Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 408
Filtrar
1.
J Orthop Surg Res ; 19(1): 261, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659063

RESUMO

PURPOSE: The aim of this study was to investigate the clinical efficacy of full endoscopic lumbar annulus fibrosus suture in the treatment of single-segment lumbar disc herniation (LDH). METHODS: The clinical data of patients with single-segment LDH who underwent full endoscopic lumbar discectomy from January 2017 to January 2019 in our hospital were retrospectively analysed. Patients with full endoscopic lumbar discectomy combined with annulus fibrosus suture were divided into group A, and those with simple full endoscopic lumbar discectomy were divided into group B. The general information, surgery-related data, visual analog scale (VAS), Oswestry disability index (ODI), modified MacNab score at the last follow-up, reoperation rate and recurrence were compared between the two groups. RESULTS: All patients were followed up for 12 to 24 months, and the surgical time was 133.6 ± 9.6 min in group A and 129.0 ± 11.7 min in group B. The difference was not statistically significant (p > 0.05). The blood loss of group A was higher than that of group B, and the difference was statistically significant when comparing the groups (p < 0.05). The postoperative symptoms of patients in both groups were significantly relieved, and the VAS score of low back pain and ODI index were significantly lower than the preoperative ones at all postoperative time points (1 month after surgery, 3 months after surgery, and at the last follow-up) (p < 0.05), but there was no significant difference between the groups (p > 0.05). The excellent rate of MacNab at the last follow-up in the two groups were 93.55% and 87.80%, respectively, with no statistically significant difference (p > 0.05). At the last follow-up, the recurrence rate of group A was significantly lower than that of group B, and the difference was statistically significant (p < 0.05), while the difference between the reoperation rate of the two groups was not statistically significant (p > 0.05). CONCLUSIONS: Full endoscopic lumbar discectomy combined with annulus fibrosus repair reduces the postoperative recurrence rate and achieves satisfactory clinical outcomes.


Assuntos
Anel Fibroso , Endoscopia , Deslocamento do Disco Intervertebral , Vértebras Lombares , Humanos , Masculino , Feminino , Vértebras Lombares/cirurgia , Deslocamento do Disco Intervertebral/cirurgia , Adulto , Pessoa de Meia-Idade , Estudos Retrospectivos , Endoscopia/métodos , Anel Fibroso/cirurgia , Resultado do Tratamento , Seguimentos , Técnicas de Sutura , Discotomia/métodos
2.
Aging (Albany NY) ; 16(6): 5370-5386, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38484139

RESUMO

Intervertebral disc degeneration (IVDD) has been considered a major cause of low back pain. Therefore, further molecular subtypes of IVDD and identification of potential critical genes are urgently needed. First, consensus clustering was used to classify patients with IVDD into two subtypes and key module genes for subtyping were identified using weighted gene co-expression network analysis (WGCNA). Then, key module genes for the disease were identified by WGCNA. Subsequently, SVM and GLM were used to identify hub genes. Based on the above genes, a nomogram was constructed to predict the subtypes of IVDD. Finally, we find that ROM1 is lowered in IVDD and is linked to various cancer prognoses. The present work offers innovative diagnostic and therapeutic biomarkers for molecular subtypes of IVDD.


Assuntos
Anel Fibroso , Degeneração do Disco Intervertebral , Humanos , Anel Fibroso/metabolismo , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Transcriptoma
3.
Aging (Albany NY) ; 16(6): 5050-5064, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38517363

RESUMO

PURPOSE: This study explores the potential of Omilancor in treating Intervertebral Disc Degeneration (IDD) through MAP2K6 targeting. METHODS: We analyzed mRNA microarray datasets to pinpoint MAP2K6 as a key regulator implicated in IDD progression. Follow-up studies demonstrated that cisplatin (DDP) could prompt cellular senescence in vitro by upregulating MAP2K6 expression. Through molecular docking and other analyses, we identified Omilancor as a compound capable of binding to MAP2K6. This interaction effectively impeded the cellular senescence induced by DDP. RESULTS: We further showed that administration of Omilancor could significantly alleviate the degeneration of IVDs in annulus fibrosus puncture-induced rat model. CONCLUSIONS: Omilancor shows promise as a treatment for IDD by targeting MAP2K6-mediated cellular senescence.


Assuntos
Anel Fibroso , Degeneração do Disco Intervertebral , Núcleo Pulposo , Ratos , Animais , Núcleo Pulposo/metabolismo , Simulação de Acoplamento Molecular , Degeneração do Disco Intervertebral/metabolismo , Senescência Celular/fisiologia , Anel Fibroso/metabolismo
4.
Acta Biomater ; 178: 50-67, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38382832

RESUMO

Annulus fibrosus (AF) defect is an important cause of disc re-herniation after discectomy. The self-regeneration ability of the AF is limited, and AF repair is always hindered by the inflammatory microenvironment after injury. Hydrogels represent one of the most promising materials for AF tissue engineering strategies. However, currently available commercial hydrogels cannot withstand the harsh mechanical load within intervertebral disc. In the present study, an innovative triple cross-linked oxidized hyaluronic acid (OHA)-dopamine (DA)- polyacrylamide (PAM) composite hydrogel, modified with collagen mimetic peptide (CMP) and supplied with transforming growth factor beta 1 (TGF-ß1) (OHA-DA-PAM/CMP/TGF-ß1 hydrogel) was developed for AF regeneration. The hydrogel exhibited robust mechanical strength, strong bioadhesion, and significant self-healing capabilities. Modified with collagen mimetic peptide, the hydrogel exhibited extracellular-matrix-mimicking properties and sustained the AF cell phenotype. The sustained release of TGF-ß1 from the hydrogel was pivotal in recruiting AF cells and promoting extracellular matrix production. Furthermore, the composite hydrogel attenuated LPS-induced inflammatory response and promote ECM synthesis in AF cells via suppressing NFκB/NLRP3 pathway. In vivo, the composite hydrogel successfully sealed AF defects and alleviated intervertebral disk degeneration in a rat tail AF defect model. Histological evaluation showed that the hydrogel integrated well with host tissue and facilitated AF repair. The strategy of recruiting endogenous cells and providing an extracellular-matrix-mimicking and anti-inflammatory microenvironment using the mechanically tough composite OHA-DA-PAM/CMP/TGF-ß1 hydrogel may be applicable for AF defect repair in the clinic. STATEMENT OF SIGNIFICANCE: Annulus fibrosus (AF) repair is challenging due to its limited self-regenerative capacity and post-injury inflammation. In this study, a mechanically tough and highly bioadhesive triple cross-linked composite hydrogel, modified with collagen mimetic peptide (CMP) and supplemented with transforming growth factor beta 1 (TGF-ß1), was developed to facilitate AF regeneration. The sustained release of TGF-ß1 enhanced AF cell recruitment, while both TGF-ß1 and CMP could modulate the microenvironment to promote AF cell proliferation and ECM synthesis. In vivo, this composite hydrogel effectively promoted the AF repair and mitigated the intervertebral disc degeneration. This research indicates the clinical potential of the OHA-DA-PAM/CMP/TGF-ß1 composite hydrogel for repairing AF defects.


Assuntos
Anel Fibroso , Degeneração do Disco Intervertebral , Deslocamento do Disco Intervertebral , Disco Intervertebral , Ratos , Animais , Anel Fibroso/patologia , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Hidrogéis/química , Adesivos/farmacologia , Preparações de Ação Retardada/farmacologia , Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/metabolismo , Ácido Hialurônico/farmacologia , Ácido Hialurônico/metabolismo , Colágeno/metabolismo
5.
Adv Sci (Weinh) ; 11(17): e2309032, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38403470

RESUMO

Elucidating how cell populations promote onset and progression of intervertebral disc degeneration (IDD) has the potential to enable more precise therapeutic targeting of cells and mechanisms. Single-cell RNA-sequencing (scRNA-seq) is performed on surgically separated annulus fibrosus (AF) (19,978; 26,983 cells) and nucleus pulposus (NP) (20,884; 24,489 cells) from healthy and diseased human intervertebral discs (IVD). In both tissue types, depletion of cell subsets involved in maintenance of healthy IVD is observed, specifically the immature cell subsets - fibroblast progenitors and stem cells - indicative of an impairment of normal tissue self-renewal. Tissue-specific changes are also identified. In NP, several fibrotic populations are increased in degenerated IVD, indicating tissue-remodeling. In degenerated AF, a novel disease-associated subset is identified, which expresses disease-promoting genes. It is associated with pathogenic biological processes and the main gene regulatory networks include thrombospondin signaling and FOXO1 transcription factor. In NP and AF cells thrombospondin protein promoted expression of genes associated with TGFß/fibrosis signaling, angiogenesis, and nervous system development. The data reveal new insights of both shared and tissue-specific changes in specific cell populations in AF and NP during IVD degeneration. These identified mechanisms and molecules are novel and more precise targets for IDD prevention and treatment.


Assuntos
Anel Fibroso , Degeneração do Disco Intervertebral , Núcleo Pulposo , Humanos , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Anel Fibroso/metabolismo , Anel Fibroso/patologia , Masculino , Pessoa de Meia-Idade , Feminino , Adulto , Disco Intervertebral/metabolismo , Disco Intervertebral/patologia
6.
J Vis Exp ; (203)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38345210

RESUMO

The suture technique for a ruptured annulus fibrosus (AF) under full-endoscopy remains challenging. Direct suturing of a ruptured annular tear after full decompression has been shown to decrease the recurrence rate of lumbar disc herniation during endoscopic surgery. Traditional suture operations under endoscopy involve only simple suturing of the ruptured AF. Due to the weak and poor quality of the AF tissue around the tear portal, using this area as needle insertion points during suturing may lead to insufficient tension and a low success rate of AF closure. Currently, there is no detailed technical illustration based on video for AF tear suturing under lumbar full-endoscopy. We innovatively propose a method of covering and suturing the AF tear by pulling up the posterior longitudinal ligament (PLL) under lumbar endoscopy and using three stitches (PLL-AF suture technique). The patient who received the novel suture technique achieved satisfactory results. Six months after the operation, lumbar MRI showed no evidence of recurrence in the outpatient clinic.


Assuntos
Anel Fibroso , Lacerações , Humanos , Resultado do Tratamento , Vértebras Lombares/cirurgia , Endoscopia/métodos , Discotomia/métodos , Lacerações/cirurgia , Técnicas de Sutura , Descompressão , Estudos Retrospectivos
7.
BMC Musculoskelet Disord ; 25(1): 116, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331829

RESUMO

BACKGROUND: Stem cell-related studies have been increasingly conducted to facilitate the regeneration of degenerative discs. However, analyses of high-impact articles focused on this topic are rare. This study aimed to determine and summarize the most-cited studies examining stem cells in the context of intervertebral disc degeneration (IDD). METHODS: We searched the Web of Science (WoS) database for stem cell-related articles in IDD, and the 50 highest-cited papers were summarized. A correlation analysis was conducted to determine the relationship among WoS citations, Altmetric Attention Score (AAS), and Dimensions. RESULTS: The number of citations of the top 50 manuscripts ranged from 92 to 370. The top three countries were the United States (14), China (10), and Japan (9). Spine (12) was the most prevalent journal, and this was followed by Biomaterials (6). Bone marrow-derived stem cells were the most common subject (38), and they were followed by nucleus pulposus-derived stem cells (4) and annulus fibrosus-derived stem cells (4). Humans were the most studied species (31), and the next most studied were rabbits (9) and rats (7). There was a very high correlation between WoS and Dimension citations (p < 0.001, r = 0.937). CONCLUSIONS: For the first time, the highest impact articles examining stem cells in the context of IDD were assessed together. The current study provides a deepened understanding of historical studies focused on stem cells in IDD and is beneficial for future studies in this field.


Assuntos
Anel Fibroso , Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Humanos , Ratos , Coelhos , Animais , Células-Tronco , China
8.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339040

RESUMO

Chronic painful intervertebral disc (IVD) degeneration (i.e., discogenic pain) is a major source of global disability needing improved knowledge on multiple-tissue interactions and how they progress in order improve treatment strategies. This study used an in vivo rat annulus fibrosus (AF) injury-driven discogenic pain model to investigate the acute and chronic changes in IVD degeneration and spinal inflammation, as well as sensitization, inflammation, and remodeling in dorsal root ganglion (DRG) and spinal cord (SC) dorsal horn. AF injury induced moderate IVD degeneration with acute and broad spinal inflammation that progressed to DRG to SC changes within days and weeks, respectively. Specifically, AF injury elevated macrophages in the spine (CD68) and DRGs (Iba1) that peaked at 3 days post-injury, and increased microglia (Iba1) in SC that peaked at 2 weeks post-injury. AF injury also triggered glial responses with elevated GFAP in DRGs and SC at least 8 weeks post-injury. Spinal CD68 and SC neuropeptide Substance P both remained elevated at 8 weeks, suggesting that slow and incomplete IVD healing provides a chronic source of inflammation with continued SC sensitization. We conclude that AF injury-driven IVD degeneration induces acute spinal, DRG, and SC inflammatory crosstalk with sustained glial responses in both DRGs and SC, leading to chronic SC sensitization and neural plasticity. The known association of these markers with neuropathic pain suggests that therapeutic strategies for discogenic pain need to target both spinal and nervous systems, with early strategies managing acute inflammatory processes, and late strategies targeting chronic IVD inflammation, SC sensitization, and remodeling.


Assuntos
Anel Fibroso , Dor Crônica , Degeneração do Disco Intervertebral , Disco Intervertebral , Ratos , Animais , Disco Intervertebral/lesões , Doenças Neuroinflamatórias , Gânglios Espinais , Degeneração do Disco Intervertebral/complicações , Dor Crônica/complicações , Medula Espinal
10.
Cell Mol Life Sci ; 81(1): 74, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38308696

RESUMO

Intervertebral disc degeneration is closely related to abnormal phenotypic changes in disc cells. However, the mechanism by which disc cell phenotypes are maintained remains poorly understood. Here, Hedgehog-responsive cells were found to be specifically localized in the inner annulus fibrosus and cartilaginous endplate of postnatal discs, likely activated by Indian Hedgehog. Global inhibition of Hedgehog signaling using a pharmacological inhibitor or Agc1-CreERT2-mediated deletion of Smo in disc cells of juvenile mice led to spontaneous degenerative changes in annulus fibrosus and cartilaginous endplate accompanied by aberrant disc cell differentiation in adult mice. In contrast, Krt19-CreER-mediated deletion of Smo specifically in nucleus pulposus cells led to healthy discs and normal disc cell phenotypes. Similarly, age-related degeneration of nucleus pulposus was accelerated by genetic inactivation of Hedgehog signaling in all disc cells, but not in nucleus pulposus cells. Furthermore, inactivation of Gli2 in disc cells resulted in partial loss of the vertebral growth plate but otherwise healthy discs, whereas deletion of Gli3 in disc cells largely corrected disc defects caused by Smo ablation in mice. Taken together, our findings not only revealed for the first time a direct role of Hedgehog-Gli3 signaling in maintaining homeostasis and cell phenotypes of annuls fibrosus and cartilaginous endplate, but also identified disc-intrinsic Hedgehog signaling as a novel non-cell-autonomous mechanism to regulate nucleus pulposus cell phenotype and protect mice from age-dependent nucleus pulposus degeneration. Thus, targeting Hedgehog signaling may represent a potential therapeutic strategy for the prevention and treatment of intervertebral disc degeneration.


Assuntos
Anel Fibroso , Degeneração do Disco Intervertebral , Disco Intervertebral , Camundongos , Animais , Degeneração do Disco Intervertebral/genética , Proteínas Hedgehog/genética , Fenótipo
11.
PLoS One ; 19(1): e0280101, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38181003

RESUMO

Senescence, particularly in the nucleus pulposus (NP) cells, has been implicated in the pathogenesis of disc degeneration, however, the mechanism(s) of annulus fibrosus (AF) cell senescence is still not well understood. Both TNFα and H2O2, have been implicated as contributors to the senescence pathways, and their levels are increased in degenerated discs when compared to healthy discs. Thus, the objective of this study is to identify factor(s) that induces inner AF (iAF) cell senescence. Under TNFα exposure, at a concentration previously shown to induce senescence in NP cells, bovine iAF cells did not undergo senescence, indicated by their ability to continue to proliferate as demonstrated by Ki67 staining and growth curves and lack of expression of the senescent markers, p16 and p21. The lack of senescent response occurred even though iAF express higher levels of TNFR1 than NP cells. Interestingly, iAF cells showed no increase in intracellular ROS or secreted H2O2 in response to TNFα which contrasted to NP cells that did. Following TNFα treatment, only iAF cells had increased expression of the superoxide scavengers SOD1 and SOD2 whereas NP cells had increased NOX4 gene expression, an enzyme that can generate H2O2. Treating iAF cells with low dose H2O2 (50 µM) induced senescence, however unlike TNFα, H2O2 did not induce degenerative-like changes as there was no difference in COL2, ACAN, MMP13, or IL6 gene expression or number of COL2 and ACAN immunopositive cells compared to untreated controls. The latter result suggests that iAF cells may have distinct degenerative and senescent phenotypes. To evaluate paracrine signalling by senescent NP cells, iAF and TNFα-treated NP cells were co-cultured. In contact co-culture the NP cells induced iAF senescence. Thus, senescent NP cells may secrete soluble factors that induce degenerative and senescent changes within the iAF. This may contribute to a positive feedback loop of disc degeneration. It is possible these factors may include H2O2 and cytokines (such as TNFα). Further studies will investigate if human disc cells respond similarly.


Assuntos
Anel Fibroso , Degeneração do Disco Intervertebral , Núcleo Pulposo , Humanos , Animais , Bovinos , Fator de Necrose Tumoral alfa/farmacologia , Peróxido de Hidrogênio/farmacologia , Secretoma , Biotina
12.
Neurosurg Rev ; 47(1): 54, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38240919

RESUMO

The objective of this study is to compare the clinical effectiveness of visualization of percutaneous endoscopic lumbar discectomy (VPELD) combined with annulus fibrosus suture technique and simple percutaneous endoscopic lumbar discectomy (PELD) technique in the treatment of lumbar disc herniation. A retrospective analysis was conducted on 106 cases of lumbar disc herniation treated with foraminoscopic technique at our hospital from January 2020 to February 2022. Among them, 33 cases were treated with VPELD combined with annulus fibrosus suture in group A, and 73 cases were treated with PELD in group B. The preoperative and postoperative visual analogue scale (VAS), functional index (Oswestry Disability Index, ODI), healing of the annulus fibrosus, intervertebral space height, and postoperative recurrence were recorded and compared between the two groups. All patients underwent preoperative and postoperative MRI examinations, and the average follow-up period was 12 ± 2 months. Both groups showed significant improvements in postoperative VAS and ODI scores compared to the preoperative scores (P < 0.05), with no statistically significant difference between the groups during the same period (P > 0.05). There was no significant decrease in intervertebral space between the two groups after surgery (P > 0.05). Group A showed significantly lower postoperative recurrence rate and better annulus fibrosus healing compared to group B (P < 0.05). The VPELD combined with annulus fibrosus suture technique is a safe, feasible, and effective procedure for the treatment of lumbar disc herniation. When the indications are strictly adhered to, this technique can effectively reduce the postoperative recurrence rate and reoperation rate. It offers satisfactory clinical efficacy and can be considered as an alternative treatment option for eligible patients.


Assuntos
Anel Fibroso , Discotomia Percutânea , Deslocamento do Disco Intervertebral , Humanos , Deslocamento do Disco Intervertebral/cirurgia , Discotomia Percutânea/métodos , Estudos Retrospectivos , Anel Fibroso/cirurgia , Endoscopia/métodos , Vértebras Lombares/cirurgia , Resultado do Tratamento , Suturas , Discotomia
13.
Cells ; 13(2)2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38247844

RESUMO

The intervertebral disc (IVD) is a soft tissue that constitutes the spinal column together with the vertebrae, and consists of the central nucleus pulposus (gelatinous tissue) and the annulus fibrosus (rich in fibrous tissue) that surrounds the nucleus pulposus [...].


Assuntos
Anel Fibroso , Degeneração do Disco Intervertebral , Humanos , Degeneração do Disco Intervertebral/terapia , Coluna Vertebral , Alimentos , Gelatina
14.
Acta Biomater ; 174: 228-244, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38070844

RESUMO

The annulus fibrosus (AF), a permeable, hydrated, and fiber-reinforced soft tissue, exhibits complex responses influenced by fluid pressure, osmotic pressure, and structural mechanics. Existing models struggle to comprehensively represent these intricate interactions and the heterogeneous solid responses within the AF. Additionally, the mechanisms driving differential damage accumulation between non-degenerative and degenerative intervertebral discs remain poorly understood. In this study, we introduce a biphasic-swelling damage model for the AF. We conceptually develop and rigorously validate this model through tissue-level tests employing various loading modes, consistently aligning model predictions with experimental data. Leveraging parametric geometric algorithms and custom Python scripts, we construct models simulating both non-degenerative and degenerative discs. Following calibration, we subject these models to viscous loading protocols. Our findings reveal the posterior AF's susceptibility to damage, contingent upon loading rate and water content. We elucidate the underlying mechanisms by examining the temporal evolution of fluid pressure, osmotic pressure, and the regionally dependent fiber network. This research presents a highly accurate model of the AF, providing valuable insights into disc damage. Future research endeavors should expand this model to incorporate ionic transport and diffusion, enabling a more profound exploration of intervertebral disc mechanobiology. This comprehensive model contributes to a better understanding of AF behavior and may inform therapeutic strategies for disc-related pathologies. STATEMENT OF SIGNIFICANCE: This research presents a comprehensive model of the annulus fibrosus (AF), a crucial component of the intervertebral disc that provides structural support and resists deformation. The study introduces a biphasic-swelling damage model for the AF and validates it through tissue-level tests. The model accounts for fluid pressure, osmotic pressure, and matrix mechanics, providing a more accurate representation of the AF's behavior. The study also investigates the differential damage accumulation between non-degenerative and degenerative discs, shedding light on the mechanisms driving disc degeneration. The findings have significant implications for medical treatments and interventions, as they highlight the posterior AF's susceptibility to damage. This research is of great interest to readers interested in biomechanics, tissue engineering, and medical treatments for disc degeneration.


Assuntos
Anel Fibroso , Degeneração do Disco Intervertebral , Disco Intervertebral , Humanos , Anel Fibroso/patologia , Degeneração do Disco Intervertebral/patologia , Disco Intervertebral/patologia , Pressão Osmótica , Engenharia Tecidual
15.
Spine J ; 24(2): 373-386, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37797841

RESUMO

BACKGROUND CONTEXT: In clinical practice, acute trauma and chronic degeneration of the annulus fibrosus (AF) can promote further degeneration of the intervertebral disc (IVD). Therefore, it is critical to understand the AF repair process and its consequences on IVD. However, the lack of cost-effective and reproducible in vivo animal models of AF injury has limited research development in this field. PURPOSES: The purpose of this study was to establish and evaluate the utility of a novel animal model for full-thickness AF injury. Three foci were proposed: (1) whether this new modeling method can cause full-layer AF damage; (2) the repair processes and pathological changes in the damaged area after AF injury, and (3) the morphological and histological changes in the IVD are after AF injury. STUDY DESIGN/SETTING: In vivo rat AF injury model with characterization of AF damage repair, IVD degeneration. METHODS: A total of 72,300 g male rats were randomly assigned to one of the two groups: experimental or sham. Annulus fibrosus was separated layer by layer under the microscope with a #11 blade up to the AF- nucleus pulpous (NP) junction. The repair process of the horizontal AF and morphological changes in the sagittal IVD were evaluated with HE staining. Sirius red staining under polarized light. Immunofluorescence was conducted to analyze changes in the expression of COL1 and COL3 in the AF injury area and 8-OHdg, IL-6, MMP13, FSP1, and ACAN in the IVD. The disc height and structural changes after AF injury were measured using X-ray and contrast-enhanced micro-CT. Additionally, the resistance of the AF to stretching was analyzed using three-point bending. RESULTS: Annulus fibrosus-nucleus pulpous border was identified to stably induce the full-thickness AF injury without causing immediate NP injury. The AF repair process after injury was slow and expressed inflammation factors continuously, with abundant amounts of type III collagen appearing in the inner part of the AF. The scar at the AF lesion had decreased resistance to small molecule penetration and weakened tensile strength. Full-thickness AF injury induced disc degeneration with loss of disc height, progressive unilateral vertebral collapse, and ossification of the subchondral bone. Inflammatory-induced degeneration and extracellular matrix catabolism gradually appeared in the NP and cartilage endplate (CEP). CONCLUSIONS: We established a low-cost and reproducible small animal model of AF injury which accurately replicated the pathological state of the limited AF self-repair ability and demonstrated that injury to the AF alone could cause further degeneration of the IVD. CLINICAL RELEVANCE: This in vivo rat model can be used to study the repair process of the AF defect and pathological changes in the gradual degeneration of IVD after AF damage. In addition, the model provides an experimental platform for in vivo experimental research of potential clinical therapeutics.


Assuntos
Anel Fibroso , Degeneração do Disco Intervertebral , Disco Intervertebral , Ratos , Masculino , Animais , Anel Fibroso/metabolismo , Degeneração do Disco Intervertebral/patologia , Disco Intervertebral/patologia , Modelos Animais , Radiografia
16.
Eur Spine J ; 33(4): 1617-1623, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37924389

RESUMO

OBJECTIVES: There are no established criteria for stiffness after fusionless surgery for neuromuscular scoliosis (NMS). As a result, there is no consensus regarding the surgical strategy to propose at long-term follow-up. This study reports the first use of shear wave elastography for assessing the mechanical response of lumbar intervertebral discs (IVDs) after fusionless bipolar fixation (FBF) for NMS and compares them with healthy controls. The aim was to acquire evidence from the stiffness of the spine following FBF. PATIENTS AND METHODS: Nineteen NMS operated on with FBF (18 ± 2y at last follow-up, 6 ± 1 y after surgery) were included prospectively. Preoperative Cobb was 89 ± 20° and 35 ± 1° at latest follow-up. All patients had reached skeletal maturity. Eighteen healthy patients (20 ± 4 y) were also included. Shear wave speed (SWS) was measured in the annulus fibrosus of L3L4, L4L5 and L5S1 IVDs and compared between the two groups. A measurement reliability was performed. RESULTS: In healthy subjects, average SWS (all disc levels pooled) was 7.5 ± 2.6 m/s. In NMS patients, SWS was significantly higher at 9.9 ± 1.4 m/s (p < 0.05). Differences were significant between L3L4 (9.3 ± 1.8 m/s vs. 7.0 ± 2.5 m/s, p = 0.004) and L4L5 (10.3 ± 2.3 m/s vs. 7.1 ± 1.1 m/s, p = 0.0006). No difference was observed for L5S1 (p = 0.2). No correlation was found with age at surgery, Cobb angle correction and age at the SWE measurement. CONCLUSIONS: This study shows a significant increase in disc stiffness at the end of growth for NMS patients treated by FBF. These findings are a useful adjunct to CT-scan in assessing stiffness of the spine allowing the avoidance of surgical final fusion at skeletal maturity.


Assuntos
Anel Fibroso , Técnicas de Imagem por Elasticidade , Disco Intervertebral , Doenças Neuromusculares , Escoliose , Fusão Vertebral , Humanos , Anel Fibroso/diagnóstico por imagem , Escoliose/diagnóstico por imagem , Escoliose/cirurgia , Reprodutibilidade dos Testes , Disco Intervertebral/diagnóstico por imagem , Doenças Neuromusculares/cirurgia , Resultado do Tratamento
17.
J Orthop Res ; 42(6): 1326-1334, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38153697

RESUMO

Intervertebral disc herniation is a common spinal disorder that is often treated with discectomy when conservative measures fail. To devise therapeutic strategies for tears in the annulus fibrosus (AF), the regenerative capability of AF cells under spinal loading needs to be addressed. We hypothesized that the compressive loading associated with deformation in AF cells reduces synthetic and degradative activities in extracellular matrix and cell proliferation. We evaluated expression of key matrix molecules and cell proliferation by RT-PCR and immunohistochemistry by inner and outer bovine AF cells incubated under hydrostatic pressure (HP), arc-bending strain (Strain), and combined HP and Strain (HP/Strain) mimicking spinal loading. Inner AF cells showed significantly increased levels of aggrecan core protein, chondroitin sulfate N-acetylgalactosaminyltransferase-1, and tissue inhibitor of metalloproteinases-2 by 6 days under HP (p < 0.05), with a tendency toward increased matrix metalloproteinase-13. Outer AF cells demonstrated a significant decline in collagen type-2 under Strain and HP/Strain (p < 0.05) and a tendency toward suppression of collagen type-1 and elastin expression compared to HP and unloaded control. On the other hand, proliferating cell nucleus antigen increased significantly under Strain and HP/Strain in inner AF and declined under unloaded and HP in outer AF (p < 0.05). Immunohistology findings supported reductions in gene expressions of matrix molecules. Thus, changes in HP/Strain in AF appear to diminish synthetic and degradative activities while increasing cell proliferation. To promote regeneration, continuous overloading should be avoided, as it converts the synthetic activity to a state in which tissue repair is limited.


Assuntos
Anel Fibroso , Proliferação de Células , Matriz Extracelular , Pressão Hidrostática , Animais , Bovinos , Anel Fibroso/metabolismo , Matriz Extracelular/metabolismo , Células Cultivadas , Agrecanas/metabolismo , Estresse Mecânico , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Colágeno Tipo II/metabolismo
18.
ACS Biomater Sci Eng ; 10(1): 219-233, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38149967

RESUMO

Low back pain is a common chronic disease that can severely affect the patient's work and daily life. The breakdown of spinal mechanical homeostasis caused by intervertebral disc (IVD) degeneration is a leading cause of low back pain. Annulus fibrosus (AF), as the outer layer structure of the IVD, is often the first affected part. AF injury caused by consistent stress overload will further accelerate IVD degeneration. Therefore, regulating AF injury repair and remodeling should be the primary goal of the IVD repair strategy. Mechanical stimulation has been shown to promote AF regeneration and repair, but most studies only focus on the effect of single stress on AF, and lack realistic models and methods that can mimic the actual mechanical environment of AF. In this article, we review the effects of different types of stress stimulation on AF injury repair and remodeling, suggest possible beneficial load combinations, and explore the underlying molecular mechanisms. It will provide the theoretical basis for designing better tissue engineering therapy using mechanical factors to regulate AF injury repair and remodeling in the future.


Assuntos
Anel Fibroso , Degeneração do Disco Intervertebral , Dor Lombar , Humanos , Anel Fibroso/metabolismo , Degeneração do Disco Intervertebral/terapia , Degeneração do Disco Intervertebral/metabolismo , Engenharia Tecidual , Terapia Baseada em Transplante de Células e Tecidos
19.
J Biomech Eng ; 146(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37851527

RESUMO

Tears in the annulus fibrosus (AF) of the intervertebral disk (IVD) occur due to multiaxial loading on the spine. However, most existing AF failure studies measure uniaxial stress, not the multiaxial stress at failure. Delamination theory, which requires advanced structural knowledge and knowledge about the interactions between the AF fibers and matrix, has historically been used to understand and predict AF failure. Alternatively, a simple method, the Tsai-Hill yield criteria, could describe multiaxial failure of the AF. This yield criteria uses the known tissue fiber orientation and an equation to establish the multiaxial failure stresses that cause failure. This paper presents a method to test the multiaxial failure stress of the AF experimentally and evaluate the potential for the Tsai-Hill model to predict these failure stresses. Porcine AF was cut into a dogbone shape at three distinct angles relative to the primary lamella direction (parallel, transverse, and oblique). Then, each dogbone was pulled to complete rupture. The Cauchy stress in the material's fiber coordinates was calculated. These multiaxial stress parameters were used to optimize the coefficients of the Tsai-Hill yield. The coefficients obtained for the Tsai-Hill model vary by an order of magnitude between the fiber and transverse directions, and these coefficients provide a good description of the AF multiaxial failure stress. These results establish both an experimental approach and the use of the Tsai-Hill model to explain the anisotropic failure behavior of the tissue.


Assuntos
Anel Fibroso , Disco Intervertebral , Animais , Suínos , Estresse Mecânico , Anisotropia
20.
Med Eng Phys ; 120: 104044, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37838398

RESUMO

In vivo characterization of intervertebral disc (IVD) mechanical properties and microstructure could give an insight into the onset and progression of disc pathologies. Ultrasound shearwave elastography provided promising results in children, but feasibility in adult lumbar discs, which are deep in the abdomen, was never proved. The aim of this work was to determine the feasibility and reliability of ultrasound assessment of lumbar IVD in adults. Thirty asymptomatic adults were included (22 to 67 years old). Subjects were lying supine, and the annulus fibrosus of the L3-L4 IVD was imaged by conventional ultrasonography and shearwave elastography. Shear wave speed (SWS) and lamellar thickness were measured. Reliability was determined through repeated measurements acquired by three operators. Average SWS in AF at the L3L4 level was 4.0 ± 0.9 m/s, with an inter-operator uncertainty of 8.7%, while lamellar thickness was 255 ± 27 µm with an uncertainty of 9.6%. Measurement was not feasible in one out of four subjects with BMI > 24 kg/m² (overweight). Ultrasound assessment of annulus fibrosus revealed feasible, within certain limitations, and reproducible. This method gives an insight into disc microstructure and mechanical properties, and it could be applied for the early detection or follow-up of disc pathologies.


Assuntos
Anel Fibroso , Técnicas de Imagem por Elasticidade , Degeneração do Disco Intervertebral , Disco Intervertebral , Criança , Humanos , Adulto , Adulto Jovem , Pessoa de Meia-Idade , Idoso , Anel Fibroso/diagnóstico por imagem , Reprodutibilidade dos Testes , Disco Intervertebral/diagnóstico por imagem , Ultrassonografia , Degeneração do Disco Intervertebral/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA