Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
1.
J Immunother Cancer ; 12(4)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589248

RESUMO

BACKGROUND: Despite the encouraging outcome of chimeric antigen receptor T cell (CAR-T) targeting B cell maturation antigen (BCMA) in managing relapsed or refractory multiple myeloma (RRMM) patients, the therapeutic side effects and dysfunctions of CAR-T cells have limited the efficacy and clinical application of this promising approach. METHODS: In this study, we incorporated a short hairpin RNA cassette targeting PD-1 into a BCMA-CAR with an OX-40 costimulatory domain. The transduced PD-1KD BCMA CAR-T cells were evaluated for surface CAR expression, T-cell proliferation, cytotoxicity, cytokine production, and subsets when they were exposed to a single or repetitive antigen stimulation. Safety and efficacy were initially observed in a phase I clinical trial for RRMM patients. RESULTS: Compared with parental BCMA CAR-T cells, PD-1KD BCMA CAR-T cell therapy showed reduced T-cell exhaustion and increased percentage of memory T cells in vitro. Better antitumor activity in vivo was also observed in PD-1KD BCMA CAR-T group. In the phase I clinical trial of the CAR-T cell therapy for seven RRMM patients, safety and efficacy were initially observed in all seven patients, including four patients (4/7, 57.1%) with at least one extramedullary site and four patients (4/7, 57.1%) with high-risk cytogenetics. The overall response rate was 85.7% (6/7). Four patients had a stringent complete response (sCR), one patient had a CR, one patient had a partial response, and one patient had stable disease. Safety profile was also observed in these patients, with an incidence of manageable mild to moderate cytokine release syndrome and without the occurrence of neurological toxicity. CONCLUSIONS: Our study demonstrates a design concept of CAR-T cells independent of antigen specificity and provides an alternative approach for improving the efficacy of CAR-T cell therapy.


Assuntos
Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Humanos , Antígeno de Maturação de Linfócitos B/genética , Antígeno de Maturação de Linfócitos B/metabolismo , Regulação para Baixo , Mieloma Múltiplo/terapia , Fenótipo , Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T , Ensaios Clínicos Fase I como Assunto
2.
Drugs ; 84(3): 355-361, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38409573

RESUMO

Nirogacestat (OGSIVEO™) is an oral, selective, reversible, small molecule γ-secretase inhibitor developed by SpringWorks Therapeutics, Inc. γ-Secretase is a multi-subunit protease complex that cleaves multiple transmembrane protein complexes, including Notch and membrane-bound B-cell maturation antigen (BCMA). Inhibition of γ-secretase may result in growth inhibition of tumour cells overexpressing Notch, and preservation of membrane-bound BCMA may increase target density for BCMA-targeted therapy. In November 2023, nirogacestat was approved in the USA for use in adult patients with progressing desmoid tumours who require systemic treatment. This article summarizes the milestones in the development of nirogacestat leading to this first approval for the systemic treatment of desmoid tumours.


Assuntos
Secretases da Proteína Precursora do Amiloide , Fibromatose Agressiva , Valina/análogos & derivados , Humanos , Secretases da Proteína Precursora do Amiloide/metabolismo , Antígeno de Maturação de Linfócitos B/metabolismo , Tetra-Hidronaftalenos
3.
Cancer Immunol Res ; 12(4): 462-477, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38345397

RESUMO

Allogeneic chimeric antigen receptor (CAR) T cell therapies hold the potential to overcome many of the challenges associated with patient-derived (autologous) CAR T cells. Key considerations in the development of allogeneic CAR T cell therapies include prevention of graft-vs-host disease (GvHD) and suppression of allograft rejection. Here, we describe preclinical data supporting the ongoing first-in-human clinical study, the CaMMouflage trial (NCT05722418), evaluating CB-011 in patients with relapsed/refractory multiple myeloma. CB-011 is a hypoimmunogenic, allogeneic anti-B-cell maturation antigen (BCMA) CAR T cell therapy candidate. CB-011 cells feature 4 genomic alterations and were engineered from healthy donor-derived T cells using a Cas12a CRISPR hybrid RNA-DNA (chRDNA) genome-editing technology platform. To address allograft rejection, CAR T cells were engineered to prevent endogenous HLA class I complex expression and overexpress a single-chain polyprotein complex composed of beta-2 microglobulin (B2M) tethered to HLA-E. In addition, T-cell receptor (TCR) expression was disrupted at the TCR alpha constant locus in combination with the site-specific insertion of a humanized BCMA-specific CAR. CB-011 cells exhibited robust plasmablast cytotoxicity in vitro in a mixed lymphocyte reaction in cell cocultures derived from patients with multiple myeloma. In addition, CB-011 cells demonstrated suppressed recognition by and cytotoxicity from HLA-mismatched T cells. CB-011 cells were protected from natural killer cell-mediated cytotoxicity in vitro and in vivo due to endogenous promoter-driven expression of B2M-HLA-E. Potent antitumor efficacy, when combined with an immune-cloaking armoring strategy to dampen allograft rejection, offers optimized therapeutic potential in multiple myeloma. See related Spotlight by Caimi and Melenhorst, p. 385.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/genética , Mieloma Múltiplo/terapia , Antígeno de Maturação de Linfócitos B/metabolismo , Antígenos HLA-E , Linfócitos T , Receptores de Antígenos de Linfócitos T , Imunoterapia Adotiva , Antígenos de Histocompatibilidade Classe I/metabolismo , Aloenxertos/patologia
4.
Int J Mol Sci ; 25(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38338672

RESUMO

The search for target antigens for CAR-T cell therapy against multiple myeloma defined the B-cell maturation antigen (BCMA) as an interesting candidate. Several studies with BCMA-directed CAR-T cell therapy showed promising results. Second-generation point-of-care BCMA.CAR-T cells were manufactured to be of a GMP (good manufacturing practice) standard using the CliniMACS Prodigy® device. Cytokine release in BCMA.CAR-T cells after stimulation with BCMA positive versus negative myeloma cell lines, U266/HL60, was assessed via intracellular staining and flow cytometry. The short-term cytotoxic potency of CAR-T cells was evaluated by chromium-51 release, while the long-term potency used co-culture (3 days/round) at effector/target cell ratios of 1:1 and 1:4. To evaluate the activation and exhaustion of CAR-T cells, exhaustion markers were assessed via flow cytometry. Stability was tested through a comparison of these evaluations at different timepoints: d0 as well as d + 14, d + 90 and d + 365 of cryopreservation. As results, (1) Killing efficiency of U266 cells correlated with the dose of CAR-T cells in a classical 4 h chromium-release assay. There was no significant difference after cryopreservation on different timepoints. (2) In terms of endurance of BCMA.CAR-T cell function, BCMA.CAR-T cells kept their ability to kill all tumor cells over six rounds of co-culture. (3) BCMA.CAR-T cells released high amounts of cytokines upon stimulation with tumor cells. There was no significant difference in cytokine release after cryopreservation. According to the results, BCMA.CAR-T cells manufactured under GMP conditions exerted robust and specific killing of target tumor cells with a high release of cytokines. Even after 1 year of cryopreservation, cytotoxic functions were maintained at the same level. This gives clinicians sufficient time to adjust the timepoint of BCMA.CAR-T cell application to the patient's course of the underlying disease.


Assuntos
Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Humanos , Antígeno de Maturação de Linfócitos B/metabolismo , Sistemas Automatizados de Assistência Junto ao Leito , Imunoterapia Adotiva/métodos , Mieloma Múltiplo/patologia , Citocinas/metabolismo , Linfócitos T , Criopreservação
5.
ACS Chem Biol ; 19(1): 153-161, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38085681

RESUMO

B cell maturation antigen (BCMA), a member of the tumor necrosis factor receptor (TNFR) family, on the cell surface plays a key role in maintaining the survival of plasma cells and malignant as well as inflammatory accessory cells. Therefore, targeting BCMA or disrupting its interaction with ligands has been a potential approach to cancer therapy. BCMA contains a single N-glycosylation site, but the function of N-glycan on BCMA is not understood. Here, we found that the N-glycosylation of BCMA promoted its cell-surface retention while removing the N-glycan increased BCMA secretion through γ-secretase-mediated shedding. Addition of γ-secretase inhibitor prevented nonglycosylated BCMA from shedding and protected cells from dexamethasone and TRAIL-induced apoptosis.


Assuntos
Antígeno de Maturação de Linfócitos B , Mieloma Múltiplo , Humanos , Antígeno de Maturação de Linfócitos B/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Glicosilação , Sobrevivência Celular , Polissacarídeos
6.
Blood ; 143(2): 139-151, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37616575

RESUMO

ABSTRACT: Patients with multiple myeloma (MM) treated with B-cell maturation antigen (BCMA)-specific chimeric antigen receptor (CAR) T cells usually relapse with BCMA+ disease, indicative of CAR T-cell suppression. CD200 is an immune checkpoint that is overexpressed on aberrant plasma cells (aPCs) in MM and is an independent negative prognostic factor for survival. However, CD200 is not present on MM cell lines, a potential limitation of current preclinical models. We engineered MM cell lines to express CD200 at levels equivalent to those found on aPCs in MM and show that these are sufficient to suppress clinical-stage CAR T-cells targeting BCMA or the Tn glycoform of mucin 1 (TnMUC1), costimulated by 4-1BB and CD2, respectively. To prevent CD200-mediated suppression of CAR T cells, we compared CRISPR-Cas9-mediated knockout of the CD200 receptor (CD200RKO), to coexpression of versions of the CD200 receptor that were nonsignaling, that is, dominant negative (CD200RDN), or that leveraged the CD200 signal to provide CD28 costimulation (CD200R-CD28 switch). We found that the CD200R-CD28 switch potently enhanced the polyfunctionality of CAR T cells, and improved cytotoxicity, proliferative capacity, CAR T-cell metabolism, and performance in a chronic antigen exposure assay. CD200RDN provided modest benefits, but surprisingly, the CD200RKO was detrimental to CAR T-cell activity, adversely affecting CAR T-cell metabolism. These patterns held up in murine xenograft models of plasmacytoma, and disseminated bone marrow predominant disease. Our findings underscore the importance of CD200-mediated immune suppression in CAR T-cell therapy of MM, and highlight a promising approach to enhance such therapies by leveraging CD200 expression on aPCs to provide costimulation via a CD200R-CD28 switch.


Assuntos
Imunoterapia Adotiva , Mieloma Múltiplo , Humanos , Camundongos , Animais , Mieloma Múltiplo/metabolismo , Antígenos CD28/metabolismo , Linfócitos T , Antígeno de Maturação de Linfócitos B/metabolismo , Recidiva Local de Neoplasia/metabolismo
7.
Blood ; 143(10): 895-911, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-37890146

RESUMO

ABSTRACT: A major hurdle in adoptive T-cell therapy is cell exhaustion and failure to maintain antitumor responses. Here, we introduce an induced pluripotent stem cell (iPSC) strategy for reprogramming and revitalizing precursor exhausted B-cell maturation antigen (BCMA)-specific T cells to effectively target multiple myeloma (MM). Heteroclitic BCMA72-80 (YLMFLLRKI)-specific CD8+ memory cytotoxic T lymphocytes (CTL) were epigenetically reprogrammed to a pluripotent state, developed into hematopoietic progenitor cells (CD34+ CD43+/CD14- CD235a-), differentiated into the T-cell lineage and evaluated for their polyfunctional activities against MM. The final T-cell products demonstrated (1) mature CD8αß+ memory phenotype, (2) high expression of activation or costimulatory molecules (CD38, CD28, and 41BB), (3) no expression of immune checkpoint and senescence markers (CTLA4, PD1, LAG3, and TIM3; CD57), and (4) robust proliferation and polyfunctional immune responses to MM. The BCMA-specific iPSC-T cells possessed a single T-cell receptor clonotype with cognate BCMA peptide recognition and specificity for targeting MM. RNA sequencing analyses revealed distinct genome-wide shifts and a distinctive transcriptional profile in selected iPSC clones, which can develop CD8αß+ memory T cells. This includes a repertoire of gene regulators promoting T-cell lineage development, memory CTL activation, and immune response regulation (LCK, IL7R, 4-1BB, TRAIL, GZMB, FOXF1, and ITGA1). This study highlights the potential application of iPSC technology to an adaptive T-cell therapy protocol and identifies specific transcriptional patterns that could serve as a biomarker for selection of suitable iPSC clones for the successful development of antigen-specific CD8αß+ memory T cells to improve the outcome in patients with MM.


Assuntos
Antineoplásicos , Antígenos CD8 , Células-Tronco Pluripotentes Induzidas , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/genética , Mieloma Múltiplo/terapia , Células-Tronco Pluripotentes Induzidas/metabolismo , Antígeno de Maturação de Linfócitos B/metabolismo , Linfócitos T Citotóxicos , Antineoplásicos/metabolismo
8.
Blood ; 143(4): 305-310, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38033289

RESUMO

ABSTRACT: B-cell maturation antigen (BCMA) chimeric antigen receptor (CAR) T cells are the most potent treatment against multiple myeloma (MM). Here, we review the increasing body of clinical and correlative preclinical data that support their inclusion into firstline therapy and sequencing before T-cell-engaging antibodies. The ambition to cure MM with (BCMA-)CAR T cells is informed by genomic and phenotypic analysis that assess BCMA expression for patient stratification and monitoring, steadily improving early diagnosis and management of side effects, and advances in rapid, scalable CAR T-cell manufacturing to improve access.


Assuntos
Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia Adotiva , Mieloma Múltiplo/terapia , Antígeno de Maturação de Linfócitos B/metabolismo , Soro Antilinfocitário
9.
Cells ; 12(23)2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-38067177

RESUMO

Multiple myeloma (MM) has witnessed improved patient outcomes through advancements in therapeutic approaches. Notably, allogeneic stem cell transplantation, proteasome inhibitors, immunomodulatory drugs, and monoclonal antibodies have contributed to enhanced quality of life. Recently, a promising avenue has emerged with chimeric antigen receptor (CAR) T cells targeting B-cell maturation antigen (BCMA), expressed widely on MM cells. To mitigate risks associated with allogenic T cells, we investigated the potential of BCMA CAR expression in natural killer cells (NKs), known for potent cytotoxicity and minimal side effects. Using the NK-92 cell line, we co-expressed BCMA CAR and soluble tumor necrosis factor-related apoptosis-inducing ligand (sTRAIL) employing the piggyBac transposon system. Engineered NK cells (CAR-NK-92-TRAIL) demonstrated robust cytotoxicity against a panel of MM cell lines and primary patient samples, outperforming unmodified NK-92 cells with a mean difference in viability of 45.1% (±26.1%, depending on the target cell line). Combination therapy was explored with the proteasome inhibitor bortezomib (BZ) and γ-secretase inhibitors (GSIs), leading to a significant synergistic effect in combination with CAR-NK-92-TRAIL cells. This synergy was evident in cytotoxicity assays where a notable decrease in MM cell viability was observed in combinatorial therapy compared to single treatment. In summary, our study demonstrates the therapeutic potential of the CAR-NK-92-TRAIL cells for the treatment of MM. The synergistic impact of combining these engineered NK cells with BZ and GSI supports further development of allogeneic CAR-based products for effective MM therapy.


Assuntos
Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Humanos , Antígeno de Maturação de Linfócitos B/metabolismo , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Imunoterapia Adotiva , Mieloma Múltiplo/patologia , Mieloma Múltiplo/terapia , Qualidade de Vida , Receptores de Antígenos Quiméricos/metabolismo
10.
Oncotarget ; 14: 949-956, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38039414

RESUMO

In myeloma patients, high levels of soluble BCMA (sBCMA) can limit the efficacy of BCMA-directed therapies. Belantamab-mafodotin is a BCMA antibody-drug conjugate and shows good overall response rates in heavily pretreated patients but progression-free survival data are poor. As the drug induces apoptosis, we hypothesized that sBCMA includes extracellular vesicles (EV) and thus evaluated numbers of BCMA-EV before and during belantamab therapy in 10 myeloma patients. BCMA-EV were significantly higher in patients prior to Belantamab (median: 3227/µl; p = .013) than in other myeloma patients before therapy (n = 10; 1082/µl) or healthy volunteers (n = 10; 980/µl). During therapy, BCMA-EV showed a significant increase to a maximum of 8292/µl (p = .028). Maximal changes in BCMA-EV (Δmax = BCMA-EV at C1/maximal BCMA-EV) showed a strong inverse, logarithmic correlation (r = -.950; p < .001) with FLC ratio changes (Δmax = FLC ratio at C1/minimal FLC ratio) and BCMA-EV peaks often preceded FLC progression. Correlating increase of LDH and BCMA-EV levels, together with clinical symptoms, point to a mafodotin-induced eryptosis. In summary, BCMA-EV are a part of sBCMA, peak levels precede progression, and their measurement might be helpful in identifying resistance mechanisms and side effects of BCMA targeted therapies.


Assuntos
Imunoconjugados , Mieloma Múltiplo , Humanos , Anticorpos Monoclonais/uso terapêutico , Antígeno de Maturação de Linfócitos B/metabolismo , Imunoconjugados/efeitos adversos , Mieloma Múltiplo/terapia
11.
J Transl Med ; 21(1): 812, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37964302

RESUMO

BACKGROUND: Extramedullary disease usually implies a dismal outcome in relapsed/refractory multiple myeloma patients, and requires novel treatment approaches. We designed a trial using Selinexor, a nuclear export protein 1 inhibitor, together with anti-B cell maturation antigen (BCMA) chimeric antigen receptor (CAR)-T cell product CT103A to treat these patients, and describe the first two cases in this report. METHODS: Selinexor was administered with a novel two-step schedule in bridging therapy and in maintenance. The clinical responses and adverse events were recorded after CAR-T infusion and Selinexor administration. In vitro analysis of the influence of Selinexor on CAR-T cell function was performed using myeloma cell lines. RESULTS: After infusion, both patients achieved stringent complete remission (sCR), and were maintained in sCR at data-cutoff, with survival over 13 and 10 months, respectively. Neither immune effector cell-associated neurotoxicity syndrome nor over grade 2 cytokine release syndrome was observed. Meanwhile, the patients showed good tolerance to the combination. In addition, we demonstrated that low dose of Selinexor could upregulate the expression of BCMA on plasma cell lines and subsequently enhance the function of CAR-T cell in vitro. CONCLUSIONS: The combination of Selinexor and CT103A exerts preliminary synergistic effect, and can be developed as a promising strategy for relapsed/refractory extramedullary myeloma.


Assuntos
Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Humanos , Mieloma Múltiplo/tratamento farmacológico , Receptores de Antígenos Quiméricos/uso terapêutico , Receptores de Antígenos Quiméricos/metabolismo , Antígeno de Maturação de Linfócitos B/metabolismo , Anticorpos/uso terapêutico , Plasmócitos , Imunoterapia Adotiva
12.
Biomed Pharmacother ; 168: 115691, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37844355

RESUMO

Chimeric antigen receptor (CAR) T cell therapy targeting B cell maturation antigen (BCMA) has been approved for treating multiple myeloma (MM). Some clinical studies reported suboptimal outcomes, including reduced cytotoxicity of CAR-T cells and tumor evasion through increased expression of programmed death-ligand 1 (PD-L1). To enhance CAR-T cell efficiency and overcome PD-L1-mediated T cell suppression, we developed anti-BCMA-CAR5-T cells equipped with three costimulatory domains and the ability to secrete anti-PD-L1 single-chain variable fragment (scFv) blockade molecules. Anti-BCMA-CAR4-T cells contained a fully human anti-BCMA scFv and three intracellular domains (CD28, 4-1BB, and CD27) joined with CD3ζ. Anti-BCMA-CAR5-T cells were generated by fusing anti-BCMA-CAR4 with anti-PD-L1 scFv. Both anti-BCMA-CAR4-T and anti-BCMA-CAR5-T cells demonstrated comparable antitumor activity against parental MM cells. However, at an effector-to-target ratio of 1:2, only anti-BCMA-CAR5-T cells maintained cytolytic activity against PD-L1 high MM cells, unlike anti-BCMA-CAR4 T cells. Anti-BCMA-CAR5-T cells were specifically activated by BCMA-expressing target cells, resulting in increased CAR-T cell proliferation, release of cytolytic mediators, and pro-inflammatory cytokines. Anti-BCMA-CAR5-T cells demonstrated specific cytotoxicity against BCMA-expressing target cells, leading to decreased target cell numbers, increased CAR-T cell numbers, and preserved CAR expression during antigenic re-stimulation. Interestingly, only anti-BCMA-CAR5-T cells showed reduced PD-1 receptor levels, which correlated with decreased PD-L1 expression on target cells. We successfully generated anti-BCMA-CAR5-T cells capable of secreting anti-PD-L1 scFv. These cells exhibited superior antitumor efficiency, proliferative capacity, and alleviated T-cell exhaustion against MM cells. Further investigation into the antitumor efficacy of anti-BCMA-CAR5-T cells is warranted in ex vivo and clinical research settings.


Assuntos
Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Humanos , Mieloma Múltiplo/terapia , Mieloma Múltiplo/patologia , Antígeno de Maturação de Linfócitos B/metabolismo , Antígeno B7-H1/metabolismo , Exaustão das Células T , Linhagem Celular Tumoral , Imunoterapia Adotiva/métodos , Linfócitos T
13.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(4): 1108-1112, 2023 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-37551484

RESUMO

OBJECTIVE: To study the expression level of serum B-cell maturation antigen (sBCMA) in the peripheral blood of newly diagnosed multiple myeloma (MM) patients, and explore its relationship with the prognosis of MM patients. METHODS: The peripheral blood of 31 newly diagnosed MM patients and 30 healthy volunteers were collected. The level of sBCMA in the peripheral blood was detected by enzyme-linked immunosorbent assay (ELISA). The correlation between the level of sBCMA and the prognosis of MM patients was analyzed. RESULTS: The level of sBCMA in newly diagnosed MM patients was significantly higher than that in healthy controls (P <0.05). The level of sBCMA was closely related to the plasma cells ratio in bone marrow, the M protein level and the treatment (P <0.05). The level of sBCMA was negatively correlated with the overall survival (OS) of MM patients (r =-0.47). MM patients with low expression of sBCMA had significantly longer OS than patients with high expression of sBCMA (P <0.05). CONCLUSION: The level of sBCMA is significantly increased in MM patients, which is expected to be a new indicator for evaluating the curative efficacy and prognosis of MM patients. Targeting sBCMA may provide new ideas for the treatment of MM.


Assuntos
Mieloma Múltiplo , Humanos , Antígeno de Maturação de Linfócitos B/metabolismo , Prognóstico
14.
J Immunother Cancer ; 11(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37399355

RESUMO

BACKGROUND: We used a proliferating ligand (APRIL) to construct a ligand-based third generation chimeric antigen receptor (CAR) able to target two myeloma antigens, B-cell maturation antigen (BCMA) and transmembrane activator and CAML interactor. METHODS: The APRIL CAR was evaluated in a Phase 1 clinical trial (NCT03287804, AUTO2) in patients with relapsed, refractory multiple myeloma. Eleven patients received 13 doses, the first 15×106 CARs, and subsequent patients received 75,225,600 and 900×106 CARs in a 3+3 escalation design. RESULTS: The APRIL CAR was well tolerated. Five (45.5%) patients developed Grade 1 cytokine release syndrome and there was no neurotoxicity. However, responses were only observed in 45.5% patients (1×very good partial response, 3×partial response, 1×minimal response). Exploring the mechanistic basis for poor responses, we then compared the APRIL CAR to two other BCMA CARs in a series of in vitro assays, observing reduced interleukin-2 secretion and lack of sustained tumor control by APRIL CAR regardless of transduction method or co-stimulatory domain. There was also impaired interferon signaling of APRIL CAR and no evidence of autoactivation. Thus focusing on APRIL itself, we confirmed similar affinity to BCMA and protein stability in comparison to BCMA CAR binders but reduced binding by cell-expressed APRIL to soluble BCMA and reduced avidity to tumor cells. This indicated either suboptimal folding or stability of membrane-bound APRIL attenuating CAR activation. CONCLUSIONS: The APRIL CAR was well tolerated, but the clinical responses observed in AUTO2 were disappointing. Subsequently, when comparing the APRIL CAR to other BCMA CARs, we observed in vitro functional deficiencies due to reduced target binding by cell-expressed ligand.


Assuntos
Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia Adotiva/métodos , Mieloma Múltiplo/tratamento farmacológico , Ligantes , Antígeno de Maturação de Linfócitos B/metabolismo , Antígeno de Maturação de Linfócitos B/uso terapêutico , Linfócitos T
15.
Int J Mol Sci ; 24(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37445668

RESUMO

Cytomegalovirus (CMV) infection is the most frequent infection episode in kidney transplant (KT) recipients. Reactivation usually occurs in the first three months after transplantation and is associated with higher cellular and/or antibody-mediated rejection rates and poorer graft performance. CMV induces the expression of BAFF (B-cell-activating factor, a cytokine involved in the homeostasis of B cells), which communicates signals for survival and growth to B cells and virus-specific plasma cells via the R-BAFF (BAFF receptor), TACI (the calcium modulator, the cyclophilin ligand interactor), and BCMA (B cell maturation antigen) receptors. These molecules of the BAFF system have also been suggested as biomarkers for the development of alloantibodies and graft dysfunction. This prospective study included 30 CMV-IgG seropositive KT recipients. The expression levels of the genes BAFF-R, transmembrane activator and CAML interactor (TACI), and B cell maturation antigen (BCMA) in peripheral blood leukocytes (PBL) pre-KT were determined using qPCR. qPCR was also used to monitor CMV reactivation in the first three months following KT. The remainder of the KT recipients were classified as CMV- reactivation, and those with more than 500 copies/mL in at least one sample were classified as CMV+ reactivation. There were no discernible variations in the BAFF-R and TACI transcript expression levels. In the CMV+ group, we examined the relationship between the transcript levels and peak viremia. Peak viremia levels and BCMA transcript levels showed a strong correlation. BAFF-R and TACI expressions showed no measurable differences. In patients with early CMV reactivation, high BCMA receptor expression was associated with increased plasmablast, lymphocyte B cell class-switched levels (LBCS), and viral load. Our findings demonstrate that pre-KT BCMA transcript levels increased in KT recipients with early CMV reactivation. These transcript levels positively correlate with peak viremia and weakly with plasmablast and LBCS levels in PBLs.


Assuntos
Antígeno de Maturação de Linfócitos B , Citomegalovirus , Humanos , Antígeno de Maturação de Linfócitos B/genética , Antígeno de Maturação de Linfócitos B/metabolismo , Estudos Prospectivos , Viremia , Proteína Transmembrana Ativadora e Interagente do CAML/genética , Fator Ativador de Células B/genética , Imunoglobulina G
16.
Front Immunol ; 14: 1113303, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37114050

RESUMO

Bispecific antibodies have attracted more attention in recent years for the treatment of tumors, in which most of them target CD3, which mediates the killing of tumor cells by T cells. However, T-cell engager may cause serious side effects, including neurotoxicity and cytokine release syndrome. More safe treatments are still needed to address unmet medical needs, and NK cell-based immunotherapy is a safer and more effective way to treat tumors. Our study developed two IgG-like bispecific antibodies with the same configuration: BT1 (BCMA×CD3) attracted T cells and tumor cells, while BK1 (BCMA×CD16) attracted NK cells and tumor cells. Our study showed that BK1 mediated NK cell activation and upregulated the expression of CD69, CD107a, IFN-γ and TNF. In addition, BK1 elicited a stronger antitumor effect than BT1 both in vitro and in vivo. Combinatorial treatment (BK1+BT1) showed a stronger antitumor effect than either treatment alone, as indicated by in vitro experiments and in vivo murine models. More importantly, BK1 induced fewer proinflammatory cytokines than BT1 both in vitro and in vivo. Surprisingly, BK1 reduced cytokine production in the combinatorial treatment, suggesting the indispensable role of NK cells in the control of cytokine secretion by T cells. In conclusion, our study compared NK-cell engagers and T-cell engagers targeting BCMA. The results indicated that NK-cell engagers were more effective with less proinflammatory cytokine production. Furthermore, the use of NK-cell engagers in combinatorial treatment helped to reduce cytokine secretion by T cells, suggesting a bright future for NK-cell engagers in clinical settings.


Assuntos
Anticorpos Biespecíficos , Neoplasias , Camundongos , Animais , Linfócitos T , Citocinas/metabolismo , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Antígeno de Maturação de Linfócitos B/metabolismo , Células Matadoras Naturais
17.
Immunobiology ; 228(3): 152376, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37058845

RESUMO

AIMS: Chimeric Antigen Receptor (CAR) T-cell is a breakthrough in cancer immunotherapy. The primary step of successful CAR T cell therapy is designing a specific single-chain fragment variable (scFv). This study aims to verify the designed anti-BCMA (B cell maturation antigen) CAR using bioinformatic techniques with the following experimental evaluations. MAIN METHODS: Following the second generation of anti-BCMA CAR designing, the protein structure, function prediction, physicochemical complementarity at the ligand-receptor interface, and biding sites analysis of anti-BCMA CAR construct were confirmed using different modeling and docking server, including Expasy, I-TASSER, HDock, and PyMOL software. To generate CAR T-cells, isolated T cells were transduced. Then, anti-BCMA CAR mRNA and its surface expression were confirmed by real-time -PCR and flow cytometry methods, respectively. To evaluate the surface expression of anti-BCMA CAR, anti-(Fab')2 and anti-CD8 antibodies were employed. Finally, anti-BCMA CAR T cells were co-cultured with BCMA+/- cell lines to assess the expression of CD69 and CD107a as activation and cytotoxicity markers. KEY FINDINGS: In-silico results approved the suitable protein folding, perfect orientation, and correct locating of functional domains at the receptor-ligand binding site. The in-vitro results confirmed high expression of scFv (89 ± 1.15% (and CD8α (54 ± 2.88%). The expression of CD69 (91.97 ± 1.7%) and CD107a (92.05 ± 1.29%) were significantly increased, indicating appropriate activation and cytotoxicity. SIGNIFICANCE: In-silico studies before experimental assessments are crucial for state-of-art CAR designing. Highly activation and cytotoxicity of anti-BCMA CAR T-cell revealed that our CAR construct methodology would be applicable to define the road map of CAR T cell therapy.


Assuntos
Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Humanos , Antígeno de Maturação de Linfócitos B/genética , Antígeno de Maturação de Linfócitos B/metabolismo , Mieloma Múltiplo/genética , Mieloma Múltiplo/terapia , Ligantes , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T
18.
Int J Mol Sci ; 24(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36982377

RESUMO

Belantamab mafodotin (belamaf) is an afucosylated monoclonal antibody conjugated to the microtubule disrupter monomethyl auristatin-F (MMAF) that targets B cell maturation antigen (BCMA) on the surface of malignant plasma cells. Belamaf can eliminate myeloma cells (MMs) through several mechanisms. On the one hand, in addition to inhibiting BCMA-receptor signaling and cell survival, intracellularly released MMAF disrupts tubulin polymerization and causes cell cycle arrest. On the other hand, belamaf induces effector cell-mediated tumor cell lysis via antibody-dependent cellular cytotoxicity and antibody-dependent cellular phagocytosis. In our in vitro co-culture model, the consequences of the first mentioned mechanism can be investigated: belamaf binds to BCMA, reduces the proliferation and survival of MMs, and then enters the lysosomes of malignant cells, where MMAF is released. The MMAF payload causes a cell cycle arrest at the DNA damage checkpoint between the G2 and M phases, resulting in caspase-3-dependent apoptosis. Here, we show that primary MMs isolated from different patients can vary widely in terms of BCMA expression level, and inadequate expression is associated with extremely high resistance to belamaf according to our cytotoxicity assay. We also reveal that primary MMs respond to increasing concentrations of belamaf by enhancing the incorporation of mitochondria from autologous bone marrow stromal cells (BM-MSCs), and as a consequence, MMs become more resistant to belamaf in this way, which is similar to other medications we have analyzed previously in this regard, such as proteasome inhibitor carfilzomib or the BCL-2 inhibitor venetoclax. The remarkable resistance against belamaf observed in the case of certain primary myeloma cell cultures is a cause for concern and points towards the use of combination therapies to overcome the risk of antigen escape.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/patologia , Antígeno de Maturação de Linfócitos B/metabolismo , Técnicas de Cocultura , Anticorpos Monoclonais Humanizados/uso terapêutico
19.
Clin Lymphoma Myeloma Leuk ; 23(5): 310-321, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36925390

RESUMO

Despite continued advances that have led to improved survival of patients with multiple myeloma (MM) over the years, MM remains largely incurable with overall survival in patients who have progressed after proteasome inhibitor, immunomodulatory drug, and anti-CD38 monoclonal antibody therapy measured in months. Better understanding of the immunopathology of MM has led to the discovery of newer treatment targets like B-cell maturation antigen (BCMA). BCMA is a tumor necrosis factor receptor superfamily expressed on normal B-lymphocytes and malignant plasma cells with a vital role in proliferation, maturation, and differentiation of normal and malignant plasma cells. Antibody drug conjugates, chimeric antigen receptor (CAR) T-cells and bispecific T-cell engagers targeting the BCMA antigen are now available within and outside of clinical trials for treatment of triple class refractory MM. This review article focuses on the evolution, safety, efficacy, and limitations of BCMA-directed CAR T-cell therapies. It also discusses the challenges unveiled by the incorporation of these CAR T-cells in the treatment paradigm of MM and deliberates on the future of CAR T-cell therapy within MM.


Assuntos
Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Humanos , Antígeno de Maturação de Linfócitos B/metabolismo , Imunoterapia Adotiva/métodos , Mieloma Múltiplo/patologia , Linfócitos T
20.
Mod Pathol ; 36(4): 100050, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36788077

RESUMO

B-cell maturation antigen (BCMA) is a promising target for the treatment of multiple myeloma (MM) because the expression of this protein is largely limited to B-cell sets, plasma cells, MM, and other B-cell malignancies. Early studies assessing BCMA protein expression and localization have used insufficiently qualified immunohistochemistry assays, which have reported broad ranges of BCMA expression. As a result, our understanding of BCMA tissue expression derived from these data is limited, specifically the prevalence of BCMA expression on the cell surface/membrane, which has mechanistic relevance to the antimyeloma activity of several novel biotherapeutics. Here, we report on the qualification and application of a novel anti-BCMA immunohistochemistry antibody, 805G12. This antibody shows robust detection of BCMA in formalin-fixed, decalcified bone marrow tissue and provides key insights into membrane BCMA expression. The clone 805G12, which was raised against an intracellular C-terminal domain peptide of membrane BCMA, exhibited increased sensitivity and superior specificity across healthy and diseased tissue compared with the frequently referenced commercial reagent AF193. The new clone also demonstrated a broad range of expression of BCMA in MM and diffuse large B-cell lymphoma specimens. Additionally, cross-reactivity with closely related tumor necrosis factor receptor family members was observed with AF193 but not with 805G12. Furthermore, via established 805G12 and other independent BCMA assays, it was concluded that proteolytic processing by γ-secretase contributes to the levels of BCMA localized to the plasma membrane. As BCMA-directed therapeutics emerge to address the need for more effective treatment in the relapsed or refractory MM disease setting, the implementation of a qualified assay would ensure that reliable and consistent data on BCMA surface expression are used to inform clinical trial decisions and patient responses.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/patologia , Imuno-Histoquímica , Imunoterapia Adotiva , Antígeno de Maturação de Linfócitos B/metabolismo , Plasmócitos/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA