RESUMO
B cells are crucial components of the immune system, responsible for producing specific antibodies in response to infections and vaccines. Despite their uniform appearance, B cells display diverse surface molecules and functional properties, which are not yet fully understood. Apart from antibody production, B cells also play roles in antigen presentation and cytokine secretion, essential for initiating T-cell immune responses. Their significance as disease biomarkers and therapeutic targets has led to increased research focus. However, the lack of standardized protocols for B-cell identification and the variability in defining B-lymphocyte subpopulations pose some challenges. This paper proposes a B-cell identification panel throughout the evaluation of previous cytometry panels and nomenclature heterogeneity for B-cell subpopulations. Major subpopulations recognized in human peripheral blood include transitional, naive, switched memory, unswitched memory, double negative, and plasmablasts, characterized based on their functional and phenotypic features. We present a standardized flow cytometry protocol utilizing surface phenotypic markers (CD3, CD19, IgD, CD27, CD38, and CD24) to differentiate and analyze B-cell subpopulations. This practical and cost-effective panel can be used in various research and laboratory settings. The challenges of standardizing names and markers for classifying B-lymphocyte subpopulations are discussed, along with protocols utilizing multiple markers and gating strategies, allied with the importance of considering viability markers. In summary, this standardized protocol and panel provide a comprehensive approach to identifying B-cell subpopulations to enhance the reproducibility and comparability of B-cell subpopulation studies.
Assuntos
Subpopulações de Linfócitos B , Citometria de Fluxo , Imunofenotipagem , Humanos , Citometria de Fluxo/métodos , Imunofenotipagem/métodos , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Subpopulações de Linfócitos B/citologia , Linfócitos B/imunologia , Linfócitos B/citologia , Linfócitos B/metabolismo , Biomarcadores , Fenótipo , Antígenos CD/imunologia , Antígenos CD/metabolismo , Análise Custo-BenefícioRESUMO
2-deoxy-D-glucose (2DG) is a glycolysis and protein N-glycosylation inhibitor with promising anti-tumor and immunomodulatory effects. However, 2DG can also suppress T cell function, including IFN-γ secretion. Few human T cell studies have studied low-dose 2DG, which can increase IFN-γ in a Jurkat clone. We therefore investigated 2DG's effect on IFN-γ in activated human T cells from PBMCs, with 2DG treatment commenced either concurrently with activation or 48 h after activation. Concurrent 2DG treatment decreased IFN-γ secretion in a dose-dependent manner. However, 2DG treatment of pre-activated T cells had a hormetic effect on IFN-γ, with 0.15-0.6 mM 2DG (achievable in vivo) increasing and >2.4 mM 2DG reducing its secretion. In contrast, IL-2 levels declined monotonously with increasing 2DG concentration. Lower 2DG concentrations reduced PD-1 and increased CD69 expression regardless of treatment timing. The absence of increased T-bet or Eomes expression or IFNG transcription suggests another downstream mechanism. 2DG dose-dependently induced the unfolded protein response, suggesting a possible role in increased IFN-γ secretion, possibly by increasing the ER folding capacity for IFN-γ via increased chaperone expression. Overall, low-dose, short-term 2DG exposure could potentially improve the T cell anti-tumor response.
Assuntos
Desoxiglucose , Interferon gama , Ativação Linfocitária , Linfócitos T , Humanos , Interferon gama/metabolismo , Desoxiglucose/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Linfócitos T/imunologia , Antígenos de Diferenciação de Linfócitos T/metabolismo , Células Jurkat , Interleucina-2/metabolismo , Antígenos CD/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Receptor de Morte Celular Programada 1/metabolismo , Lectinas Tipo C/metabolismo , Relação Dose-Resposta a DrogaRESUMO
PACAP (pituitary adenylate cyclase activating polypeptide) is a widespread neuropeptide with cytoprotective and anti-inflammatory effects. It plays a role in innate and adaptive immunity, but data are limited about gut-associated lymphoid tissue. We aimed to reveal differences in Peyer's patches between wild-type (WT) and PACAP-deficient (KO) mice. Peyer's patch morphology from young (3-months-old) and aging (12-15-months-old) mice was examined, along with flow cytometry to assess immune cell populations, expression of checkpoint molecules (PD-1, PD-L1, TIM-3, Gal-9) and functional markers (CD69, granzyme B, perforin) in CD3+, CD4+, and CD8+ T cells. We found slight differences between aging, but not in young, WT, and KO mice. In WT mice, aging reduced CD8+ T cell numbers frequency and altered checkpoint molecule expression (higher TIM-3, granzyme B; lower Gal-9, CD69). CD4+ T cell frequency was higher with similar checkpoint alterations, indicating a regulatory shift. In PACAP KO mice, aging did not change cell population frequencies but led to higher TIM-3, granzyme B and lower PD-1, PD-L1, Gal-9, and CD69 expression in CD4+ and CD8+ T cells, with reduced overall T cell activity. Thus, PACAP deficiency impacts immune dysfunction by altering checkpoint molecules and T cell functionality, particularly in CD8+ T cells, suggesting complex immune responses by PACAP, highlighting its role in intestinal homeostasis and potential implications for inflammatory bowel diseases.
Assuntos
Antígenos de Diferenciação de Linfócitos T , Camundongos Knockout , Nódulos Linfáticos Agregados , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Animais , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/deficiência , Camundongos , Nódulos Linfáticos Agregados/imunologia , Nódulos Linfáticos Agregados/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Antígenos de Diferenciação de Linfócitos T/genética , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/genética , Granzimas/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Antígenos CD/metabolismo , Antígenos CD/genética , Lectinas Tipo C/metabolismo , Lectinas Tipo C/genética , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Receptor Celular 2 do Vírus da Hepatite A/genética , Envelhecimento/imunologia , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Camundongos Endogâmicos C57BL , Perforina/metabolismo , Perforina/genética , MasculinoRESUMO
Despite the success of immune checkpoint blockade (ICB) therapy for esophageal squamous cell cancer, the key immune cell populations that affect ICB efficacy remain unclear. Here, imaging mass cytometry of tumor tissues from ICB-treated patients identifies a distinct cell population of CD39+PD-1+CD8+ T cells, specifically the TCF1+ subset, precursor exhausted T (CD39+ Tpex) cells, which positively correlate with ICB benefit. CD39+ Tpex cells are predominantly in the stroma, while differentiated CD39+ exhausted T cells are abundantly and proximally within the parenchyma. Notably, CD39+ Tpex cells are concentrated within and around tertiary lymphoid structure (TLS). Accordingly, tumors harboring TLSs have more of these cells in tumor areas than tumors lacking TLSs, suggesting Tpex cell recruitment from TLSs to tumors. In addition, circulating CD39+ Tpex cells are also increased in responders following ICB therapy. Our findings show that this unique subpopulation of CD39+PD-1+CD8+ T cells is crucial for ICB benefit, and suggest a key role in TLS-mediated immune responses against tumors.
Assuntos
Apirase , Linfócitos T CD8-Positivos , Neoplasias Esofágicas , Inibidores de Checkpoint Imunológico , Receptor de Morte Celular Programada 1 , Estruturas Linfoides Terciárias , Humanos , Neoplasias Esofágicas/imunologia , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/patologia , Apirase/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Estruturas Linfoides Terciárias/imunologia , Estruturas Linfoides Terciárias/patologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Carcinoma de Células Escamosas do Esôfago/imunologia , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/patologia , Antígenos CD/metabolismo , Antígenos CD/imunologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Feminino , Masculino , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos dos fármacosRESUMO
Background: Intrahepatic cholangiocarcinoma (ICC) is a disease with poor prognosis and limited therapeutic options. We investigated the tumor immune microenvironment (TIME) to identify predictors of disease outcome and to explore targets for therapeutic modulation. Methods: Liver tissue samples were collected during 2008-2019 from patients (n = 139) diagnosed with ICC who underwent curative intent surgery without neoadjuvant chemotherapy. Samples from the discovery cohort (n = 86) were immunohistochemically analyzed on tissue microarrays (TMAs) for the expression of CD68, CD3, CD4, CD8, Foxp3, PD-L1, STAT1, and p-STAT1 in tumor core and stroma areas. Results were digitally analyzed using QuPath software and correlated with clinicopathological characteristics. For validation of TIME-related biomarkers, we performed multiplex imaging mass cytometry (IMC) in a validation cohort (n = 53). Results: CD68+ cells were the predominant immune cell type in the TIME of ICC. CD4+high T cell density correlated with better overall survival (OS). Prediction modeling together with validation cohort confirmed relevance of CD4+ cells, PD-L1 expression by immune cells in the stroma and N-stage on overall disease outcome. In turn, IMC analyses revealed that silent CD3+CD4+ clusters inversely impacted survival. Among annotated immune cell clusters, PD-L1 was most relevantly expressed by CD4+FoxP3+ cells. A subset of tumors with high density of immune cells ("hot" cluster) correlated with PD-L1 expression and could identify a group of candidates for immune checkpoint inhibition (ICI). Ultimately, higher levels of STAT1 expression were associated with higher lymphocyte infiltration and PD-L1 expression. Conclusions: These results highlight the importance of CD4+ T cells in immune response against ICC. Secondly, a subset of tumors with "hot" TIME represents potential candidates for ICI, while stimulation of STAT1 pathway could be a potential target to turn "cold" into "hot" TIME in ICC.
The tumor immune microenvironment (TIME) plays a critical role in the immune response In many cancers, including intrahepatic cholangiocarcinoma (ICC). Molecular subtyping of the ICC microenvironment already revealed inter-tumoral heterogeneity with variant profiles of immune cell infiltrates. A recent study created an in-depth immune cell atlas of the TIME in biliary tract cancers and could demonstrate the relevance of specific immune cell subpopulations on patient outcome. We are able to provide a distinctive characterization of TIME, separating tumor epithelial- and stroma areas, in a large and representative ICC cohort using digitalized image analysis on tissue microarrays (TMA) as well as multiplex imaging mass cytometry (IMC). The study was designed for identification of immune cell prognosticators allocating institutional ICC patients into a discovery (200815) and a validation (201019) cohort. Immune cell subpopulations were correlated with clinicopathological characteristics and patient outcome. Our results highlight: i. The important role of CD4+ T cell infiltration in ICC patients; ii. ICC tumors with high density of immune cells associated with PD-L1 expression identifies a subset of patients with variant tumor biology; iii. Stimulation of STAT1 pathway may be a relevant target to turn "cold" into "hot" tumors.
Assuntos
Antígeno B7-H1 , Neoplasias dos Ductos Biliares , Biomarcadores Tumorais , Colangiocarcinoma , Microambiente Tumoral , Humanos , Colangiocarcinoma/imunologia , Colangiocarcinoma/patologia , Microambiente Tumoral/imunologia , Masculino , Feminino , Neoplasias dos Ductos Biliares/imunologia , Neoplasias dos Ductos Biliares/patologia , Pessoa de Meia-Idade , Prognóstico , Idoso , Biomarcadores Tumorais/metabolismo , Antígeno B7-H1/metabolismo , Fator de Transcrição STAT1/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Antígenos CD/metabolismo , Adulto , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Molécula CD68RESUMO
Respiratory syncytial virus (RSV) infects nearly all children by 2 years of age and is a leading cause of pediatric hospitalizations. A subset of children with RSV infection (RSV+ children) develop respiratory failure requiring intensive care, but immune mechanisms distinguishing severe pediatric RSV infection are not fully elucidated. Natural killer (NK) cells are key innate immune effectors of viral host defense. In this study of 47 critically ill RSV+ children, we coupled NK cell immunophenotype and cytotoxic function with clinical parameters to identify an NK cell immune signature of severe pediatric RSV disease. Airway NK cells were increased in intubated RSV+ children with severe hypoxemia and prolonged duration of mechanical ventilation and were correlated with clinical severity scores. Peripheral blood NK cells were decreased in RSV+ patients and had altered activating receptor expression, with increased expression of CD69 and decreased expression of NKG2D. Ex vivo, circulating NK cells from RSV+ patients exhibited functional impairment characterized by decreased cytotoxicity as well as aberrant immune synapse assembly and lytic granule trafficking. NK cell frequency and phenotype correlated with clinical measures that defined disease severity. These findings implicate a role for NK cells in mediating RSV immunopathology and suggest that an altered NK cell immunophenotype is associated with severe RSV disease in young children.
Assuntos
Imunofenotipagem , Células Matadoras Naturais , Infecções por Vírus Respiratório Sincicial , Humanos , Células Matadoras Naturais/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Lactente , Feminino , Masculino , Pré-Escolar , Antígenos CD/metabolismo , Criança , Lectinas Tipo C/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Índice de Gravidade de Doença , Sinapses Imunológicas/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismoRESUMO
The generation of lung epithelial cells through the directed differentiation of human pluripotent stem cells (hPSCs) in vitro provides a platform to model both embryonic lung development and adult airway disease. Here, we describe a robust differentiation protocol that closely recapitulates human embryonic lung development. Differentiating cells progress through obligate intermediate stages, beginning with definitive endoderm formation and then patterning into anterior foregut endoderm that yields lung progenitors (LPs) with extended culture. These LPs can be purified using the cell surface marker CD166 (also known as ALCAM), and further matured into proximal airway epithelial cells including basal cells, secretory cells and multiciliated cells using either an organoid platform or culture at the air-liquid interface (ALI). We additionally demonstrate that these hPSC-derived airway epithelial cells can be used to model Influenza A infection. Collectively, our results underscore the utility of CD166 expression for the efficient enrichment of LPs from heterogenous differentiation cultures and the ability of these isolated cells to mature into more specialized, physiologically relevant proximal lung cell types.
Assuntos
Diferenciação Celular , Células Epiteliais , Pulmão , Células-Tronco Pluripotentes , Humanos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Pulmão/citologia , Pulmão/metabolismo , Pulmão/embriologia , Células Epiteliais/metabolismo , Células Epiteliais/citologia , Biomarcadores , Proteínas Fetais/metabolismo , Proteínas Fetais/genética , Antígenos CD/metabolismo , Técnicas de Cultura de Células , Molécula de Adesão de Leucócito AtivadoRESUMO
Intraepithelial lymphocytes (IELs) reside in the epithelial layer and protect against foreign pathogens, maintaining the epithelial barrier function in the intestine. Interactions between IEL and epithelial cells are required for IELs to function effectively; however, the underlying molecular machinery remains to be elucidated. In this study, we found that intestinal epithelium-specific deficiency of the clathrin adaptor protein (AP)-1B, which regulates basolateral protein sorting, led to a massive reduction in IELs. Quantitative proteomics demonstrated that dozens of proteins, including known IEL-interacting proteins (E-cadherin, butyrophilin-like 2, and plexin B2), were decreased in the basolateral membrane of AP-1B-deficient epithelial cells. Among these proteins, CD166 interacted with CD6 on the surface of induced IEL. CD166 knockdown, using shRNA in intestinal organoid cultures, significantly inhibited IEL recruitment to the epithelial layer. These findings highlight the essential role of AP-1B-mediated basolateral sorting in IEL maintenance and survival within the epithelial layer. This study reveals a novel function of AP-1B in the intestinal immune system.
Assuntos
Complexo 1 de Proteínas Adaptadoras , Antígenos CD , Células Epiteliais , Mucosa Intestinal , Linfócitos Intraepiteliais , Animais , Camundongos , Complexo 1 de Proteínas Adaptadoras/metabolismo , Complexo 1 de Proteínas Adaptadoras/genética , Antígenos CD/metabolismo , Antígenos CD/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Comunicação Celular , Células Epiteliais/metabolismo , Células Epiteliais/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/citologia , Intestinos/citologia , Intestinos/imunologia , Linfócitos Intraepiteliais/metabolismo , Linfócitos Intraepiteliais/imunologia , Camundongos Endogâmicos C57BLRESUMO
PD-1 blockade partially reverses T cell exhaustion in cancer patients, but broad responses are still limited. Three studies recently published in Cell illuminate how abrogating LAG-3 and PD-1 synergize to further push effector T cell functionality via distinct molecular mechanisms.
Assuntos
Imunoterapia , Proteína do Gene 3 de Ativação de Linfócitos , Neoplasias , Receptor de Morte Celular Programada 1 , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Humanos , Imunoterapia/métodos , Neoplasias/imunologia , Neoplasias/terapia , Antígenos CD/imunologia , Antígenos CD/metabolismo , Animais , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Linfócitos T/imunologiaRESUMO
The effect and molecular regulatory mechanism of A Disintegrin and Metalloproteinase 8 (ADAM8) were explored in alcoholic liver fibrosis (ALF). C57BL/6N male mice were randomly divided into control, alcohol, and ADAM8-sgRNA3 plasmid groups. The control group received control liquid diet, while the alcohol and ADAM8-sgRNA3 plasmid groups were given alcohol liquid feed diet combined with ethanol gavage treatment for 8 weeks to induce ALF modeling. In addition, the ADAM8-sgRNA3 plasmid group was injected with the effective ADAM8-sgRNA3 plasmid, while the alcohol and control group mice were injected with an equivalent amount of physiological saline. LX-2 human hepatic stellate cells were divided into control, alcohol, si-ADAM8-2, and si-ADAM8-NC groups and induced for 48 h for model establishment in vitro. Serological detection, pathological staining, Western blotting, qRT-PCR and CCK8 assay were performed for experiments. Compared with the alcohol group, ADAM8 mRNA, protein and, positive area rate, serological indicators, pathological changes, and the expression of liver fibrosis marker and MAPK signaling pathway-related factors in the ADAM8-sgRNA3 plasmid group significantly decreased in vivo. Compared with the alcohol group, ADAM8 mRNA and protein expression, cell viability, and the expression of liver fibrosis markers and MAPK signaling pathway-related factors (p-ERK1/2, PCNA, Bcl-2, p-c-Jun, TGFß1, p-p38 MAPK and HSP27) reduced significantly in the si-ADAM8-2 group. Therefore, ADAM8 promotes ALF through the MAPK signaling pathway, a promising target for treating ALF.
Assuntos
Proteínas ADAM , Células Estreladas do Fígado , Cirrose Hepática Alcoólica , Sistema de Sinalização das MAP Quinases , Proteínas de Membrana , Camundongos Endogâmicos C57BL , Animais , Masculino , Camundongos , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas ADAM/metabolismo , Proteínas ADAM/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Células Estreladas do Fígado/metabolismo , Humanos , Cirrose Hepática Alcoólica/metabolismo , Cirrose Hepática Alcoólica/patologia , Cirrose Hepática Alcoólica/genética , Etanol/toxicidade , Linhagem Celular , Antígenos CDRESUMO
Cardiac myosin-specific (MyHC) T cells drive the disease pathogenesis of immune checkpoint inhibitor-associated myocarditis (ICI-myocarditis). To determine whether MyHC T cells are tissue-resident memory T (TRM) cells, we characterized cardiac TRM cells in naive mice and established that they have a distinct phenotypic and transcriptional profile that can be defined by their upregulation of CD69, PD-1, and CXCR6. We then investigated the effects of cardiac injury through a modified experimental autoimmune myocarditis mouse model and an ischemia-reperfusion injury mouse model and determined that cardiac inflammation induces the recruitment of autoreactive MyHC TRM cells, which coexpress PD-1 and CD69. To investigate whether the recruited MyHC TRM cells could increase susceptibility to ICI-myocarditis, we developed a two-hit ICI-myocarditis mouse model where cardiac injury was induced, mice were allowed to recover, and then were treated with anti-PD-1 antibodies. We determined that mice who recover from cardiac injury are more susceptible to ICI-myocarditis development. We found that murine and human TRM cells share a similar location in the heart and aggregate along the perimyocardium. We phenotyped cells obtained from pericardial fluid from patients diagnosed with dilated cardiomyopathy and ischemic cardiomyopathy and established that pericardial T cells are predominantly CD69+ TRM cells that up-regulate PD-1. Finally, we determined that human pericardial macrophages produce IL-15, which supports and maintains pericardial TRM cells.
Assuntos
Inibidores de Checkpoint Imunológico , Células T de Memória , Miocardite , Animais , Miocardite/imunologia , Miocardite/patologia , Miocardite/metabolismo , Inibidores de Checkpoint Imunológico/farmacologia , Camundongos , Humanos , Células T de Memória/imunologia , Células T de Memória/metabolismo , Modelos Animais de Doenças , Masculino , Receptor de Morte Celular Programada 1/metabolismo , Miosinas Cardíacas/imunologia , Miosinas Cardíacas/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Antígenos de Diferenciação de Linfócitos T/imunologia , Camundongos Endogâmicos C57BL , Lectinas Tipo C/metabolismo , Feminino , Miosinas/metabolismo , Miocárdio/imunologia , Miocárdio/patologia , Miocárdio/metabolismo , Antígenos CDRESUMO
Background: Non-alcoholic fatty liver disease (NAFLD) and heart failure (HF) are related conditions with an increasing incidence. However, the mechanism underlying their association remains unclear. This study aimed to explore the shared pathogenic mechanisms and common biomarkers of NAFLD and HF through bioinformatics analyses and experimental validation. Methods: NAFLD and HF-related transcriptome data were extracted from the Gene Expression Omnibus (GEO) database (GSE126848 and GSE26887). Differential analysis was performed to identify common differentially expressed genes (co-DEGs) between NAFLD and HF. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analysis (GSEA) were conducted to explore the functions and regulatory pathways of co-DEGs. Protein-protein interaction (PPI) network and support vector machine-recursive feature elimination (SVM-RFE) methods were used to screen common key DEGs. The diagnostic value of common key DEGs was assessed by receiver operating characteristic (ROC) curve and validated with external datasets (GSE89632 and GSE57345). Finally, the expression of biomarkers was validated in mouse models. Results: A total of 161 co-DEGs were screened out in NAFLD and HF patients. GO, KEGG, and GSEA analyses indicated that these co-DEGs were mainly enriched in immune-related pathways. PPI network revealed 14 key DEGs, and SVM-RFE model eventually identified two genes (CD163 and CCR1) as common key DEGs for NAFLD and HF. Expression analysis revealed that the expression levels of CD163 and CCR1 were significantly down-regulated in HF and NAFLD patients. ROC curve analysis showed that CD163 and CCR1 had good diagnostic values for HF and NAFLD. Single-gene GSEA suggested that CD163 and CCR1 were mainly engaged in immune responses and inflammation. Experimental validation indicated unbalanced macrophage polarization in HF and NAFLD mouse models, and the expression of CD163 and CCR1 were significantly down-regulated. Conclusion: This study identified M2 polarization impairment characterized by decreased expression of CD163 and CCR1 as a common pathogenic pathway in NAFLD and HF. The downregulation of CD163 and CCR1 may reflect key pathological changes in the development and progression of NAFLD and HF, suggesting their potential as diagnostic and therapeutic targets.
Assuntos
Biomarcadores , Biologia Computacional , Perfilação da Expressão Gênica , Insuficiência Cardíaca , Hepatopatia Gordurosa não Alcoólica , Mapas de Interação de Proteínas , Hepatopatia Gordurosa não Alcoólica/genética , Animais , Humanos , Camundongos , Insuficiência Cardíaca/genética , Biologia Computacional/métodos , Transcriptoma , Redes Reguladoras de Genes , Modelos Animais de Doenças , Ontologia Genética , Bases de Dados Genéticas , Antígenos CD/genética , Receptores de Superfície Celular/genética , Transdução de Sinais/genética , Antígenos de Diferenciação Mielomonocítica/genética , Camundongos Endogâmicos C57BL , MasculinoRESUMO
OBJECTIVES: Carcinoembryonic-antigen-related cell-adhesion molecule 1 (CEACAM1) is an adhesion molecule that acts as a coinhibitory receptor in the immune system. We previously demonstrated that CEACAM1 is predominantly expressed on peripheral blood neutrophils in patients with RA. The aim of the present study was to investigate the effects of Janus kinase inhibitors (JAKi) on cytokine-activated human neutrophils and CEACAM1 expression. METHODS: Peripheral blood neutrophils were obtained from healthy subjects. Isolated neutrophils were stimulated with tumor necrosis factor-alpha (TNF-α) or granulocyte-macrophage colony-stimulating factor (GM-CSF) in the presence or absence of JAKi. The expression of CEACAM1 in peripheral blood neutrophils was analyzed by flow cytometry. Protein phosphorylation of signal transducer and activator of transcription (STAT)1, STAT3, and STAT5 was assessed by western blot using phospho-specific antibodies. RESULTS: We found that TNF-α-induced CEACAM1 expression was marginally suppressed after pretreatment with pan-JAK inhibitor, tofacitinib. Moreover, TNF-α induced STAT1 and STAT3 phosphorylation at the late stimulation phase (4 to 16 h). The expressions of CEACAM1 on neutrophils were markedly up-regulated by GM-CSF not by interleukin (IL)-6 stimulation. All JAKi inhibited GM-CSF-induced CEACAM1 expressions on neutrophils, however, the inhibitory effects of baricitinib were larger compared to those of tofacitinib or filgotinib. Moreover, CEACAM1 was marginally upregulated in interferon (IFN)-γ stimulated neutrophils. Similarly, JAKi inhibited IFN-γ-induced CEACAM1 expressions on neutrophils. CONCLUSIONS: We demonstrated that JAKi prevent GM-CSF-induced CEACAM1 expression in neutrophils, and JAKi-induced inhibition depends on their selectivity against JAK isoforms. These findings suggest that JAKi can modulate the expression of CEACAM1 in cytokine-activated neutrophils, thereby limiting their activation.
Assuntos
Antígenos CD , Moléculas de Adesão Celular , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Inibidores de Janus Quinases , Neutrófilos , Pirimidinas , Fator de Necrose Tumoral alfa , Humanos , Neutrófilos/metabolismo , Neutrófilos/imunologia , Neutrófilos/efeitos dos fármacos , Moléculas de Adesão Celular/metabolismo , Antígenos CD/metabolismo , Pirimidinas/farmacologia , Inibidores de Janus Quinases/farmacologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fosforilação/efeitos dos fármacos , Piperidinas/farmacologia , Pirróis/farmacologia , Ativação de Neutrófilo/efeitos dos fármacos , Citocinas/metabolismo , Transdução de Sinais/efeitos dos fármacosRESUMO
BACKGROUND: The study evaluated the prognostic impact of the immune microenvironment in LSCC with markers of major immune cells to identify the key determinants of short-term disease-free survival (ST DFS) and reveal factors related to disease progression. METHODS: The study cohort included 61 patients who underwent total laryngectomy, 83.6% of whom were male with a mean age of 64.3 years at the time of surgery. Twenty-five patients had long term DFS (over 5 years), 8 - had moderate DFS (between 2 and 5 years), and 28 had short-term DFS (less than 2 years). Immunohistochemical staining and evaluation were performed on samples collected after the laryngectomy. RESULTS: The samples' assessment revealed that the mean expression of all analysed markers was the highest both in stroma and the tumor compartment for short term DFS (ST DFS) patients. Analysis confirmed that a high stromal density of CD8 cells (p = 0.038) significantly correlated with DFS, and that the increased presence of CD57 cells (p = 0.021) was significantly associated with ST DFS. Moreover, the high density of CD68 cells in the tumor epithelial compartment had a negative prognostic impact on DFS (p = 0.032). Analysis of overall survival in the studied cohort with Kaplan-Meyer curves revealed that a high stromal density of CD68 cells was a significant negative predictor of OS (p = 0.008). CONCLUSIONS: The observed associations of CD68 cells infiltration with progression and prognosis in patients with LSCC provide potential screening and therapeutic opportunities for patients with unfavourable outcomes.
Assuntos
Neoplasias Laríngeas , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Masculino , Neoplasias Laríngeas/patologia , Neoplasias Laríngeas/imunologia , Neoplasias Laríngeas/mortalidade , Neoplasias Laríngeas/cirurgia , Pessoa de Meia-Idade , Feminino , Idoso , Prognóstico , Laringectomia , Intervalo Livre de Doença , Biomarcadores Tumorais/metabolismo , Progressão da Doença , Imunomodulação , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Estadiamento de NeoplasiasRESUMO
Background: Leukemia is a prevalent pediatric life-threatening hematologic malignancy with a poor prognosis. Targeting immune checkpoints (ICs) to reverse T cell exhaustion is a potentially effective treatment for leukemia. Tissue resident memory T (TRM) cells have been found to predict the efficacy of programmed death receptor-1 inhibitor (anti-PD-1) therapy in solid tumors. However, the IC characteristics of TRM cells in leukemia and their relationship with prognosis remain unclear. Methods: We employed multi-color flow cytometry to evaluate the frequencies of CD103+CD4+ and CD103+CD8+ T cells in the peripheral blood (PB) of patients with acute myeloid leukemia and B-cell acute lymphoblastic leukemia compared to healthy individuals. We examined the expression patterns of PD-1 and T cell immunoreceptor with immunoglobulin and ITIM domain (TIGIT) within the circulating CD103+ T cell subsets affected by leukemia. To further elucidate the immunological landscape, we assessed the differentiation status of CD103+ T cells across various disease states in patients with leukemia. Results: Our findings showed a significant increase in the frequency of CD103+CD8+ T cells in the PB of patients with leukemia who had achieved complete remission (CR) compared to those in the de novo (DN) and relapsed/refractory (RR) stages. This increase was accompanied by a notable decrease in the expression levels of PD-1 and TIGIT in CD103+CD8+ T cells in the CR stage. Additionally, our analysis revealed a higher proportion of CD103+CD8+ T cells in the central memory (TCM) and effector memory (TEM) subsets of the immune profile. Notably, the proportions of CD103+ naïve T cells, CD103+ TEM, and CD103+ terminally differentiated T cells within the CD8+ T cell population were significantly elevated in patients with CR compared to those in the DN/RR stages. Conclusion: The data indicate that circulating higher frequency of CD103+CD8+ T cells with lower expression of PD-1 and TIGIT are associated with favorable outcomes in patients with leukemia. This suggests a potential role of TRM cells in leukemia prognosis and provides a foundation for developing targeted immunotherapies.
Assuntos
Antígenos CD , Linfócitos T CD8-Positivos , Cadeias alfa de Integrinas , Receptor de Morte Celular Programada 1 , Receptores Imunológicos , Humanos , Receptores Imunológicos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Masculino , Feminino , Cadeias alfa de Integrinas/metabolismo , Prognóstico , Criança , Adolescente , Pré-Escolar , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/terapia , Células T de Memória/imunologia , Adulto , Memória Imunológica , Adulto Jovem , Leucemia/imunologia , Leucemia/terapiaRESUMO
Esophageal squamous cell carcinoma (ESCC) is highly heterogeneous. Our understanding of full molecular and immune landscape of ESCC remains limited, hindering the development of personalised therapeutic strategies. To address this, we perform genomic-transcriptomic characterizations and AI-aided histopathological image analysis of 120 Chinese ESCC patients. Here we show that ESCC can be categorized into differentiated, metabolic, immunogenic and stemness subtypes based on bulk and single-cell RNA-seq, each exhibiting specific molecular and histopathological features based on an amalgamated deep-learning model. The stemness subgroup with signature genes, such as WFDC2, SFRP1, LGR6 and VWA2, has the poorest prognosis and is associated with downregulated immune activities, a high frequency of EP300 mutation/activation, functional mutation enrichment in Wnt signalling and the highest level of intratumoural heterogeneity. The immune profiling by transcriptomics and immunohistochemistry reveals ESCC cells overexpress natural killer cell markers XCL1 and CD160 as immune evasion. Strikingly, XCL1 expression also affects the sensitivity of ESCC cells to common chemotherapy drugs. This study opens avenues for ESCC treatment and provides a valuable public resource to better understand ESCC.
Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Regulação Neoplásica da Expressão Gênica , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/imunologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/imunologia , Neoplasias Esofágicas/metabolismo , Feminino , Masculino , Prognóstico , Pessoa de Meia-Idade , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Transcriptoma , Mutação , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Idoso , Proteína p300 Associada a E1A/metabolismo , Proteína p300 Associada a E1A/genética , Antígenos CD/metabolismo , Antígenos CD/genéticaRESUMO
Mesenchymal stem cells (MSCs) have gained tremendous interest due to their overall potent pro-regenerative and immunomodulatory properties. In recent years, various in vitro and preclinical studies have investigated different priming ("licensing") approaches to enhance MSC functions for specific therapeutic purposes. In this study, we primed bone marrow-derived human MSCs (hMSCs) with an inflammation cocktail designed to mimic the elevated levels of inflammatory mediators found in serum of patients with severe injuries, such as bone fractures. We observed a significantly enhanced osteogenic differentiation potential of primed hMSCs compared to untreated controls. By RNA-sequencing analysis, we identified the immediate early response 3 (IER3) gene as one of the top-regulated genes upon inflammatory priming. Small interfering RNA knockdown experiments established IER3 as a novel positive regulator of osteogenic differentiation. Mechanistic analysis further revealed that IER3 deletion significantly downregulated bone marrow stromal cell antigen 2 (BST2) expression and extracellular signal-related kinase 1/2 (ERK1/2) phosphorylation in hMSCs, suggesting that IER3 regulates osteogenic differentiation through BST2 and ERK1/2 signaling pathway activation. On the basis of these findings, we propose IER3 as a novel therapeutic target to promote hMSC osteoblastogenesis, which might be of high clinical relevance, for example, in patients with osteoporosis or compromised fracture healing.
Assuntos
Diferenciação Celular , Inflamação , Células-Tronco Mesenquimais , Osteogênese , Humanos , Células-Tronco Mesenquimais/metabolismo , Osteogênese/genética , Inflamação/metabolismo , Inflamação/genética , Células Cultivadas , Sistema de Sinalização das MAP Quinases , Antígenos CD/metabolismo , Antígenos CD/genéticaRESUMO
Integrin α7 (ITGA7) is an extracellular matrix-binding protein. Integrins are the main type of cell adhesive molecules in mammals, playing a role in many biological pathways. Although various studies have shown correlations between ITGA7 and various types of cancer, a comprehensive study at a pan-cancer level has not yet been conducted. In this study, we investigated the function of ITGA7 in distinct tumor types using the multi-omics relevant information, then two CeRNA regulatory network was drawn to identify the ITGA7 hub regulatory RNAs. The results indicated that the expression of ITGA7 varies in different tumors. Overexpression of ITGA7 was correlated with a worse OS in BLCA, LGG, and UVM, and the downregulation of ITGA7 was related to a worse OS in PAAD. In addition, BLCA, and UVM showed poor PFS in association with ITGA7 overexpression, and PAAD, SARC, and THCA indicated poor PFS in correlation with ITGA7 under expression. Further analyses of ITGA7 gene alteration data showed that ITGA7 amplifications may have an impact on Kidney Chromophobe prognosis. In 20 types of tumors, ITGA7 expression was linked to cancer-associated fibroblast infiltration. ITGA7 expression was linked to cancer-associated fibroblast infiltration. ITGA7-Related Gene Enrichment Analysis indicated that ITGA7 expression-correlated and functional binding genes were enriched in homotypic cell-cell adhesion, focal adhesion, and ECM-receptor interaction. This pan-cancer study found that abnormal expression of ITGA7 was correlated with poor prognosis and metastasis in different types of tumors. Thus, the ITGA7 gene may prove to be a promising biomarker for the prognosis and complication prevention of different cancers.
Assuntos
Regulação Neoplásica da Expressão Gênica , Cadeias alfa de Integrinas , Neoplasias , Humanos , Cadeias alfa de Integrinas/genética , Cadeias alfa de Integrinas/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Prognóstico , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Oncogenes , Genes Supressores de Tumor , Antígenos CDRESUMO
This study explores methods to isolate high-pure monocytes and optimize the best growth factor concentration to generate monocytes-derived dendritic cells (mo-DCs), subset DC1, which is crucial in immune responses. Three protocols for monocyte isolation from peripheral blood mononuclear cells (PBMCs) were evaluated: three-hour incubation on FBS-coated flasks; an overnight incubation on FBS-coated flasks; and Magnetic Activated Cell Sorting (MACS). Additionally, five different concentrations of human recombinant granulocyte-macrophage colony-stimulating factor (hrGM-CSF) and human recombinant interleukin-4 (hrIL-4) were compared. We used Flow cytometry to assess the isolation, purification, and generation of pure monocytes characterized as CD14+, and expression of mo-DC classical markers (HLA-DR, CD80, CD83, and CD86). The obtained results show that monocytes isolated with the second method (overnight incubation) had the highest purity (P < 0.0001) but the lowest yield (P > 0.05), balancing purity and cost-effectiveness. A combination of hrGM-CSF and hrIL-4 at 400 U/mL produced the most favorable outcomes, leading to the highest rate of mo-DC generation (P < 0.05). Notably, this concentration resulted in increasing expression of HLA-DR, CD80, and CD86 surface markers in the generated DCs (P < 0.0001), with no changes in CD83 expression levels. In conclusion, this study offers valuable insights into selecting the optimal approach for monocyte isolation and mo-DC generation in various research contexts, providing a foundation for more effective immunological studies.
Assuntos
Células Dendríticas , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Monócitos , Humanos , Células Dendríticas/citologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Monócitos/citologia , Monócitos/metabolismo , Monócitos/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Interleucina-4/metabolismo , Diferenciação Celular , Separação Celular/métodos , Citometria de Fluxo/métodos , Antígenos HLA-DR/metabolismo , Antígeno CD83 , Células Cultivadas , Técnicas de Cultura de Células/métodos , Antígenos CD/metabolismoRESUMO
Vedolizumab is a treatment option for ulcerative colitis but data on predictors of treatment response remain insufficient to establish personalized treatment strategies. We aimed to investigate the real-world effectiveness of vedolizumab in adult patients with ulcerative colitis and explore factors involved in predicting treatment response. This single-center, single-arm, prospective observational study included 26 patients with clinically active ulcerative colitis patients' characteristics at baseline, epidemiological information, existing treatment, clinical activity index score, endoscopic score, and blood test data were collected. Serum levels of tumor necrosis factors alpha, interferon gamma, interleukin-4, interleukin-6, interleukin-10, interleukin-17, soluble mucosal addressin cell adhesion molecule 1, and soluble vascular cell adhesion molecule 1 were measured. Patient characteristics in the remission and non-remission groups were compared based on these parameters. Clinical remission at 6 weeks of treatment occurred in 9 (35%) of the 26 patients. At 14 weeks, clinical remission was observed in 11 patients (42%). There were no significant differences pertaining to age, sex, duration of disease, extent of disease, steroid resistance, or prior treatment with biological agents among the two groups after 14 weeks of treatment. Hemoglobin ≥ 11.5 g/dL (odds ratio, 15.0; 95% confidence interval, 1.50-149; P=0.014) and soluble mucosal addressin cell adhesion molecule 1 ≥ 765 pg/mL (odds ratio, 17.3; 95% confidence interval, 2.36-127; P=0.004) were significant factors. In conclusion, hemoglobin and serum soluble mucosal addressin cell adhesion molecule 1 levels are factors correlated with the therapeutic efficacy of vedolizumab.