Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochimie ; 90(11-12): 1685-92, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18675879

RESUMO

The stereochemistry of CO(2) addition to phosphoenolpyruvate (PEP) to yield oxaloacetate catalyzed by ATP-dependent Saccharomyces cerevisiae and Anaerobiospirillum succiniciproducens PEP carboxykinases was determined using (Z)-3-fluorophosphoenolpyruvate ((Z)-F-PEP) as a substrate analog. A. succiniciproducens and S. cerevisiae PEP carboxykinases utilized (Z)-F-PEP with 1/14 and 1/47 the respective K(m) values for PEP. On the other hand, in the bacterial and yeast enzymes k(cat) was reduced to 1/67 and 1/48 the value with PEP, respectively. The binding affinity of pyridoxylphosphate-labeled S. cerevisiae and A. succiniciproducens PEP carboxykinases for PEP and (Z)-F-PEP was checked and found to be of similar magnitude for both substrates, suggesting that the lowered K(m) values for the fluorine-containing PEP analog are due to kinetic effects. The lowered k(cat) values when using (Z)-F-PEP as substrate suggest that the electron withdrawing effect of fluorine affects the nucleophilic attack of the double bond of (Z)-F-PEP to CO(2). For the stereochemical analyses, the carboxylation of (Z)-F-PEP was coupled to malate dehydrogenase to yield 3-fluoromalate, which was analyzed by (19)F NMR. The fluoromalate obtained was identified as (2R, 3R)-3-fluoromalate for both the A. succiniciproducens and S. cerevisiae PEP carboxykinases, thus indicating that CO(2) addition to (Z)-F-PEP, and hence PEP, takes place through the 2-si face of the double bond. These results, together with previously published data [Rose, I.A. et al. J. Biol. Chem. 244 (1969) 6130-6133; Hwang, S.H. and Nowak, T. Biochemistry 25 (1986) 5590-5595] indicate that PEP carboxykinases, no matter their nucleotide specificity, catalyze the carboxylation of PEP from the 2-si face of the double bond.


Assuntos
Anaerobiospirillum/enzimologia , Fosfoenolpiruvato Carboxiquinase (ATP)/química , Saccharomyces cerevisiae/enzimologia , Catálise , Estereoisomerismo
2.
Int J Biochem Cell Biol ; 37(9): 1829-37, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15890557

RESUMO

The 2.2 Angstroms resolution crystal structure of the enzyme phosphoenolpyruvate carboxykinase (PCK) from the bacterium Anaerobiospirillum succiniciproducens complexed with ATP, Mg(2+), Mn(2+) and the transition state analogue oxalate has been solved. The 2.4 Angstroms resolution native structure of A. succiniciproducens PCK has also been determined. It has been found that upon binding of substrate, PCK undergoes a conformational change. Two domains of the molecule fold towards each other, with the substrates and metal ions held in a cleft formed between the two domains. This domain movement is believed to accelerate the reaction PCK catalyzes by forcing bulk solvent molecules out of the active site. Although the crystal structure of A. succiniciproducens PCK with bound substrate and metal ions is related to the structures of PCK from Escherichia coli and Trypanosoma cruzi, it is the first crystal structure from this class of enzymes that clearly shows an important surface loop (residues 383-397) from the C-terminal domain, hydrogen bonding with the peptide backbone of the active site residue Arg60. The interaction between the surface loop and the active site backbone, which is a parallel beta-sheet, seems to be a feature unique of A. succiniciproducens PCK. The association between the loop and the active site is the third type of interaction found in PCK that is thought to play a part in the domain closure. This loop also appears to help accelerate catalysis by functioning as a 'lid' that shields water molecules from the active site.


Assuntos
Anaerobiospirillum/enzimologia , Fosfoenolpiruvato Carboxiquinase (ATP)/química , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Magnésio/metabolismo , Manganês/metabolismo , Modelos Moleculares , Estrutura Molecular , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Estrutura Secundária de Proteína
3.
Biochimie ; 86(1): 47-51, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14987800

RESUMO

Anaerobiospirillum succiniciproducens phosphoenolpyruvate (PEP) carboxykinase catalyses the reversible metal-dependent formation of oxaloacetate (OAA) and ATP from PEP, ADP and CO(2). Mutations of PEP carboxykinase have been constructed where the residues His(225) and Asp(263), two residues of the enzyme's putative Mn(2+) binding site, were altered. Kinetic studies of the His225Glu, and Asp263Glu PEP carboxykinases show 600- and 16,800-fold reductions in V(max) relative to the wild-type enzyme, respectively, with minor alterations in K(m) for Mn(2+). Molecular modeling of wild-type and mutant enzymes suggests that the lower catalytic efficiency of the Asp263Glu enzyme could be explained by a movement of the lateral chain of Lys(248), a critical catalytic residue, away from the reaction center. The effect on catalysis of introducing a negatively charged oxygen atom in place of N(epsilon-2) at position 225 is discussed in terms of altered binding energy of the intermediate enolpyruvate.


Assuntos
Anaerobiospirillum/enzimologia , Manganês/metabolismo , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Substituição de Aminoácidos/genética , Anaerobiospirillum/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação/genética , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Ligação Proteica , Especificidade por Substrato/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA