Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
J Oleo Sci ; 73(9): 1213-1220, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39218638

RESUMO

The aim of present work was to develop and evaluate Ampelopsis Radix ethanolic extract loaded phytosomes for improved efficacy in colorectal cancer. Ampelopsis Radix ethanolic extract was prepared by Soxhlet extraction process followed by development of phytosomes using lipids and other excipients. The phytosomes were evaluated for surface morphology, particle size analysis, zeta potential, encapsulation efficiency, drug loading, in vitro drug release, Cytotoxicity assay, cellular uptake studies were performed on HCT-116 and SW480 cell lines. In vivo antitumor activity was performed. The phytosomes were found spherical shape with smooth surface characteristics. The drug loading was observed between 29.27 to 42.10 % while particle size of 85 to 130 nm was found. Phytosomes showed desired release pattern which is required for cancer treatment. Phytosomes showed maximum antiproliferative activity on cell lines over the period of 24 hours and showed highest internalization within both types of cell lines. The survival rate of animals in phytosomes treated group was found to be 100% proving the safety and efficacy. Phytosomes showed highest antitumor activity as compared to other formulations. Study confirms the potential use Ampelopsis Radix ethanolic extract loaded phytosomes for improved efficacy in colorectal cancer.


Assuntos
Ampelopsis , Neoplasias Colorretais , Etanol , Extratos Vegetais , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Etanol/química , Animais , Ampelopsis/química , Células HCT116 , Tamanho da Partícula , Liberação Controlada de Fármacos , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Camundongos , Proliferação de Células/efeitos dos fármacos , Fitoterapia , Fitossomas
2.
Poult Sci ; 103(10): 104110, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39106697

RESUMO

Eggs are recognized for their rich nutrient profile, providing essential proteins and lipids with notable functional properties. This study examines the effects of incorporating Water Extract of Ampelopsis grossedentata (WEA) into poultry feed on egg quality, focusing on lipid content, choline, L-carnitine levels, and flavonoid compound deposition. Our results show significant increases in essential amino acids, flavonoids, and other bioactive compounds in eggs from WEA-treated hens, suggesting enhanced cardiovascular, antioxidant, and anti-inflammatory benefits. Additionally, we observed elevated levels of choline and betaine in egg yolks, alongside increased L-carnitine content, which may contribute to improved lipid metabolism and reduced cardiovascular disease risk. KEGG pathway analysis revealed upregulation of metabolites involved in critical metabolic pathways, enhancing the nutritional profile of eggs. Flavonoid compounds, traditionally associated with plant-based foods, were also significantly increased, with notable levels of 7, 4'-dihydroxyflavone, daidzein, and glycitein identified in WEA-treated eggs, indicating potential health benefits. These findings suggest that WEA supplementation can produce functional eggs with improved nutritional quality, offering a novel approach to enhancing egg production and meeting the growing demand for functional foods. Further research is needed to fully understand the bioavailability and health impacts of these enriched compounds.


Assuntos
Ampelopsis , Ração Animal , Galinhas , Dieta , Suplementos Nutricionais , Gema de Ovo , Metaboloma , Extratos Vegetais , Animais , Gema de Ovo/química , Suplementos Nutricionais/análise , Ração Animal/análise , Metaboloma/efeitos dos fármacos , Dieta/veterinária , Extratos Vegetais/administração & dosagem , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Feminino , Ampelopsis/química , Clara de Ovo/química
3.
Oncol Res ; 32(8): 1359-1368, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39055888

RESUMO

Multiple myeloma (MM) is a plasma cell malignancy and remains incurable as it lacks effective curative approaches; thus, novel therapeutic strategies are desperately needed. The study aimed to explore the therapeutic role of dihydromyricetin (DHM) in MM and explore its mechanisms. Human MM and normal plasma samples, human MM cell lines, and normal plasma cells were used for in vitro experiments. Cell counting kit-8 (CCK-8), flow cytometry, and trans-well assays were performed for the assessment of cell viability, apoptosis, migration, and invasion, respectively. Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to assess the mRNA expression of signal transducer and activator of transcription 1 (STAT1) and retinoic acid-inducible gene I (RIG-I). Western blotting was employed to assess E-cadherin, N-cadherin, signal transducer, STAT1, p-STAT1, and RIG-I protein expression. A tumor xenograft model was used for in vivo experiments. Here, dihydromyricetin (DHM) dose-dependently restrained viability, apoptosis, migration, and invasion, and facilitated apoptosis of U266 cells. After DHM treatment, the E-cadherin level was increased and the N-cadherin level was decreased in U266 and RPMI-8226 cells, suggesting the inhibitory effects of DHM on epithelial-mesenchymal transition (EMT) in MM. Besides, the levels of p-STAT1/STAT1 and RIG-I were down-regulated in MM. However, the STAT1 inhibitor fludarabine undid the suppressive effect of DMH on the malignant characteristics of U266 cells. Also, DHM inhibited MM tumor growth and EMT, and activated STAT1/RIG-I pathway in vivo. Collectively, this study first revealed that DHM can restrain EMT and tumor growth in MM by activating STAT1/RIG-I signaling, which provides a novel drug for the treatment of MM.


Assuntos
Apoptose , Flavonóis , Mieloma Múltiplo , Fator de Transcrição STAT1 , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Fator de Transcrição STAT1/metabolismo , Flavonóis/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Animais , Camundongos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Ampelopsis/química , Proliferação de Células/efeitos dos fármacos , Feminino , Transdução de Sinais/efeitos dos fármacos , Masculino , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Pessoa de Meia-Idade
4.
Phytomedicine ; 132: 155658, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38981149

RESUMO

BACKGROUND: Alcohol-related liver damage is the most prevalent chronic liver disease, which creates a heavy public health burden worldwide. The leaves of Ampelopsis grossedentata have been considered a popular tea and traditional herbal medicine in China for more than one thousand years, and possess anti-inflammatory, antioxidative, hepatoprotective, and antiviral activities. PURPOSE: We explored the protective effects of Ampelopsis grossedentata extract (AGE) against chronic alcohol-induced hepatic injury (alcoholic liver disease, ALD), aiming to elucidate its underlying mechanisms. METHODS: Firstly, UPLC-Q/TOF-MS analysis and network pharmacology were used to identify the constituents and elucidate the potential mechanisms of AGE against ALD. Secondly, C57BL/6 mice were pair-fed the Lieber-DeCarli diet containing either isocaloric maltodextrin or ethanol, AGE (150 and 300 mg/kg/d) and silymarin (200 mg/kg) were administered to chronic ethanol-fed mice for 7 weeks to evaluate the hepatoprotective effects. Serum biochemical parameters were determined, hepatic and ileum sections were used for histologic examination, and levels of inflammatory cytokines and oxidative stress in the liver were examined. The potential molecular mechanisms of AGE in improving ALD were demonstrated by RNA-seq, Western blotting analysis, and immunofluorescence staining. RESULTS: Ten main constituents of AGE were identified using UPLC-Q/TOF-MS and 274 potential ALD-related targets were identified. The enriched KEGG pathways included Toll-like receptor signaling pathway, NF-κB signaling pathway, and necroptosis. Moreover, in vivo experimental studies demonstrated that AGE significantly reduced serum aminotransferase levels and improved pathological abnormalities after chronic ethanol intake. Meanwhile, AGE improved ALD in mice by down-regulating oxidative stress and inflammatory cytokines. Furthermore, AGE notably repaired damaged intestinal epithelial barrier and suppressed the production of gut-derived lipopolysaccharide by elevating intestinal tight junction protein expression. Subsequent RNA-seq and experimental validation indicated that AGE inhibited NF-κB nuclear translocation, suppressed IκB-α, RIPK3 and MLKL phosphorylation and alleviated hepatic necroptosis in mice. CONCLUSION: In this study, we have demonstrated for the first time that AGE protects against alcoholic liver disease by regulating the gut-liver axis and inhibiting the TLR4/NF-κB/MLKL-mediated necroptosis pathway. Therefore, our present work provides important experimental evidence for AGE as a promising candidate for protection against ALD.


Assuntos
Ampelopsis , Hepatopatias Alcoólicas , Camundongos Endogâmicos C57BL , NF-kappa B , Farmacologia em Rede , Receptor 4 Toll-Like , Animais , Receptor 4 Toll-Like/metabolismo , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias Alcoólicas/prevenção & controle , NF-kappa B/metabolismo , Ampelopsis/química , Masculino , Camundongos , Transdução de Sinais/efeitos dos fármacos , Extratos Vegetais/farmacologia , Fígado/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Folhas de Planta/química , Etanol , Citocinas/metabolismo
5.
Food Chem ; 450: 139236, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38640537

RESUMO

The aftertaste with a prolonged duration in ampelopsis grossedentata infusion (AGTI) is easily perceived, however, its formation mechanism is unclear. Therefore, aftertaste-A and richness were confirmed as the characteristic aftertaste of AGTI through sensory evaluation and electronic tongue. Moreover, 5-KETE, theobromine, etc., metabolites were identified as the differential components between AGTI and green tea infusion. Among them, p-coumaroyl quinic acid, xanthine etc., and proline, dihydromyricetin, etc., components contributed more to the formation of aftertaste-A and richness, respectively. Further, the bonding between characteristic metabolites for aftertaste in AGTI with their receptors were shown to be more stable using molecular docking, compared to metabolites related to typical taste profiles. The aftertaste in AGTI was more easily perceived by saltiness components or in NaCl system by molecular simulation. This study offers novel insight into the interaction mechanism of aftertaste in tea infusion and will contribute to further study on aftertaste for other foods.


Assuntos
Ampelopsis , Paladar , Humanos , Ampelopsis/química , Ampelopsis/metabolismo , Metabolômica , Simulação de Acoplamento Molecular , Masculino , Feminino , Adulto , Aromatizantes/química , Aromatizantes/metabolismo , Adulto Jovem , Chá/química , Chá/metabolismo , Extratos Vegetais/química , Extratos Vegetais/metabolismo
6.
J Food Sci ; 89(5): 3019-3036, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38517018

RESUMO

Vine tea (Ampelopsis grossedentata), a traditional Chinese tea, is rich in flavonoids with various biological activities. Our study found that Vine tea total flavonoids (TFs) treatment reduced the body mass and blood lipid levels and improved the hepatic tissue morphology in mice fed the high-fat diet (HFD). In vivo, TF treatment activated the hepatic adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway, initiated autophagy, and regulated the expression levels of proteins for lipid metabolism in those HFD-fed mice. In vitro, TF treatment dramatically reduced the lipid droplets and triacylglycerol content in HepG2 and L02 cells treated with oleic acid (OA). These were associated with the activation of the AMPK/mTOR pathway and autophagy initiation in OA-treated hepatocytes. This phenotype was abolished in the presence of 3-methyladenine, an autophagy inhibitor. Our results indicated that the TF activation of AMPK/mTOR leads to the stimulation of autophagy and a decrease in the buildup of intracellular lipids in hepatocytes, showing the potential of TF as a therapeutic agent for nonalcoholic fatty liver disease. PRACTICAL APPLICATION: Vine tea, a tea drink, has been consumed by Chinese folk for over a thousand years. The result of this study will provide evidence that vine tea total flavonoids have potential use as a functional material for the prevention and amelioration of nonalcoholic fatty liver disease.


Assuntos
Proteínas Quinases Ativadas por AMP , Dieta Hiperlipídica , Flavonoides , Camundongos Endogâmicos C57BL , Serina-Treonina Quinases TOR , Animais , Flavonoides/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Camundongos , Dieta Hiperlipídica/efeitos adversos , Proteínas Quinases Ativadas por AMP/metabolismo , Masculino , Humanos , Células Hep G2 , Ampelopsis/química , Transdução de Sinais/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Autofagia/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Chá/química , Triglicerídeos/metabolismo , Extratos Vegetais/farmacologia
7.
J Ethnopharmacol ; 325: 117810, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38266948

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Vine Tea (VT, Ampelopsis grossedentata), boasts a venerable tradition in China, with a recorded consumption history exceeding 1200 years. Predominantly utilized by ethnic groups in southwest China, this herbal tea is celebrated for its multifaceted therapeutic attributes. Traditionally, VT has been employed to alleviate heat and remove toxins, exhibit anti-inflammatory properties, soothe sore throats, lower blood pressure, and fortify bones and muscles. In the realm of functional foods derived from plant resources, VT has garnered attention for its potential in crafting anti-fatigue beverages or foods, attributed to its promising efficacy and minimal side effects. Currently, in accordance with the Food Safety Standards set forth by the Monitoring and Evaluation Department of the National Health and Family Planning Commission in China, VT serves as a raw material in various beverages. AIM OF THE STUDY: VT has an anti-fatigue or similar effect in folk. However, the underlying molecular mechanisms contributing to VT's anti-fatigue effects remain elusive. This study endeavors to investigate the influence of Vine Tea Aqueous Extract (VTE) on fatigue mitigation and to elucidate its operative mechanisms, with the objective of developing VTE as a functional beverage. MATERIALS AND METHODS: The preparation of VTE involved heat extraction and freeze-drying processes, followed by the identification of its metabolites using UPLC-QTOF-MS to ascertain the chemical composition of VTE. A fatigue model was established using a forced swimming test in mice. Potential molecular targets were identified through network pharmacology, transcriptome analysis, and molecular docking. Furthermore, RT-PCR and Western blot techniques were employed to assess mRNA and protein expressions related to the AMPK and FoxO pathways. RESULTS: VTE significantly prolonged the duration of swimming time in an exhaustive swimming test in a dose-dependent manner, while simultaneously reducing the concentrations of blood lactic acid (LA), lactate dehydrogenase (LDH), serum urea nitrogen (SUN), and creatine kinase (CK). Notably, the performance of the high-dose VTE group surpassed that of the well-recognized ginsenoside. VTE demonstrated a regulatory effect akin to ginsenoside on the AMPK energy metabolism pathway and induced downregulation in the expression of Gadd45α, Cdkn1a, FOXO1, and Fbxo32 genes, suggesting an enhancement in skeletal muscle mass. These findings indicate that VTE can improve energy metabolism and muscle mass concurrently. CONCLUSIONS: VTE exhibits significant anti-fatigue effects, and its mechanism is intricately linked to the modulation of the AMPK and FoxO pathways. Crucially, no caffeine or other addictive substances with known side effects were detected in VTE. Consequently, vine tea shows substantial promise as a natural resource for the development of anti-fatigue beverages within the food industry.


Assuntos
Ampelopsis , Ginsenosídeos , Camundongos , Animais , Ampelopsis/química , Ampelopsis/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Ginsenosídeos/uso terapêutico , Simulação de Acoplamento Molecular , Fadiga/tratamento farmacológico , Chá , Músculos
8.
Fitoterapia ; 172: 105718, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37931719

RESUMO

The strategies or drugs for preventing and treating Hyperuricemia (HUA) are still lacking. As a traditional Chinese medicine (TCM) with a profound history, Ampelopsis grossedentata has been shown to play diverse biological roles. The purpose of the present study was to evaluate hypouricemic effect of A. grossedentata, and investigate its involved material basis and mechanism. A HUA mice model was established to evaluate the therapeutic effects of A. grossedentata. And then some extracts from A. grossedentata were prepared, isolated and analyzed. Furthermore, network pharmacology, based on the above results, was used to discover potential active ingredients and therapeutic targets, and they were further verified and explored by molecular docking and in vitro experiments. In vivo experiments showed that A. grossedentata exerted hypouricemic effect on mice of HUA. The core active ingredients (quercetin, myricetin and dihydromyricetin etc.) and core targets (PTGS2, XOD and ABCG2 etc.) for A. grossedentata to treat HUA were predicted by network pharmacology. And molecular docking showed that the spontaneous binding activities of above components and targets were marvelous. In vitro experiments further demonstrated that A. grossedentata exerted hypouricemic effect by decreasing the levels of UA, XOD, antioxidant factors, inflammatory factors, GLUT9 and URAT1 in HK-2 cells of HUA. Taken together, this study integrates multi-level interaction network with in vivo/vitro experiments to systematically reveal the material basis and mechanism of A. grossedentata in treating HUA, which provides a scientific basis for further study of A. grossedentata and HUA.


Assuntos
Ampelopsis , Hiperuricemia , Camundongos , Animais , Hiperuricemia/tratamento farmacológico , Ampelopsis/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Antioxidantes/farmacologia
9.
Molecules ; 28(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38138447

RESUMO

Ampelopsis grossedentata is a valuable medicinal and edible plant, which is often used as a traditional tea by the Tujia people in China. A. grossedentata has numerous biological activities and is now widely used in the pharmaceutical and food industries. In this study, two new flavonoids (1-2) and seventeen known compounds (3-19) were isolated and identified from the dried stems and leaves of A. grossedentata. These isolated compounds were characterized by various spectroscopic data including mass spectrometry and nuclear magnetic resonance spectroscopy. All isolates were assessed for their α-glucosidase inhibitory, antioxidant, and hepatoprotective activities, and their structure-activity relationships were further discussed. The results indicated that compound 1 exhibited effective inhibitory activity against α-glucosidase, with an IC50 value of 0.21 µM. In addition, compounds 1-2 demonstrated not only potent antioxidant activities but also superior hepatoprotective properties. The findings of this study could serve as a reference for the development of A. grossedentata-derived products or drugs aimed at realizing their antidiabetic, antioxidant, and hepatoprotective functions.


Assuntos
Ampelopsis , Antioxidantes , Inibidores de Glicosídeo Hidrolases , alfa-Glucosidases , Ampelopsis/química , Antioxidantes/farmacologia , Antioxidantes/química , Flavonoides/química , Extratos Vegetais/química , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia
10.
Molecules ; 28(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37894624

RESUMO

Ampelopsis grossedentata (AG) is mainly distributed in Chinese provinces and areas south of the Yangtze River Basin. It is mostly concentrated or scattered in mountainous bushes or woods with high humidity. Approximately 57 chemical components of AG have been identified, including flavonoids, phenols, steroids and terpenoids, volatile components, and other chemical components. In vitro studies have shown that the flavone of AG has therapeutic properties such as anti-bacteria, anti-inflammation, anti-oxidation, enhancing immunity, regulating glucose and lipid metabolism, being hepatoprotective, and being anti-tumor with no toxicity. Through searching and combing the related literature, this paper comprehensively and systematically summarizes the research progress of AG, including morphology, traditional and modern uses, chemical composition and structure, and pharmacological and toxicological effects, with a view to providing references for AG-related research.


Assuntos
Ampelopsis , Medicamentos de Ervas Chinesas , Plantas Medicinais , Ampelopsis/química , Medicamentos de Ervas Chinesas/química , Flavonoides/farmacologia , Flavonoides/química , Glucose , Compostos Fitoquímicos/farmacologia , Etnofarmacologia , Extratos Vegetais/química
11.
Zhongguo Zhong Yao Za Zhi ; 47(17): 4733-4743, 2022 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-36164881

RESUMO

The present study investigated the mechanism of total flavonoids from Ampelopsis grossedentata(AGTF) against gouty arthritis(GA) by network pharmacology and experimental validation. The main active ingredients and targets of AGTF, as well as disease targets, were screened out using relevant databases and literature data. The "protein-protein interaction"(PPI) network and "drug-ingredient-target-pathway" network were constructed, and the potential targets and mechanism of AGTF against GA were predicted. The hyperuricemia(HUA) combined with GA model was induced in rats. The gait behaviors of rats were scored, and ankle swelling degree was observed. The uric acid(UA) level and xanthine oxidase(XOD) activity in the rat serum were detected, and the levels of interleukin-1ß(IL-1ß), interleukin-6(IL-6), and tumor necrosis factor-α(TNF-α) were measured. The protein expression of toll-like receptor 4(TLR4), myeloid differentiation factor 88(MyD88), and nuclear factor-kappa B(NF-κB) in the synovial tissues of the rat ankle joint was determined by immunohistochemistry. Ten active ingredients of AGTF and 73 candidate targets of AGTF against GA were screened out by network pharmacology. Eighty-six signaling pathways were enriched, including TNF signaling pathway, NF-κB signaling pathway, TLR signaling pathway, Nod-like receptor signaling pathway, and purine metabolism signaling pathway, which were closely related to AGTF against GA. Animal experimental results showed that AGTF could effectively improve the abnormal gait behaviors of GA rats, relieve ankle inflammation, and reduce ankle joint swelling. In addition, AGTF could significantly reduce UA level, inhibit XOD activity, decrease TNF-α, IL-6, and IL-1ß content, and down-regulate the expression of TLR4, MyD88, and NF-κB in ankle synovial tissues(P<0.05, P<0.01). The results of network pharmacology and experimental validation are consistent, indicating that AGTF exerts its therapeutic effect on GA by regulating UA metabolism, improving abnormal UA level, reducing the release of inflammatory factors, and regulating immunity and the TLR4/MyD88/NF-κB inflammatory pathway.


Assuntos
Ampelopsis , Artrite Gotosa , Flavonoides , Ampelopsis/química , Animais , Artrite Gotosa/tratamento farmacológico , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas NLR/metabolismo , Ratos , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Ácido Úrico , Xantina Oxidase
12.
J Food Sci ; 87(6): 2350-2363, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35470872

RESUMO

Ampelopsis grossedentata (AG) is an industrial crop in the grape family, which has been used as a dual-purpose plant for medicine and tea with high medicinal values. However, little is reported on the separation technology of active components from AG and processing technology of AG products. High-speed counter-current chromatography (HSCCC) was applied to separate the principal component dihydromyricetin (DMY) from AG. DMY is added to starch-based products to improve food quality. The interaction between corn starch (CS) and DMY was investigated to predict and control the structure and function of starch-based foods. Results show that DMY with 97.13% purity was successfully obtained by HSCCC using a solvent system composed of light petroleum-ethyl acetate-methanol-water-trichloroacetic acid (1:3:1:3:0.01, v/v/v/v/v). Fourier-transform infrared spectroscopy (FT-IR) exhibits that the interactions between CS and DMY included hydrogen bond and noncovalent bond. X-ray diffraction (XRD) shows that DMY could increase the relative crystallinity of CS. Low-field nuclear magnetic resonance results (LF-NMR) imply that DMY decreased the spin relaxation time (T2 ) and inhibited the mobility of free water. Atomic force microscopy (AFM) results suggest that DMY changed the surface morphology of CS through hydrogen bond interaction. Moreover, the results of confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) indicate that DMY could enlarge the pores and change the microstructure of CS-DMY complexes. The findings promote the development of industrial CS-based products and utilization of corn crop.


Assuntos
Ampelopsis , Ampelopsis/química , Distribuição Contracorrente/métodos , Flavonóis/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Amido , Água , Zea mays
13.
Mol Nutr Food Res ; 66(9): e2100892, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35188709

RESUMO

SCOPE: Vine tea (Ampelopsis grossedentata), a traditional Chinese tea, has displayed various biological activities. The authors aim to investigate the effect of Vine Tea (Ampelopsis grossedentata) extract (VTE) on carbon tetrachlorid (CCl4 )induced acute liver injury (ALI) in mice and to explore the underlying role of gut microbiota during the treatment. METHODS AND RESULTS: C57BL/6J mice injected with CCl4 are treated with VTE for 6 weeks. By using H&E staining, immunofluorescence staining, quantitative real-time (qRT)-PCR, and western blot, it is shown that VTE treatment significantly ameliorates hepatocyte necrosis, alleviates the mRNA levels of toll-like receptor 4 (Tlr4), interleukin (Il)-6, inducible nitric oxide synthase (iNOS), acetyl-CoA carboxylase 1 (Acc1), and increases the mRNA levels of peroxisome proliferator-activated receptor gamma (Ppar-γ) and 3-hydroxy-3-methylglutaryl coenzyme A reductase (Hmg-coar) compared to the CCl4 group. Also, VTE abrogates the decreased mRNA expressions of zonula occludens-1 (Zo-1), Occludin, and Mucin1 in colon tissues. Using microbial 16S rDNA sequencing, VTE treatment significantly downregulates the abundances of some harmful intestinal bacteria like Helicobacter and Oscillibacter. In contrast, VTE upregulates the contents of several beneficial bacteria, such as Ruminococcaceae_UCG-014 and Eubacterium_fissicatena_group. Further, VTE fails to improve ALI in the mice with gut microbiota depletion using antibiotic treatment. CONCLUSIONS: The studies suggest that VTE exhibits a protective effect against CCl4 -induced ALI in mice by alleviating hepatic inflammation, suppressing intestinal epithelial barrier injury, and restoring gut microbiota dysbiosis.


Assuntos
Ampelopsis , Doença Hepática Crônica Induzida por Substâncias e Drogas , Microbioma Gastrointestinal , Extratos Vegetais , Ampelopsis/química , Animais , Disbiose/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Extratos Vegetais/farmacologia , RNA Mensageiro/genética , Chás de Ervas
14.
Int J Biol Macromol ; 187: 976-987, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34333006

RESUMO

Coronavirus 3C-like protease (3CLpro) is a crucial target for treating coronavirus diseases including COVID-19. Our preliminary screening showed that Ampelopsis grossedentata extract (AGE) displayed potent SARS-CoV-2-3CLpro inhibitory activity, but the key constituents with SARS-CoV-2-3CLpro inhibitory effect and their mechanisms were unrevealed. Herein, a practical strategy via integrating bioactivity-guided fractionation and purification, mass spectrometry-based peptide profiling and time-dependent biochemical assay, was applied to identify the crucial constituents in AGE and to uncover their inhibitory mechanisms. The results demonstrated that the flavonoid-rich fractions (10-17.5 min) displayed strong SARS-CoV-2-3CLpro inhibitory activities, while the constituents in these fractions were isolated and their SARS-CoV-2-3CLpro inhibitory activities were investigated. Among all isolated flavonoids, dihydromyricetin, isodihydromyricetin and myricetin strongly inhibited SARS-CoV-2 3CLpro in a time-dependent manner. Further investigations demonstrated that myricetin could covalently bind on SARS-CoV-2 3CLpro at Cys300 and Cys44, while dihydromyricetin and isodihydromyricetin covalently bound at Cys300. Covalent docking coupling with molecular dynamics simulations showed the detailed interactions between the orthoquinone form of myricetin and two covalent binding sites (surrounding Cys300 and Cys44) of SARS-CoV-2 3CLpro. Collectively, the flavonoids in AGE strongly and time-dependently inhibit SARS-CoV-2 3CLpro, while the newly identified SARS-CoV-2 3CLpro inhibitors in AGE offer promising lead compounds for developing novel antiviral agents.


Assuntos
Proteases Virais 3C/química , Proteases Virais 3C/metabolismo , Ampelopsis/química , Antivirais/farmacologia , Flavonoides/farmacologia , SARS-CoV-2/enzimologia , Antivirais/química , Sítios de Ligação/efeitos dos fármacos , Cisteína/metabolismo , Flavonoides/química , Flavonóis/química , Flavonóis/farmacologia , Espectrometria de Massas , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Ligação Proteica/efeitos dos fármacos , Conformação Proteica/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos
15.
ACS Appl Mater Interfaces ; 13(28): 33449-33463, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34240595

RESUMO

Selective detection of active ingredients in complex samples has always been a crucial challenge because there are many disturbing compounds, especially structural analogues that interfere with the detection. In this work, a fluorescent covalent organic framework (named COF-TD), which can be used for the selective fluorescence detection and enrichment of myricetin from complex samples, was reported for the first time. The highly crystalline COF-TD with bright blue fluorescence was formed through a solution polymerization method by the condensation reaction between 4,4',4″-(1,3,5-triazine-2,4,6-triyl)trianiline and 2,5-dihydroxy-1,4-benzenedicarboxaldehyde. Due to spatial size selectivity, multisites hydrogen bonding, and π-π interaction, myricetin can quench the fluorescence of COF-TD with an inner filter effect (IFE) and static quenching mechanisms as well as can be enriched on COF-TD. Myricetin can observably eliminate the interference of other compounds and selectively quench the fluorescence of COF-TD with a limit of detection (LOD) of 0.30 µg·mL-1. The high adsorption ability of COF-TD (Q = 124.6 mg·g-1) to myricetin was also obtained. Finally, a sensing platform based on COF-TD for myricetin was successfully developed and applied for the detection of myricetin from vine teas. In addition, COF-TD also showed good water sensing ability and could be used effectively to detect water content in organic solvent (1-18% water in acetone, 0.5-5% water in acetonitrile, 1-4.5% water in ethyl acetate, v/v). To the best of our knowledge, this is the first report where COF-TD was used to detect water in a relatively wide concentration range. In all, this work provided dual-functional fluorescent COFs with the properties of an adsorbent, opening up new methodologies for the simple, selective, and enrichment detection method for myricetin.


Assuntos
Flavonoides/análise , Corantes Fluorescentes/química , Estruturas Metalorgânicas/química , Água/análise , Adsorção , Ampelopsis/química , Flavonoides/química , Corantes Fluorescentes/síntese química , Limite de Detecção , Estruturas Metalorgânicas/síntese química , Espectrometria de Fluorescência/métodos , Chás de Ervas/análise
16.
Int J Biol Macromol ; 185: 194-205, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34166690

RESUMO

Steam explosion (SE) was a friendly environmentally pretreatment method. In this study, the effect of steam explosion (SE) pretreatment on structure and α-glucosidase inhibitory activity of Ampelopsis grossedentata polysaccharides was evaluated. Two novel polysaccharides (AGP and AGP-SE) were extracted, isolated, purified and analyzed by NMR, FT-IR and methylation. The results indicated that AGP mainly consisted of Rha, Xyl, Glc, and Ara with a molecular weight of 2.74 × 103 kDa and AGP-SE mainly consisted of Man, Ara, and Gal with a molecular weight of 2.14 × 103 kDa. Furthermore, the backbone of AGP and AGP-SE were mainly composed of 5)-Araf-(1→, -Glcp-(1→, 6)-Glcp-(1→, 6)-Galp-(1→, 3,6)-Manp-(1→, and 2,3,6)-Glcp-(1→. Finally, we demonstrated that all polysaccharides exhibited obviously α-glucosidase inhibition activity and mixed type inhibition. AGP-SE had better α-glucosidase inhibition activity and the binding affinity KD on α-glucosidase by using Surface Plasmon Resonance (SPR) than AGP. Overall, SE pretreatment is an effective method for extracting polysaccharide and provides a new idea into the improvement of biological activity.


Assuntos
Ampelopsis/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Polissacarídeos/farmacologia , alfa-Glucosidases/metabolismo , Sequência de Carboidratos , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Humanos , Metilação , Peso Molecular , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Espectroscopia de Infravermelho com Transformada de Fourier , Vapor , Ressonância de Plasmônio de Superfície
17.
Int J Oncol ; 58(3): 409-418, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33469684

RESUMO

Ampelopsis megalophylla has been found to demonstrate anticancer activities in human cancer cells; however, the effect of total flavone extract (TFE), commonly used in Traditional Chinese Medicine, remains unclear. Furthermore, there is limited information on its effects on breast cancer cell lines. The present study aimed to investigate the inhibitory effects of TFE in different human cancer cell lines. In addition, the underlying mechanisms and the signaling pathways involved were also investigated by determining tumor cell morphological changes, and differences in the cell cycle, apoptosis, mitochondrial transmembrane potential, and related protein expression levels in a breast cancer cell line. It was found that TFE inhibited proliferation in seven cancer cell lines (HeLa, A549, MCF­7, HepG2, A2780, SW620 and MDA­MB­231 and demonstrated a strong inhibitory effect on MCF­7 cell proliferation. Cell morphological changes were also observed and arrested at the G2/M phase following treatment with TFE at different concentrations. In addition, TFE disrupted the mitochondrial membrane potential and upregulated the expression level of apoptotic proteins, including caspase­3, ­8 and ­9, the Bax/Bcl­2 ratio, and Apaf­1 in time­dependent manner. These results indicated that TFE induced apoptosis of the MCF­7 cells via a mitochondrial­mediated apoptotic pathway. In conclusion, TFE is potentially effective in treating breast cancer.


Assuntos
Ampelopsis/química , Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Extratos Vegetais/farmacologia , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/uso terapêutico , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Feminino , Humanos , Células MCF-7 , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/uso terapêutico
18.
Sci Rep ; 10(1): 21416, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33293561

RESUMO

Vine tea (Ampelopsis grossedentata) has been approved as a new food ingredient in 2013. Both vine tea extract (VTE) and its active ingredient, 2R, 3R-Dihydromyricetin (DMY), showed good antibacterial activity. The mechanism of VTE and DMY against Staphylococcus aureus were evaluated by morphology observation, cell membrane and wall assay, protein assay, and DNA assay in this study. The results of SEM and TEM revealed that the VTE and DMY changed the morphology of S. aureus. The leakage of AKPase and ß-galactosidase in treated groups demonstrated that the membrane integrity of S. aureus was disrupted. Meanwhile, the results of protein assay showed that VTE and DMY inhibited the expression of total proteins, and decreased activities of a few energy metabolism enzymes, total ATPase. Moreover, spectral and competitive analysis revealed that VTE and DMY interacted with DNA by groove and intercalation binding. Finally, the suspension experiments of Chinese cabbage and barley showed that inhibitors had strong inhibitory effect on bacteria growth. Overall, the results suggested that VTE and DMY may be potential food preservatives for inhibiting pathogen.


Assuntos
Ampelopsis/química , Antibacterianos/farmacologia , Flavonóis/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Fosfatase Alcalina/metabolismo , Proteínas de Bactérias/metabolismo , Membrana Celular/efeitos dos fármacos , Conservação de Alimentos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Extratos Vegetais/química , Staphylococcus aureus/metabolismo , beta-Galactosidase/metabolismo
19.
Food Funct ; 11(7): 5976-5991, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32666969

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a disease that is prevalent worldwide, and its prevention by dietary administration has recently been considered as an important strategy. In this study, we administered mice with vine tea polyphenol (VTP) extracted from Ampelopsis grossedentata, a Chinese herb, to investigate the preventive effect on western diet (WD)-induced NAFLD. Male C57BL/6N mice were fed either a normal diet (ND) or WD with or without VTP for 12 weeks. The results revealed that VTP supplementation decreased the serum levels of cholesterol and triglycerides, and reduced the accumulation of hepatic lipid droplets caused by WD. Molecular data revealed that VTP enhanced fatty acid oxidation by reactivating the WD-suppressed phosphorylation of AMP-activated protein kinaseα (AMPKα) and the expressions of peroxisome proliferator-activated receptor alpha (PPARα), carnitine palmitoyl transferase IA (CPT1A) and cytochrome P450, family 4, subfamily a1 (CYP4A1). VTP inhibited hepatic lipogenesis by reducing the WD-enhanced level of mature sterol regulatory element-binding protein 1 (SREBP1) and fatty acid synthase (FAS). Moreover, VTP activated nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-mediated expressions of hemeoxygenase-1 (HO-1) and quinone oxidoreductase (NQO1), and reduced hepatic TBARS levels to prevent hepatic oxidative stress. On the other hand, VTP also increased intestinal zonula occludens-1 (ZO-1) expression and the relative abundance of gut Akkermansia, and reduced the ratio of Firmicutes/Bacteroidetes. Thus, VTP might prevent WD-induced NAFLD by balancing fatty acid oxidation and lipogenesis, hepatic oxidative stress, and gut microbiome, at least. These results suggest that vine tea, containing a high content of the bioactive compound dihydromyricetin, is a potential food resource for preventing NAFLD.


Assuntos
Ampelopsis/química , Dieta Ocidental/efeitos adversos , Flavonóis/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica , Estresse Oxidativo/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Carnitina O-Palmitoiltransferase/metabolismo , Citocromo P-450 CYP4A/metabolismo , Dieta Hiperlipídica/efeitos adversos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Flavonóis/uso terapêutico , Microbioma Gastrointestinal/efeitos dos fármacos , Células Hep G2 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch , Fígado/metabolismo , Fígado/patologia , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , PPAR alfa/metabolismo , Fitoterapia , Chás de Ervas
20.
J Food Sci ; 85(4): 1082-1089, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32147839

RESUMO

The leaves of Ampelopsis grossedentata have a long history of use as a health tea and herbal medicine. Data on the distribution of active metabolites in, and antioxidant capacities of, different vine tea tissues remain incomplete. The aim of this work was to investigate the content of metabolites from A. grossedentata different tissues and evaluate the antioxidant capacities of the extraction of the species in vitro and in oil systems: canola oil and sunflower oil. To evaluate the degree of lipid oxidation, the peroxide value (POV) and thiobarbituric acid-reactive substance value (TBARS) were determined, and proton nuclear magnetic resonance (1 H-NMR) was performed. The results revealed a high total flavonoid content in each of the four extractions (>580 mg/g dried weigh). Leaf extractions exhibited higher antioxidant ability, followed by fruit extract and butylated hydroxytoluene (BHT). The POVs of oils bearing extracts of A. grossedentata and BHT maintained less than 21.08 meq/kg oil against to control with 1,406.33 ± 52.63 meq/kg oil on day 32 in canola oil, and 27.87 meq/kg oil comparing to 1,892.96 ± 48.63 meq/kg oil in control on day 24 in sunflower oil. Concurring results were also obtained in TBARS and 1 H-NMR analysis. Our results indicated that these different tissues of A. grossedentata could be a potential antioxidant resource, and this work may contribute to the comprehensive utilization of this species. PRACTICAL APPLICATION: Leaf extracts of Ampelopsis grossedentata showed effective antioxidant properties, followed by the fruit extract, which showed similar activity to that of the synthetic antioxidant of BHT. Moreover, the investigation of different tissues within the plant may contribute to the comprehensive utilization of this species.


Assuntos
Ampelopsis/química , Antioxidantes/química , Extratos Vegetais/química , Óleo de Brassica napus/química , Óleo de Girassol/química , Flavonoides/química , Espectroscopia de Ressonância Magnética , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA