêutico , Etanolaminas/farmacologia , Madagáscar , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum
9.
Int J Mol Sci ; 23(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36232751

RESUMO

Due to the heterogeneity of breast cancer, current available treatment options are moderately effective at best. Hence, it is highly recommended to comprehend different subtypes, understand pathogenic mechanisms involved, and develop treatment modalities. The repurposing of an old FDA approved anti-malarial drug, amodiaquine (AQ) presents an outstanding opportunity to explore its efficacy in treating majority of breast cancer subtypes. Cytotoxicity, scratch assay, vasculogenic mimicry study, and clonogenic assay were employed to determine AQ's ability to inhibit cell viability, cell migration, vascular formation, and colony growth. 3D Spheroid cell culture studies were performed to identify tumor growth inhibition potential of AQ in MCF-7 and MDAMB-231 cell lines. Apoptosis assays, cell cycle analysis, RT-qPCR assays, and Western blot studies were performed to determine AQ's ability to induce apoptosis, cell cycle changes, gene expression changes, and induction of autophagy marker proteins. The results from in-vitro studies confirmed the potential of AQ as an anti-cancer drug. In different breast cancer cell lines tested, AQ significantly induces cytotoxicity, inhibit colony formation, inhibit cell migration, reduces 3D spheroid volume, induces apoptosis, blocks cell cycle progression, inhibit expression of cancer related genes, and induces LC3BII protein to inhibit autophagy. Our results demonstrate that amodiaquine is a promising drug to repurpose for breast cancer treatment, which needs numerous efforts from further studies.


Assuntos
Antimaláricos , Antineoplásicos , Neoplasias da Mama , Amodiaquina/farmacologia , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Reposicionamento de Medicamentos , Feminino , Humanos
10.
Med Trop Sante Int ; 2(2)2022 06 30.
Artigo em Francês | MEDLINE | ID: mdl-35919251

RESUMO

Background: Malaria is a parasitic disease caused by a hematozoan of the genus Plasmodium. Early diagnosis followed by effective treatment is one of the keys to control this disease. In Madagascar, after more than 60 years of use for the treatment of uncomplicated malaria, chloroquine (CQ) was abandoned in favor of artesunate + amodiaquine (ASAQ) combination because of high prevalence of CQ treatment failure. Surveillance based on the assessment of therapeutic efficacy and genetic markers of resistance to antimalarials is therefore essential in order to detect the emergence of potentially resistant parasites as early as possible. In this context, our study aimed to genotype the Plasmodium falciparum chloroquine resistance transporter gene or Pfcrt and Plasmodium falciparum multidrug resistance gene 1 or Pfmdr1 in isolates collected from children in the district of Vatomandry. Methods: A total of 142 P. falciparum isolates collected during active case detection of malaria in children under 15 years old, between February and March of 2016 and 2017 in Vatomandry district, were analyzed. Pfcrt (K76T codon) and Pfmdr1 (N86Y codon) genotyping was carried out by polymerase chain reaction followed by enzymatic digestion (restriction fragment length polymorphism) or PCR-RFLP. Results: The successful rates of amplification of Pfcrt and Pfmdr1 genes were low, around 27% and 39% respectively. The prevalence of isolates carrying the mutant Pfcrt K76T codon and the mutant Pfmdr1 N86Y codon was 2.6% [95% confidence interval (95% CI): 0.1 - 15.0%] and 36% [95% CI: 23.7 - 49.7%] respectively. Conclusion: Despite the limited number of samples analyzed, our study highlighted the circulation of isolates carrying both the mutant Pfcrt K76T and Pfmdr1 N86Y alleles. Although the prevalence of mutations in Pfcrt and Pfmdr1 genes that we observed was low, other studies should be carried out in order to follow the evolution of these markers in time and space. The use of more sensitive methods will better characterize P. falciparum strains circulating in Madagascar. Artesunate-amodiaquine is used as a first-line treatment for uncomplicated malaria in the country; it is also crucial to monitor the other codons, i.e. 184 and 1246 of the Pfmdr1 gene, implicated in the resistance of P. falciparum to amodiaquine in Africa.


Assuntos
Malária Falciparum , Proteínas de Membrana Transportadoras , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Plasmodium falciparum , Proteínas de Protozoários , Amodiaquina/farmacologia , Artesunato/farmacologia , Criança , Cloroquina/farmacologia , Resistência a Medicamentos/genética , Genótipo , Humanos , Madagáscar/epidemiologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Plasmodium falciparum/genética , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição
11.
Malar J ; 21(1): 134, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35477399

RESUMO

BACKGROUND: Artesunate-amodiaquine (ASAQ) and Artemether-lumefantrine (AL) are the recommended treatment for uncomplicated Plasmodium falciparum malaria in Liberia. Intermittent preventive treatment with sulfadoxine/pyrimethamine is also recommended for pregnant women. The therapeutic efficacy of Artesunate-amodiaquine and Artemether-lumefantrine, and the frequency of molecular markers associated with anti-malarial drug resistance were investigated. METHODS: The therapeutic efficacy of ASAQ and AL was evaluated using the standard World Health Organization protocol (WHO. Methods for Surveillance of Antimalarial Drug Efficacy. Geneva: World Health Organization; 2009. https://www.who.int/malaria/publications/atoz/9789241597531/en/ ). Eligible children were recruited and monitored clinically and parasitologically for 28 days. Polymorphisms in the Pfkelch 13, chloroquine resistance transporter (Pfcrt), multidrug resistance 1 (Pfmdr-1), dihydrofolate reductase (Pfdhfr), and dihydropteroate synthase (Pfdhps) genes and copy number variations in the plasmepsin-2 (Pfpm2) gene were assessed in pretreatment samples. RESULTS: Of the 359 children enrolled, 180 were treated with ASAQ (89 in Saclepea and 91 in Bensonville) and 179 with AL (90 in Sinje and 89 in Kakata). Of the recruited children, 332 (92.5%) reached study endpoints. PCR-corrected per-protocol analysis showed ACPR of 90.2% (95% CI: 78.6-96.7%) in Bensonville and 92.7% (95% CI: 83.4.8-96.5%) in Saclepea for ASAQ, while ACPR of 100% was observed in Kakata and Sinje for AL. In both treatment groups, only two patients had parasites on day 3. No artemisinin resistance associated Pfkelch13 mutations or multiple copies of Pfpm2 were found. Most samples tested had the Pfcrt 76 T mutation (80/91, 87.9%), while the Pfmdr-1 86Y (40/91, 44%) and 184F (47/91, 51.6%) mutations were less frequent. The Pfdhfr triple mutant (51I/59R/108 N) was the predominant allele (49.2%). For the Pfdhps gene, it was the 540E mutant (16.0%), and the 436A mutant (14.3%). The quintuple allele (51I/59R/108 N-437G/540E) was detected in only one isolate (1/357). CONCLUSION: This study reports a decline in the efficacy of ASAQ treatment, while AL remained highly effective, supporting the recent decision by NMCP to replace ASAQ with AL as first-line treatment for uncomplicated falciparum malaria. No association between the presence of the mutations in Pfcrt and Pfmdr-1 and the risk of parasite recrudescence in patients treated with ASAQ was observed. Parasites with signatures known to be associated with artemisinin and piperaquine resistance were not detected. The very low frequency of the quintuple Pfdhfr/Pfdhps mutant haplotype supports the continued use of SP for IPTp. Monitoring of efficacy and resistance markers of routinely used anti-malarials is necessary to inform malaria treatment policy. Trial registration ACTRN12617001064392.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Amodiaquina/farmacologia , Amodiaquina/uso terapêutico , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artemeter/uso terapêutico , Combinação Arteméter e Lumefantrina/farmacologia , Combinação Arteméter e Lumefantrina/uso terapêutico , Artesunato/farmacologia , Artesunato/uso terapêutico , Criança , Cloroquina/farmacologia , Variações do Número de Cópias de DNA , Feminino , Humanos , Libéria , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Malária Falciparum/prevenção & controle , Proteínas de Membrana Transportadoras/genética , Plasmodium falciparum , Gravidez
12.
PLoS One ; 17(3): e0264339, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35271592

RESUMO

BACKGROUND: Sub-Saharan Africa has the highest burden of malaria in the world. Artemisinin-based combination therapies (ACTs) have been the cornerstone in the efforts to reduce the global burden of malaria. In the effort to facilitate early detection of resistance for artemisinin derivatives and partner drugs, WHO recommends monitoring of ACT's efficacy in the malaria endemic countries. The present systematic meta-analysis study summarises the evidence of therapeutic efficacy of the commonly used artemisinin-based combinations for the treatment of uncomplicated P. falciparum malaria in Sub-Saharan Africa after more than a decade since the introduction of the drugs. METHODS: Fifty two studies carried out from 2010 to 2020 on the efficacy of artemether-lumefantrine or dihydro-artemisinin piperaquine or artesunate amodiaquine in patients with uncomplicated P. falciparum malaria in Sub-Saharan Africa were searched for using the Google Scholar, Cochrane Central Register of controlled trials (CENTRAL), PubMed, Medline, LILACS, and EMBASE online data bases. Data was extracted by two independent reviewers. Random analysis effect was performed in STATA 13. Heterogeneity was established using I2 statistics. RESULTS: Based on per protocol analysis, unadjusted cure rates in malaria infected patients treated with artemether-lumefantrine (ALU), artesunate-amodiaquine (ASAQ) and dihydroartemisinin-piperaquine (DHP) were 89%, 94% and 91% respectively. However, the cure rates after PCR correction were 98% for ALU, 99% for ASAQ and 99% for DHP. CONCLUSION: The present meta-analysis reports the overall high malaria treatment success for artemether-lumefantrine, artesunate-amodiaquine and dihydroartemisinin-piperaquine above the WHO threshold value in Sub-Saharan Africa.


Assuntos
Antimaláricos , Malária Falciparum , Malária , África Subsaariana/epidemiologia , Amodiaquina/farmacologia , Amodiaquina/uso terapêutico , Antimaláricos/farmacologia , Artemeter/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Artemisininas , Artesunato/uso terapêutico , Combinação de Medicamentos , Etanolaminas/uso terapêutico , Humanos , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Piperazinas , Plasmodium falciparum , Quinolinas
13.
Biol Pharm Bull ; 45(4): 438-445, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35110426

RESUMO

Non-small cell lung cancer (NSCLC) is one of the leading causes of cancer related death with few therapeutic treatment options. Under adverse tumor microenvironment, autophagy is an important mechanism of metabolic adaptations to sustain the survival and proliferation of tumor cells. Therefore, targeting autophagic activity represents a promising opportunity for NSCLC treatment. Here, we found that amodiaquine (AQ) increased autophagosome numbers and LC3BII and p62 at protein levels in A549 lung cancer cells suggesting the blockade of autophagic flux by AQ. To identify the key metabolic vulnerability associated with autophagy inhibition by AQ treatment, we then performed transcriptomics analysis in the presence or absence of AQ in A549 lung cancer cells and found stearoyl-CoA desaturase 1 (SCD1) was one of the most highly upregulated with AQ exposure. The induction of SCD1 by AQ exposure at both protein and mRNA level suggests that SCD1 could represent a potential therapeutic target of AQ treatment. Treatment of AQ in combination with SCD1 inhibition by A939572 demonstrated robust synergistic anti-cancer efficacy in cell proliferation assay and a lung cancer mouse xenograft model. Taken together, our study identified SCD1 could be a new therapeutic target upon autophagy inhibition by AQ exposure. Combinational treatment of autophagy inhibition and SCD1 inhibition achieves synergistic anti-tumor effect both in vitro and in vivo. This combinational approach could be a promising strategy for NSCLC treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Amodiaquina/farmacologia , Amodiaquina/uso terapêutico , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Estearoil-CoA Dessaturase/metabolismo , Microambiente Tumoral
14.
Malar J ; 21(1): 39, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35135546

RESUMO

BACKGROUND: In 2012, seasonal malaria chemoprevention (SMC) was recommended as policy for malaria control by the World Health Organization (WHO) in areas of highly seasonal malaria transmission across the Sahel sub-region in Africa along with monitoring of drug resistance. We assessed the long-term impact of SMC on Plasmodium falciparum resistance to sulfadoxine-pyrimethamine (SP) and amodiaquine (AQ) over a 3-year period of SMC implementation in the health district of Ouelessebougou, Mali. METHODS: In 8 randomly selected sub-districts of Ouelessebougou, Mali, children aged 0-5 years were randomly selected during cross-sectional surveys at baseline (August 2014) and 1, 2 and 3 years post-SMC, at the beginning and end of the malaria transmission season. Blood smears and blood spots on filter paper were obtained and frequencies of mutation in P. falciparum genes related to resistance to SP and AQ (Pfdhfr, Pfdhps, Pfmdr1, and Pfcrt) were assessed by PCR amplification on individual samples and PCR amplification followed by deep sequencing on pooled (by site and year) samples. RESULTS: At each survey, approximately 50-100 individual samples were analysed by PCR amplification and a total of 1,164 samples were analysed by deep sequencing with an average read depth of 18,018-36,918 after pooling by site and year. Most molecular markers of resistance did not increase in frequency over the period of study (2014-2016). After 3 years of SMC, the frequencies of Pfdhps 540E, Pfdhps 437G and Pfcrt K76T remained similar compared to baseline (4.0 vs 1.4%, p = 0.41; 74.5 vs 64.6%, p = 0.22; 71.3 vs 67.4%, p = 0.69). Nearly all samples tested carried Pfdhfr 59R, and this proportion remained similar 3 years after SMC implementation (98.8 vs 100%, p = 1). The frequency of Pfmdr1 N86Y increased significantly over time from 5.6% at baseline to 18.6% after 3 years of SMC (p = 0.016). Results of pooled analysis using deep sequencing were consistent with those by individual analysis with standard PCR, but also indicated for the first time the presence of mutations at the Pfdhps A581G allele at a frequency of 11.7% after 2 years of SMC, as well as the Pfdhps I431V allele at frequencies of 1.6-9.3% following 1 and 2 years of SMC, respectively. CONCLUSION: Two and 3 years of SMC implementation were associated with increased frequency of the Pfmdr1 N86Y mutation but not Pfdhps 540E, Pfdhps 437G and Pfcrt K76T. The first-time detection of the Pfdhps haplotype bearing the I431V and A581G mutations in Mali, even at low frequency, warrants further long-term surveillance.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Amodiaquina/farmacologia , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Quimioprevenção , Criança , Pré-Escolar , Estudos Transversais , Combinação de Medicamentos , Resistência a Medicamentos/genética , Humanos , Lactente , Recém-Nascido , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/prevenção & controle , Mali , Plasmodium falciparum/genética , Pirimetamina/farmacologia , Estações do Ano , Sulfadoxina/farmacologia
15.
ChemMedChem ; 17(8): e202200026, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35132775

RESUMO

Several lines of evidence suggest the ligand-sensing transcription factor Nurr1 as a promising target to treat neurodegenerative diseases. Nurr1 modulators to validate and exploit this therapeutic potential are rare, however. To identify novel Nurr1 agonist chemotypes, we have employed the Nurr1 activator amodiaquine as template for microscale analogue library synthesis. The first set of analogues was based on the 7-chloroquiolin-4-amine core fragment of amodiaquine and revealed superior N-substituents compared to diethylaminomethylphenol contained in the template. A second library of analogues was subsequently prepared to replace the chloroquinolineamine scaffold. The two sets of analogues enabled a full scaffold hop from amodiaquine to a novel Nurr1 agonist sharing no structural features with the lead but comprising superior potency on Nurr1. Additionally, pharmacophore modeling based on the entire set of active and inactive analogues suggested key features for Nurr1 agonists.


Assuntos
Amodiaquina , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares , Amodiaquina/farmacologia , Ligantes , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/química
16.
Basic Clin Pharmacol Toxicol ; 130(1): 132-140, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34740282

RESUMO

In genome-wide association studies, the CYP2C8 gene locus has been reported to be associated with bisphosphonate-related osteonecrosis of the jaw, a severe devastating side effect of antiresorptive bone treatment. The aim of this study was to elucidate the putative pathomechanism explaining the association between the genetic polymorphism with the alleles CYP2C8*2 and *3 causing low CYP2C8 activity, and disturbed periodontal remodelling in periodontal fibroblasts cultured from patients undergoing orthodontic treatment. CYP2C8 activity, enzyme expression and substrate metabolism were detected in human periodontal fibroblast cultures. Zoledronic acid caused enhanced reactive oxygen species (ROS) production in periodontal fibroblasts, which was enhanced by arachidonic acid as inflammatory signal. Enhanced bisphosphonate-induced uncoupling of the CYP2C8 enzyme was detected in the variant allele (CYP2C8*3) with the result of increased H2 O2 production and lowered substrate oxidation. Conversely, substrate (amodiaquine) addition led to decreased H2 O2 production in isolated CYP2C8 enzymes, but in CYP2C8*3 enzyme, increased H2 O2 was still detected, especially in presence of arachidonic acid. CYP2C8 variants leading to decreased enzyme activity in substrate oxidation may enhance ROS production by reaction uncoupling, and thus, contribute to difficulties in orthodontic treatment and the risk of side effects of antiresorptive drugs.


Assuntos
Citocromo P-450 CYP2C8/genética , Fibroblastos/efeitos dos fármacos , Ligamento Periodontal/efeitos dos fármacos , Ácido Zoledrônico/toxicidade , Alelos , Amodiaquina/farmacologia , Ácido Araquidônico/metabolismo , Conservadores da Densidade Óssea/toxicidade , Células Cultivadas , Fibroblastos/citologia , Estudo de Associação Genômica Ampla , Humanos , Peróxido de Hidrogênio/metabolismo , Ortodontia , Oxirredução , Ligamento Periodontal/citologia , Polimorfismo Genético , Espécies Reativas de Oxigênio/metabolismo
17.
J Lipid Res ; 62: 100152, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34808194

RESUMO

Testosterone is a hormone essential for male reproductive function. It is produced primarily by Leydig cells in the testicle through activation of steroidogenic acute regulatory protein and a series of steroidogenic enzymes, including a cytochrome P450 side-chain cleavage enzyme (cytochome P450 family 11 subfamily A member 1), 17α-hydroxylase (cytochrome P450 family 17 subfamily A member 1), and 3ß-hydroxysteroid dehydrogenase. These steroidogenic enzymes are mainly regulated at the transcriptional level, and their expression is increased by the nuclear receptor 4A1. However, the effect on Leydig cell function of a small molecule-activating ligand, amodiaquine (AQ), is unknown. We found that AQ effectively and significantly increased testosterone production in TM3 and primary Leydig cells through enhanced expression of steroidogenic acute regulatory protein, cytochome P450 family 11 subfamily A member 1, cytochrome P450 family 17 subfamily A member 1, and 3ß-hydroxysteroid dehydrogenase. Concurrently, AQ dose-dependently increased the expression of 3-hydroxy-3-methylglutaryl-CoA reductase, a key enzyme in the cholesterol synthesis pathway, through induction of the transcriptional and DNA-binding activities of nuclear receptor 4A1, contributing to increased cholesterol synthesis in Leydig cells. Furthermore, AQ increased the expression of fatty acid synthase and diacylglycerol acyltransferase and potentiated de novo synthesis of fatty acids and triglycerides (TGs). Lipidomics profiling further confirmed a significant elevation of intracellular lipid and TG levels by AQ in Leydig cells. These results demonstrated that AQ effectively promotes testosterone production and de novo synthesis of cholesterol and TG in Leydig cells, indicating that AQ may be beneficial for treating patients with Leydig cell dysfunction and subsequent testosterone deficiency.


Assuntos
Amodiaquina/farmacologia , Colesterol/biossíntese , Células Intersticiais do Testículo/efeitos dos fármacos , Testosterona/biossíntese , Triglicerídeos/biossíntese , Animais , Células Intersticiais do Testículo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
18.
J Parasitol ; 107(5): 778-782, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34581793

RESUMO

The use of Amodiaquine monotherapy is associated with the selection of molecular markers of Plasmodium falciparum resistance to chloroquine (pfcrt and pfmdr1). The decrease in sensitivity and the emergence of P. falciparum resistant to artemisinin-based combination therapy have been reported. Therefore, it is important to assess the impact of treatment of uncomplicated malaria with Artesunate-Amodiaquine (AS+AQ) on molecular markers of antimalarial resistance. We used standard World Health Organization (WHO) protocols to determine the in vivo efficacy of the combination (AS+AQ). In total, 170 subjects were included in the study. The molecular analysis focused on 168 dried blood spots. The aims were to determine the frequency of pfcrt 76T and pfmdr1 86Y mutations and the rates of reinfection using polymorphism markers msp1, msp2, and microsatellite markers (CA1, Ta87, TA99). Nested-PCR was used, followed in some cases by a restriction digestion. The level of P. falciparum clinical response was 92.9% (156/168) of Adequate Clinical and Parasitological Response (ACPR) before molecular correction and 97.0% (163/168) after molecular correction (P = 0.089). The frequency of mutation point pfcrt 76T was 76.2% (128/168) before treatment and 100% (7/7) after treatment (P = 0.1423). For the pfmdr1 mutation, the frequency was 28% (47/168) before treatment and 60% (6/10) after treatment (P = 0.1124). The rate of pfcrt 76T + pfmdr1 86Y was 22% (37/168) before and 50% (6/12) after treatment (P = 0.1465). Despite the presence of AS in the combination, AS+AQ selects for pfcrt 76T and pfmdr1 86Y mutant P. falciparum in Guinea.


Assuntos
Amodiaquina/uso terapêutico , Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Malária Falciparum/tratamento farmacológico , Proteínas de Membrana Transportadoras/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas de Protozoários/genética , Adolescente , Adulto , Amodiaquina/farmacologia , Antimaláricos/farmacologia , Artemisininas/farmacologia , Criança , Pré-Escolar , Combinação de Medicamentos , Feminino , Marcadores Genéticos , Técnicas de Genotipagem , Guiné , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Mutação , Reação em Cadeia da Polimerase , Polimorfismo Genético , Adulto Jovem
19.
Mol Cancer Ther ; 20(10): 1893-1903, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376582

RESUMO

Developing effective treatments for colorectal cancers through combinations of small-molecule approaches and immunotherapies present intriguing possibilities for managing these otherwise intractable cancers. During a broad-based, screening effort against multiple colorectal cancer cell lines, we identified indole-substituted quinolines (ISQ), such as N7,N7 -dimethyl-3-(1-methyl-1H-indol-3-yl)quinoline-2,7-diamine (ISQ-1), as potent in vitro inhibitors of several cancer cell lines. We found that ISQ-1 inhibited Wnt signaling, a main driver in the pathway governing colorectal cancer development, and ISQ-1 also activated adenosine monophosphate kinase (AMPK), a cellular energy-homeostasis master regulator. We explored the effect of ISQs on cell metabolism. Seahorse assays measuring oxygen consumption rate (OCR) indicated that ISQ-1 inhibited complex I (i.e., NADH ubiquinone oxidoreductase) in the mitochondrial, electron transport chain (ETC). In addition, ISQ-1 treatment showed remarkable synergistic depletion of oncogenic c-Myc protein level in vitro and induced strong tumor remission in vivo when administered together with BI2536, a polo-like kinase-1 (Plk1) inhibitor. These studies point toward the potential value of dual drug therapies targeting the ETC and Plk-1 for the treatment of c-Myc-driven cancers.


Assuntos
Amodiaquina/análogos & derivados , Proteínas de Ciclo Celular/antagonistas & inibidores , Neoplasias Colorretais/tratamento farmacológico , Sinergismo Farmacológico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Pteridinas/farmacologia , Amodiaquina/farmacologia , Animais , Apoptose , Proliferação de Células , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Nus , Proteínas Proto-Oncogênicas c-myc/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Quinase 1 Polo-Like
20.
J Antimicrob Chemother ; 76(10): 2565-2568, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34245274

RESUMO

BACKGROUND: Expanding resistance to multiple antimalarials, including chloroquine, in South-East Asia (SEA) urges the development of new therapies. AQ-13, a chloroquine derivative, is a new drug candidate for treating malaria caused by Plasmodium falciparum. OBJECTIVES: Possible cross-resistance between the 4-aminoquinolines amodiaquine, piperaquine and AQ-13 has not been assessed. In vitro parasite growth assays were used to characterize the susceptibility of multidrug-resistant and susceptible P. falciparum patient isolates to AQ-13. METHODS: A [3H]hypoxanthine uptake assay and a 384-well high content imaging assay were used to assess efficacy of AQ-13 and desethyl-amodiaquine against 38 P. falciparum isolates. RESULTS: We observed a strong cross-resistance between the chloroquine derivative amodiaquine and AQ-13 in Cambodian P. falciparum isolates (Pearson correlation coefficient of 0.8621, P < 0.0001). CONCLUSIONS: In light of the poor efficacy of amodiaquine that we described recently in Cambodia, and its cross resistance with AQ-13, there is a significant risk that similar clinical efficacy of AQ-13-based combinations should be anticipated in areas of amodiaquine resistance.


Assuntos
Antimaláricos , Malária Falciparum , Amodiaquina/farmacologia , Amodiaquina/uso terapêutico , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Povo Asiático , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Combinação de Medicamentos , Resistência a Medicamentos , Humanos , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA