Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.184
Filtrar
1.
Clin Immunol ; 264: 110259, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38768856

RESUMO

The gluten-free diet for celiac disease (CeD) is restrictive and often fails to induce complete symptom and/or mucosal disease remission. Central to CeD pathogenesis is the gluten-specific CD4+ T cell that is restricted by HLA-DQ2.5 in over 85% of CeD patients, making HLA-DQ2.5 an attractive target for suppressing gluten-dependent immunity. Recently, a novel anti-HLA-DQ2.5 antibody that specifically recognizes the complexes of HLA-DQ2.5 and multiple gluten epitopes was developed (DONQ52). OBJECTIVE: To assess the ability of DONQ52 to inhibit CeD patient-derived T-cell responses to the most immunogenic gluten peptides that encompass immunodominant T cell epitopes. METHODS: We employed an in vivo gluten challenge model in patients with CeD that affords a quantitative readout of disease-relevant gluten-specific T-cell responses. HLA-DQ2.5+ CeD patients consumed food containing wheat, barley, or rye for 3 days with collection of blood before (D1) and 6 days after (D6) commencing the challenge. Peripheral blood mononuclear cells were isolated and assessed in an interferon (IFN)-γ enzyme-linked immunosorbent spot assay (ELISpot) testing responses to gluten peptides encompassing a series of immunodominant T cell epitopes. The inhibitory effect of DONQ52 (4 or 40 µg/mL) was assessed and compared to pan-HLA-DQ blockade (SPVL3 antibody). RESULTS: In HLA-DQ2.5+ CeD patients, DONQ52 reduced T cell responses to all wheat gluten peptides to an equivalent or more effective degree than pan-HLA-DQ antibody blockade. It reduced T cell responses to a cocktail of the most immunodominant wheat epitopes by a median of 87% (IQR 72-92). Notably, DONQ52 also substantially reduced T-cell responses to dominant barley hordein and rye secalin derived peptides. DONQ52 had no effect on T-cell responses to non-gluten antigens. CONCLUSION: DONQ52 can significantly block HLA-DQ2.5-restricted T cell responses to the most highly immunogenic gluten peptides in CeD. Our findings support in vitro data that DONQ52 displays selectivity and broad cross-reactivity against multiple gluten peptide:HLA-DQ2.5 complexes. This work provides proof-of-concept multi-specific antibody blockade has the potential to meaningfully inhibit pathogenic gluten-specific T-cell responses in CeD and supports ongoing therapeutic development.


Assuntos
Anticorpos Biespecíficos , Doença Celíaca , Glutens , Antígenos HLA-DQ , Humanos , Doença Celíaca/imunologia , Glutens/imunologia , Antígenos HLA-DQ/imunologia , Anticorpos Biespecíficos/imunologia , Anticorpos Biespecíficos/farmacologia , Feminino , Epitopos de Linfócito T/imunologia , Adulto , Masculino , Linfócitos T CD4-Positivos/imunologia , Peptídeos/imunologia , Pessoa de Meia-Idade , Linfócitos T/imunologia , Interferon gama/imunologia , Interferon gama/metabolismo , Epitopos Imunodominantes/imunologia , Dieta Livre de Glúten
2.
J Immunol ; 212(12): 1981-1991, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38647382

RESUMO

In transplantation, anti-HLA Abs, especially targeting the DQ locus, are well-known to lead to rejection. These Abs identified by Luminex single Ag assays recognize polymorphic amino acids on HLA, named eplets. The HLA Eplet Registry included 83 DQ eplets, mainly deduced from amino acid sequence alignments, among which 66 have not been experimentally verified. Because eplet mismatch load may improve organ allocation and transplant outcomes, it is imperative to confirm the genuine reactivity of eplets to validate this approach. Our study aimed to confirm 29 nonverified eplets, using adsorption of eplet-positive patients' sera on human spleen mononuclear cells and on transfected murine cell clones expressing a unique DQα- and DQß-chain combination. In addition, we compared the positive beads patterns obtained in the two commercially available Luminex single Ag assays. Among the 29 nonverified DQ eplets studied, 24 were confirmed by this strategy, including the 7 DQα eplets 40E, 40ERV, 75I, 76 V, 129H, 129QS, and 130A and the 17 DQß eplets 3P, 23L, 45G, 56L, 57 V, 66DR, 66ER, 67VG, 70GT, 74EL, 86A, 87F, 125G, 130R, 135D, 167R, and 185I. However, adsorption results did not allow us to conclude for the five eplets 66IT, 75S, 160D, 175E, and 185T.


Assuntos
Antígenos HLA-DQ , Humanos , Animais , Camundongos , Antígenos HLA-DQ/imunologia , Teste de Histocompatibilidade/métodos , Rejeição de Enxerto/imunologia , Leucócitos Mononucleares/imunologia , Sequência de Aminoácidos
3.
Proc Natl Acad Sci U S A ; 121(19): e2403031121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38687785

RESUMO

The loading of processed peptides on to major histocompatibility complex II (MHC-II) molecules for recognition by T cells is vital to cell-mediated adaptive immunity. As part of this process, MHC-II associates with the invariant chain (Ii) during biosynthesis in the endoplasmic reticulum to prevent premature peptide loading and to serve as a scaffold for subsequent proteolytic processing into MHC-II-CLIP. Cryo-electron microscopy structures of full-length Human Leukocyte Antigen-DR (HLA-DR) and HLA-DQ complexes associated with Ii, resolved at 3.0 to 3.1 Å, elucidate the trimeric assembly of the HLA/Ii complex and define atomic-level interactions between HLA, Ii transmembrane domains, loop domains, and class II-associated invariant chain peptides (CLIP). Together with previous structures of MHC-II peptide loading intermediates DO and DM, our findings complete the structural path governing class II antigen presentation.


Assuntos
Antígenos de Diferenciação de Linfócitos B , Microscopia Crioeletrônica , Antígenos de Histocompatibilidade Classe II , Humanos , Antígenos de Diferenciação de Linfócitos B/metabolismo , Antígenos de Diferenciação de Linfócitos B/química , Antígenos de Histocompatibilidade Classe II/química , Antígenos de Histocompatibilidade Classe II/metabolismo , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos HLA-DR/química , Antígenos HLA-DR/metabolismo , Antígenos HLA-DR/imunologia , Apresentação de Antígeno , Antígenos HLA-DQ/química , Antígenos HLA-DQ/metabolismo , Antígenos HLA-DQ/imunologia , Modelos Moleculares , Retículo Endoplasmático/metabolismo , Conformação Proteica , Ligação Proteica
4.
Gastroenterology ; 167(2): 250-263, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38552723

RESUMO

BACKGROUND & AIMS: The treatment of celiac disease (CeD) with gluten-free diet (GFD) normalizes gut inflammation and disease-specific antibodies. CeD patients have HLA-restricted, gluten-specific T cells persisting in the blood and gut even after decades of GFD, which are reactivated and disease driving upon gluten exposure. Our aim was to examine the transition of activated gluten-specific T cells into a pool of persisting memory T cells concurrent with normalization of clinically relevant biomarkers during the first year of treatment. METHODS: We followed 17 CeD patients during their initial GFD year, leading to disease remission. We assessed activation and frequency of gluten-specific CD4+ blood and gut T cells with HLA-DQ2.5:gluten tetramers and flow cytometry, disease-specific serology, histology, and symptom scores. We assessed gluten-specific blood T cells within the first 3 weeks of GFD in 6 patients and serology in an additional 9 patients. RESULTS: Gluten-specific CD4+ T cells peaked in blood at day 14 while up-regulating Bcl-2 and down-regulating Ki-67 and then decreased in frequency within 10 weeks of GFD. CD38, ICOS, HLA-DR, and Ki-67 decreased in gluten-specific cells within 3 days. PD-1, CD39, and OX40 expression persisted even after 12 months. IgA-transglutaminase 2 decreased significantly within 4 weeks. CONCLUSIONS: GFD induces rapid changes in the phenotype and number of gluten-specific CD4+ blood T cells, including a peak of nonproliferating, nonapoptotic cells at day 14. Subsequent alterations in T-cell phenotype associate with the quiescent but chronic nature of treated CeD. The rapid changes affecting gluten-specific T cells and disease-specific antibodies offer opportunities for clinical trials aiming at developing nondietary treatments for patients with newly diagnosed CeD.


Assuntos
Linfócitos T CD4-Positivos , Doença Celíaca , Dieta Livre de Glúten , Glutens , Fenótipo , Proteína 2 Glutamina gama-Glutamiltransferase , Humanos , Doença Celíaca/dietoterapia , Doença Celíaca/imunologia , Glutens/imunologia , Glutens/administração & dosagem , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Antígenos HLA-DQ/imunologia , Proteínas de Ligação ao GTP/imunologia , Proteínas de Ligação ao GTP/metabolismo , Ativação Linfocitária , Transglutaminases/imunologia , Biomarcadores/sangue , Biomarcadores/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Células T de Memória/imunologia , Células T de Memória/metabolismo , Fatores de Tempo , Adulto Jovem , Resultado do Tratamento , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Mucosa Intestinal/metabolismo
5.
Transplant Proc ; 56(3): 515-520, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38368130

RESUMO

BACKGROUND: HLA eplet mismatching is an alternative approach to assess the risk of developing de novo donor-specific antibodies (dnDSA) in kidney transplantation. This strategy may offer more precise risk stratification than conventional approaches. This study aimed to find the association between HLA eplet mismatches and dnDSA formation in Thai kidney transplant recipients. METHODS: A retrospective cohort study of kidney transplant recipients transplanted between 2000 and 2021 at Ramathibodi Hospital was performed. Recipients with pretransplant panel reactive antibody >0% or without DSA testing post-transplant were excluded. One hundred fifty recipients were included in the final study. High-resolution HLA typing was imputed by the HaploStat application. HLA eplet mismatch analysis was conducted using HLAMatchmaker. The association between the number of eplet mismatches and the risk of dnDSA formation was assessed by Cox regression analysis. RESULTS: Of 150 recipients, 43 were dnDSA-positive, and 107 were dnDSA-negative patients. Compared with the dnDSA-negative group, patients with class II dnDSA had significantly more HLA-DR/DQ antibody (Ab)-verified eplet mismatches (6 [IQR 4-8] vs 4 [IQR 1-7], P = .045). The receiver operating characteristics analysis showed that the HLA-DQ Ab-verified eplet mismatches ≥2 were the best predictive of HLA class II dnDSA development. The number of HLA-DQ Ab-verified eplet mismatches ≥2 had the highest hazard rate of HLA class II dnDSA occurrence (adjusted HR, 3.74; 95%CI, 1.24-11.24, P = .019). CONCLUSIONS: HLA-DQ Ab-verified eplet mismatches are significantly associated with class II dnDSA development. Our data supports the utility of HLA eplet mismatching for donor-recipient risk assessment.


Assuntos
Teste de Histocompatibilidade , Transplante de Rim , Humanos , Estudos Retrospectivos , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Antígenos HLA/imunologia , Isoanticorpos/sangue , Isoanticorpos/imunologia , Doadores de Tecidos , Formação de Anticorpos , Rejeição de Enxerto/imunologia , Antígenos HLA-DQ/imunologia
6.
Nat Rev Gastroenterol Hepatol ; 21(5): 335-347, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38336920

RESUMO

Coeliac disease is an autoinflammatory condition caused by immune reactions to cereal gluten proteins. Currently, the only available treatment for the condition is a lifelong avoidance of gluten proteins in the diet. There is an unmet need for alternative therapies. Coeliac disease has a strong association with certain HLA-DQ allotypes (DQ2.5, DQ2.2 and DQ8), and these disease-associated HLA-DQ molecules present deamidated gluten peptides to gluten-specific CD4+ T cells. The gluten-specific CD4+ T cells are the drivers of the immune reactions leading to coeliac disease. Once established, the clonotypes of gluten-specific CD4+ T cells persist for decades, explaining why patients must adhere to a gluten-free diet for life. Given the key pathogenic role of gluten-specific CD4+ T cells, tolerance-inducing therapies that target these T cells are attractive for treatment of the disorder. Lessons learned from coeliac disease might provide clues for treatment of other HLA-associated diseases for which the disease-driving antigens are unknown. Thus, intensive efforts have been and are currently implemented to bring an effective tolerance-inducing therapy for coeliac disease. This Review discusses mechanisms of the various approaches taken, summarizing the progress made, and highlights future directions in this field.


Assuntos
Doença Celíaca , Doença Celíaca/imunologia , Doença Celíaca/terapia , Humanos , Tolerância Imunológica/imunologia , Glutens/imunologia , Glutens/efeitos adversos , Dieta Livre de Glúten , Antígenos HLA-DQ/imunologia , Linfócitos T CD4-Positivos/imunologia
8.
Gastroenterology ; 167(1): 104-115, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38286391

RESUMO

In its conventional form, celiac disease (CeD) is characterized by both positive serology and flat villi in the duodenum, and is well known by gastroenterologists and general practitioners. The aim of this review was to shed light on 2 neglected and not yet well-defined celiac phenotypes, that is, seronegative and ultrashort CeD. Seronegative CeD can be suspected in the presence of flat villi, positive HLA-DQ2 and/or HLA-DQ8, and the absence of CeD antibodies. After ruling out other seronegative enteropathies, the diagnosis can be confirmed by both clinical and histologic improvements after 1 year of a gluten-free diet. Ultrashort CeD is characterized by the finding of flat villi in the duodenal bulb in the absence of mucosal damage in the distal duodenum and with serologic positivity. Data on the prevalence, clinical manifestations, histologic lesions, genetic features, and outcome of seronegative and ultrashort CeD are inconclusive due to the few studies available and the small number of patients diagnosed. Some additional diagnostic tools have been developed recently, such as assessing intestinal transglutaminase 2 deposits, flow cytometry technique, microRNA detection, or proteomic analysis, and they seem to be useful in the identification of complex cases. Further cooperative studies are highly desirable to improve the knowledge of these 2 still-obscure variants of CeD.


Assuntos
Doença Celíaca , Dieta Livre de Glúten , Duodeno , Antígenos HLA-DQ , Doença Celíaca/diagnóstico , Doença Celíaca/imunologia , Doença Celíaca/sangue , Humanos , Antígenos HLA-DQ/genética , Antígenos HLA-DQ/sangue , Antígenos HLA-DQ/imunologia , Duodeno/patologia , Duodeno/imunologia , Fenótipo , Transglutaminases/imunologia , Mucosa Intestinal/patologia , Mucosa Intestinal/imunologia , Proteína 2 Glutamina gama-Glutamiltransferase , Biópsia , Proteínas de Ligação ao GTP/imunologia , Biomarcadores/sangue , Autoanticorpos/sangue , Testes Sorológicos , Valor Preditivo dos Testes
9.
Food Funct ; 13(17): 8941-8950, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35929785

RESUMO

A lifelong gluten-free diet (GFD) is currently the only available therapy for coeliac disease (CD). However, GFD compliance is difficult and alternative strategies are envisaged in the near future. We previously found that wheat gliadin following transamidation by microbial transglutaminase (mTG) does not induce IFN-γ secretion by intestinal T cells from CD patients. Fully transamidated gliadin with lysine ethyl ester can be recovered in a soluble protein fraction (spf) generated by the enzymatic treatment of wheat flour. Herein, we analysed the performance of transamidation by mTG on a pilot-scale (1L) by evaluating the reaction kinetics and its biological effect on the intestinal immune response in HLA/DQ8 transgenic mice, a model of gluten sensitivity. At 1 h, all gliadin fractions showed a faster electrophoretic mobility by acid-polyacrylamide gel electrophoresis (A-PAGE) following transamidation in comparison with their native counterparts. In parallel, the yield of residual native gliadin dropped (30% at 180 min), confirming our previous findings on a lab scale. Mucosal sensitisation of mice with gliadin via the intranasal route induced a Th1 phenotype in mesenteric lymph nodes (MLNs). Importantly, IFN-γ secretion was significantly reduced when gliadin-specific MLN cells were challenged in vitro with spf (P < 0.001). Multiplex analysis revealed that the adaptive immune response evoked by spf involved a distinct cell population characterised by secretion of IL-2, IL-3 and IL-5. Notably, spf stimulated in vitro a reduced or null secretion of all of the examined pro-inflammatory markers mainly associated to innate immunity. In conclusion, our data revealed the ability of transamidated gliadin to modulate both innate and adaptive mechanisms involved in the inflammatory response induced by wheat gliadin in the small intestine of DQ8 mice.


Assuntos
Doença Celíaca , Gliadina , Animais , Doença Celíaca/metabolismo , Farinha , Gliadina/metabolismo , Glutens/metabolismo , Antígenos HLA-DQ/imunologia , Intestino Delgado/metabolismo , Camundongos , Camundongos Transgênicos , Transglutaminases/metabolismo , Triticum/metabolismo
10.
J Biol Chem ; 298(3): 101619, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35065967

RESUMO

Celiac disease is a T cell-mediated chronic inflammatory condition often characterized by human leukocyte antigen (HLA)-DQ2.5 molecules presenting gluten epitopes derived from wheat, barley, and rye. Although some T cells exhibit cross-reactivity toward distinct gluten epitopes, the structural basis underpinning such cross-reactivity is unclear. Here, we investigated the T-cell receptor specificity and cross-reactivity of two immunodominant wheat gluten epitopes, DQ2.5-glia-α1a (PFPQPELPY) and DQ2.5-glia-ω1 (PFPQPEQPF). We show by surface plasmon resonance that a T-cell receptor alpha variable (TRAV) 4+-T-cell receptor beta variable (TRBV) 29-1+ TCR bound to HLA-DQ2.5-glia-α1a and HLA-DQ2.5-glia-ω1 with similar affinity, whereas a TRAV4- (TRAV9-2+) TCR recognized HLA-DQ2.5-glia-ω1 only. We further determined the crystal structures of the TRAV4+-TRBV29-1+ TCR bound to HLA-DQ2.5-glia-α1a and HLA-DQ2.5-glia-ω1, as well as the structure of an epitope-specific TRAV9-2+-TRBV7-3+ TCR-HLA-DQ2.5-glia-ω1 complex. We found that position 7 (p7) of the DQ2.5-glia-α1a and DQ2.5-glia-ω1 epitopes made very limited contacts with the TRAV4+ TCR, thereby explaining the TCR cross-reactivity across these two epitopes. In contrast, within the TRAV9-2+ TCR-HLA-DQ2.5-glia-ω1 ternary complex, the p7-Gln was situated in an electrostatic pocket formed by the hypervariable CDR3ß loop of the TCR and Arg70ß from HLA-DQ2.5, a polar network which would not be supported by the p7-Leu residue of DQ2.5-glia-α1a. In conclusion, we provide additional insights into the molecular determinants of TCR specificity and cross-reactivity to two closely-related epitopes in celiac disease.


Assuntos
Doença Celíaca , Glutens , Antígenos HLA-DQ , Linfócitos T CD4-Positivos/imunologia , Doença Celíaca/imunologia , Regiões Determinantes de Complementaridade/metabolismo , Reações Cruzadas/imunologia , Epitopos de Linfócito T/química , Epitopos de Linfócito T/imunologia , Glutens/imunologia , Antígenos HLA-DQ/química , Antígenos HLA-DQ/imunologia , Humanos , Epitopos Imunodominantes/metabolismo , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/imunologia , Especificidade do Receptor de Antígeno de Linfócitos T/imunologia
11.
Food Chem Toxicol ; 157: 112584, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34582965

RESUMO

A ranking of gluten T-cell epitopes triggering celiac disease (CD) for its potential application in the safety assessment of innovative food proteins is developed. This ranking takes into account clinical relevance and information derived from key steps involved in the CD pathogenic pathway: enzymatic digestion, epitope binding to HLA-DQ receptors of the antigen-presenting cells and activation of pro-inflammatory CD4 T-cells, which recognizes the HLA-DQ-epitope complex and initiates the inflammatory response. In silico chymotrypsin digestion was the most discriminatory tool for the ranking of gluten T-cell epitopes among all digestive enzymes studied, classifying 81% and 60% of epitopes binding HLA-DQ2.5 and HLA-DQ8 molecules, respectively, with a high risk. A positive relationship between the number of prolines and the risk of gluten T-cell epitopes was identified. HLA-binding data analysis revealed the additional role played by the flanking regions of the 9-mer epitopes whereas the integration of T-cell activation data into the ranking strategy was incomplete because it was difficult to combine results from different studies. The overall ranking proposed in decreasing order of immunological relevance was: α-gliadins > ω-gliadins > hordeins > γ-gliadins âˆ¼ avenins âˆ¼ secalins > glutenins. This novel approach can be considered as a first step to reshape the risk assessment strategy of innovative proteins and their potential to trigger CD.


Assuntos
Doença Celíaca/imunologia , Alimentos/efeitos adversos , Epitopos Imunodominantes/classificação , Doença Celíaca/etiologia , Epitopos , Epitopos de Linfócito T/imunologia , Glutens/efeitos adversos , Glutens/imunologia , Antígenos HLA-DQ/imunologia , Humanos , Medição de Risco
12.
Adv Sci (Weinh) ; 8(21): e2102778, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34495570

RESUMO

Gluten-specific CD4+ T cells being drivers of celiac disease (CeD) are obvious targets for immunotherapy. Little is known about how cell markers harnessed for T-cell-directed therapy can change with time and upon activation in CeD and other autoimmune conditions. In-depth characterization of gluten-specific CD4+ T cells and CeD-associated (CD38+ and CD103+ ) CD8+ and γδ+ T cells in blood of treated CeD patients undergoing a 3 day gluten challenge is reported. The phenotypic profile of gluten-specific cells changes profoundly with gluten exposure and the cells adopt the profile of gluten-specific cells in untreated disease (CD147+ , CD70+ , programmed cell death protein 1 (PD-1)+ , inducible T-cell costimulator (ICOS)+ , CD28+ , CD95+ , CD38+ , and CD161+ ), yet with some markers being unique for day 6 cells (C-X-C chemokine receptor type 6 (CXCR6), CD132, and CD147) and with integrin α4ß7, C-C motif chemokine receptor 9 (CCR9), and CXCR3 being expressed stably at baseline and day 6. Among gluten-specific CD4+ T cells, 52% are CXCR5+ at baseline, perhaps indicative of germinal-center reactions, while on day 6 all are CXCR5- . Strikingly, the phenotypic profile of gluten-specific CD4+ T cells on day 6 largely overlaps with that of CeD-associated (CD38+ and CD103+ ) CD8+ and γδ+ T cells. The antigen-induced shift in phenotype of CD4+ T cells being shared with other disease-associated T cells is relevant for development of T-cell-directed therapies.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Doença Celíaca/terapia , Glutens/imunologia , ADP-Ribosil Ciclase 1/metabolismo , Antígenos CD/metabolismo , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Doença Celíaca/imunologia , Glutens/química , Antígenos HLA-DQ/química , Antígenos HLA-DQ/imunologia , Humanos , Imunoterapia , Cadeias alfa de Integrinas/metabolismo , Linfócitos Intraepiteliais/citologia , Linfócitos Intraepiteliais/imunologia , Linfócitos Intraepiteliais/metabolismo , Fenótipo , Multimerização Proteica
13.
Sci Immunol ; 6(62)2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34417258

RESUMO

Antibodies specific for peptides bound to human leukocyte antigen (HLA) molecules are valuable tools for studies of antigen presentation and may have therapeutic potential. Here, we generated human T cell receptor (TCR)-like antibodies toward the immunodominant signature gluten epitope DQ2.5-glia-α2 in celiac disease (CeD). Phage display selection combined with secondary targeted engineering was used to obtain highly specific antibodies with picomolar affinity. The crystal structure of a Fab fragment of the lead antibody 3.C11 in complex with HLA-DQ2.5:DQ2.5-glia-α2 revealed a binding geometry and interaction mode highly similar to prototypic TCRs specific for the same complex. Assessment of CeD biopsy material confirmed disease specificity and reinforced the notion that abundant plasma cells present antigen in the inflamed CeD gut. Furthermore, 3.C11 specifically inhibited activation and proliferation of gluten-specific CD4+ T cells in vitro and in HLA-DQ2.5 humanized mice, suggesting a potential for targeted intervention without compromising systemic immunity.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Doença Celíaca/imunologia , Glutens/imunologia , Antígenos HLA-DQ/imunologia , Peptídeos/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Animais , Linhagem Celular Tumoral , Epitopos de Linfócito T/imunologia , Glutens/química , Antígenos HLA-DQ/química , Humanos , Ativação Linfocitária/imunologia , Camundongos , Modelos Moleculares , Peptídeos/química , Receptores de Antígenos de Linfócitos T/química
14.
PLoS One ; 16(8): e0254604, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34383779

RESUMO

The major histocompatibility complex (MHC) is an important gene complex contributing to adaptive immunity. Studies of platyrrhine MHC have focused on identifying experimental models of immune system function in the equivalent Human Leukocyte Antigen (HLA). These genes have thus been explored primarily in captive platyrrhine individuals from research colonies. However, investigations of standing MHC variation and evolution in wild populations are essential to understanding its role in immunity, sociality and ecology. Capuchins are a promising model group exhibiting the greatest habitat diversity, widest diet breadth and arguably the most social complexity among platyrrhines, together likely resulting in varied immunological challenges. We use high-throughput sequencing to characterize polymorphism in four Class II DR and DQ exons for the first time in seven capuchin species. We find evidence for at least three copies for DQ genes and at least five for DRB, with possible additional unrecovered diversity. Our data also reveal common genotypes that are inherited across our most widely sampled population, Cebus imitator in Sector Santa Rosa, Costa Rica. Notably, phylogenetic analyses reveal that platyrrhine DQA sequences form a monophyletic group to the exclusion of all Catarrhini sequences examined. This result is inconsistent with the trans-species hypothesis for MHC evolution across infraorders in Primates and provides further evidence for the independent origin of current MHC genetic diversity in Platyrrhini. Identical allele sharing across cebid species, and more rarely genera, however, does underscore the complexity of MHC gene evolution and the need for more comprehensive assessments of allelic diversity and genome structure.


Assuntos
Cebus/imunologia , Evolução Molecular , Antígenos HLA-DQ/genética , Antígenos HLA-DR/genética , Alelos , Sequência de Aminoácidos/genética , Animais , Cebus/genética , Costa Rica , Genes MHC da Classe II/genética , Genes MHC da Classe II/imunologia , Antígenos HLA-DQ/imunologia , Antígenos HLA-DR/imunologia , Humanos , Filogenia , Polimorfismo Genético/imunologia
15.
Diabetologia ; 64(10): 2258-2265, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34272580

RESUMO

AIMS/HYPOTHESIS: Among white European children developing type 1 diabetes, the otherwise common HLA haplotype DR15-DQ6 is rare, and highly protective. Adult-onset type 1 diabetes is now known to represent more overall cases than childhood onset, but it is not known whether DR15-DQ6 is protective in older-adult-onset type 1 diabetes. We sought to quantify DR15-DQ6 protection against type 1 diabetes as age of onset increased. METHODS: In two independent cohorts we assessed the proportion of type 1 diabetes cases presenting through the first 50 years of life with DR15-DQ6, compared with population controls. In the After Diabetes Diagnosis Research Support System-2 (ADDRESS-2) cohort (n = 1458) clinician-diagnosed type 1 diabetes was confirmed by positivity for one or more islet-specific autoantibodies. In UK Biobank (n = 2502), we estimated type 1 diabetes incidence rates relative to baseline HLA risk for each HLA group using Poisson regression. Analyses were restricted to white Europeans and were performed in three groups according to age at type 1 diabetes onset: 0-18 years, 19-30 years and 31-50 years. RESULTS: DR15-DQ6 was protective against type 1 diabetes through to age 50 years (OR < 1 for each age group, all p < 0.001). The following ORs for type 1 diabetes, relative to a neutral HLA genotype, were observed in ADDRESS-2: age 5-18 years OR 0.16 (95% CI 0.08, 0.31); age 19-30 years OR 0.10 (0.04, 0.23); and age 31-50 years OR 0.37 (0.21, 0.68). DR15-DQ6 also remained highly protective at all ages in UK Biobank. Without DR15-DQ6, the presence of major type 1 diabetes high-risk haplotype (either DR3-DQ2 or DR4-DQ8) was associated with increased risk of type 1 diabetes. CONCLUSIONS/INTERPRETATION: HLA DR15-DQ6 confers dominant protection from type 1 diabetes across the first five decades of life.


Assuntos
Diabetes Mellitus Tipo 1/genética , Antígenos HLA-DQ/genética , Subtipos Sorológicos de HLA-DR/genética , Adolescente , Adulto , Idade de Início , Autoanticorpos/sangue , Estudos de Casos e Controles , Criança , Pré-Escolar , Estudos de Coortes , Diabetes Mellitus Tipo 1/epidemiologia , Diabetes Mellitus Tipo 1/imunologia , Feminino , Genótipo , Antígenos HLA-DQ/imunologia , Subtipos Sorológicos de HLA-DR/imunologia , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Polimorfismo Genético , Fatores de Risco , Reino Unido , Adulto Jovem
16.
Front Immunol ; 12: 668680, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34113344

RESUMO

Hybrid Insulin Peptides (HIPs), which consist of insulin fragments fused to other peptides from ß-cell secretory granule proteins, are CD4 T cell autoantigens in type 1 diabetes (T1D). We have studied HIPs and HIP-reactive CD4 T cells extensively in the context of the non-obese diabetic (NOD) mouse model of autoimmune diabetes and have shown that CD4 T cells specific for HIPs are major contributors to disease pathogenesis. Additionally, in the human context, HIP-reactive CD4 T cells can be found in the islets and peripheral blood of T1D patients. Here, we performed an in-depth characterization of the CD4 T cell response to a C-peptide/C-peptide HIP (HIP11) in human T1D. We identified the TCR expressed by the previously-reported HIP11-reactive CD4 T cell clone E2, which was isolated from the peripheral blood of a T1D patient, and determined that it recognizes HIP11 in the context of HLA-DQ2. We also identified a HIP11-specific TCR directly in the islets of a T1D donor and demonstrated that this TCR recognizes a different minimal epitope of HIP11 presented by HLA-DQ8. We generated and tested an HLA-DQ2 tetramer loaded with HIP11 that will enable direct ex vivo interrogation of CD4 T cell responses to HIP11 in human patients and control subjects. Using mass spectrometric analysis, we confirmed that HIP11 is present in human islets. This work represents an important step in characterizing the role of CD4 T cell responses to HIPs in human T1D.


Assuntos
Autoantígenos/imunologia , Peptídeo C/imunologia , Linfócitos T CD4-Positivos/imunologia , Diabetes Mellitus Tipo 1/imunologia , Insulina/imunologia , Ilhotas Pancreáticas/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Autoantígenos/metabolismo , Peptídeo C/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Diabetes Mellitus Tipo 1/sangue , Epitopos , Feminino , Antígenos HLA-DQ/imunologia , Humanos , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Células K562 , Masculino , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo
17.
Cell Mol Immunol ; 18(8): 1847-1860, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34117370

RESUMO

CD4+ T cells orchestrate adaptive immune responses via binding of antigens to their receptors through specific peptide/MHC-II complexes. To study these responses, it is essential to identify protein-derived MHC-II peptide ligands that constitute epitopes for T cell recognition. However, generating cells expressing single MHC-II alleles and isolating these proteins for use in peptide elution or binding studies is time consuming. Here, we express human MHC alleles (HLA-DR4 and HLA-DQ6) as native, noncovalent αß dimers on yeast cells for direct flow cytometry-based screening of peptide ligands from selected antigens. We demonstrate rapid, accurate identification of DQ6 ligands from pre-pro-hypocretin, a narcolepsy-related immunogenic target. We also identify 20 DR4-binding SARS-CoV-2 spike peptides homologous to SARS-CoV-1 epitopes, and one spike peptide overlapping with the reported SARS-CoV-2 epitope recognized by CD4+ T cells from unexposed individuals carrying DR4 subtypes. Our method is optimized for immediate application upon the emergence of novel pathogens.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , COVID-19/metabolismo , Epitopos de Linfócito T/metabolismo , Antígenos HLA-DQ/metabolismo , Antígeno HLA-DR4/metabolismo , Saccharomyces cerevisiae/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , COVID-19/genética , COVID-19/imunologia , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Citometria de Fluxo , Antígenos HLA-DQ/genética , Antígenos HLA-DQ/imunologia , Antígeno HLA-DR4/genética , Antígeno HLA-DR4/imunologia , Ligantes , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia
18.
Front Immunol ; 12: 657217, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33859649

RESUMO

During pregnancy the formation of alloreactive anti-human leukocyte antigen (HLA) antibodies are a major cause of acute rejection in organ transplantation and of adverse effects in blood transfusion. The purpose of the study was to identify maternal HLA class Ib genetic factors associated with anti-HLA allo-immunization in pregnancy and the degree of tolerance estimated by IgG4 expression. In total, 86 primiparous women with singleton pregnancies were included in the study. Maternal blood samples and umbilical cord samples were collected at delivery. Clinical data were obtained. Maternal blood serum was screened for HLA class I and II antibodies, identification of Donor Specific Antibody (DSA), activation of complement measured by C1q and IgG4 concentrations. Mothers were genotyped for HLA class Ib (HLA-E, -F and -G). Anti-HLA class I and II antibodies were identified in 24% of the women. The maternal HLA-E*01:06 allele was significantly associated with a higher fraction of anti-HLA I immunization (20.0% vs. 4.8%, p = 0.048). The maternal HLA-G 3'-untranslated region UTR4-HLA-G*01:01:01:05 haplotype and the HLA-F*01:03:01 allele were significantly associated with a low anti-HLA I C1q activation (16.7% vs. 57.1%, p = 0.028; 16.7% vs. 50.0%, p = 0.046; respectively). Both HLA­G and HLA-F*01:03:01 showed significantly higher levels of IgG4 compared with the other haplotypes. The results support an association of certain HLA class Ib alleles with allo-immunization during pregnancy. Further studies are needed to elucidate the roles of HLA-E*01:06, HLA-F*01:03 and HLA­G UTR4 in reducing the risk for allo-immunization.


Assuntos
Antígenos HLA-DQ/genética , Antígenos HLA-DQ/imunologia , Isoanticorpos/imunologia , Polimorfismo Genético , Adolescente , Adulto , Alelos , Feminino , Dosagem de Genes , Frequência do Gene , Estudos de Associação Genética , Genótipo , Humanos , Imunização , Imunoglobulina G/imunologia , Fenótipo , Gravidez , Adulto Jovem
20.
Clin Exp Immunol ; 204(3): 321-334, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33469922

RESUMO

Whole blood cytokine release assays (CRA) assessing cellular immunity to gluten could simplify the diagnosis and monitoring of coeliac disease (CD). We aimed to determine the effectiveness of electrochemiluminescence CRA to detect responses to immunodominant gliadin peptides. HLA-DQ2·5+ CD adults (cohort 1, n = 6; cohort 2, n = 12) and unaffected controls (cohort 3, n = 9) were enrolled. Cohort 1 had 3-day gluten challenge (GC). Blood was collected at baseline, and for cohort 1 also at 3 h, 6 h and 6 days after commencing 3-day GC. Gliadin peptide-stimulated proliferation, interferon (IFN)-γ enzyme-linked immunospot (ELISPOT) and 14- and 3-plex electrochemiluminescence CRA were performed. Poisson distribution analysis was used to estimate responding cell frequencies. In cohort 1, interleukin (IL)-2 dominated the gliadin peptide-stimulated cytokine release profile in whole blood. GC caused systemic IL-2 release acutely and increased gliadin peptide-stimulated IFN-γ ELISPOT and whole blood CRA responses. Whole blood CRA after GC was dominated by IL-2, but also included IFN-γ, C-X-C motif chemokine ligand 10/IFN-γ-induced protein 10 (CXCL10/IP-10), CXCL9/monokine induced by IFN-γ (MIG), IL-10, chemokine (C-C motif) ligand 3/macrophage inflammatory protein 1-alpha (CCL3/MIP-1α), TNF-α and IL-8/CXCL8. In cohorts 2 and 3, gliadin peptide-stimulated whole blood IL-2 release was 100% specific and 92% sensitive for CD patients on a gluten-free diet; the estimated frequency of cells in CD blood secreting IL-2 to α-gliadin peptide was 0·5 to 11 per ml. Whole blood IL-2 release successfully mapped human leucocyte antigen (HLA)-DQ2·5-restricted epitopes in an α-gliadin peptide library using CD blood before and after GC. Whole blood IL-2 release assay using electrochemiluminescence is a sensitive test for rare gliadin-specific T cells in CD, and could aid in monitoring and diagnosis. Larger studies and validation with tetramer-based assays are warranted.


Assuntos
Doença Celíaca/imunologia , Glutens/imunologia , Interleucina-2/imunologia , Linfócitos T/imunologia , Adulto , Idoso , Quimiocina CXCL10/imunologia , Citocinas/imunologia , Epitopos de Linfócito T/imunologia , Feminino , Gliadina/imunologia , Antígenos HLA-DQ/imunologia , Humanos , Imunidade Celular/imunologia , Interferon gama/imunologia , Interleucina-8/imunologia , Masculino , Pessoa de Meia-Idade , Fragmentos de Peptídeos/imunologia , Peptídeos/imunologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA