Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.608
Filtrar
1.
Sci Rep ; 13(1): 20820, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012279

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has spread rapidly worldwide. To prevent its spread, mRNA-based vaccines made by Pfizer/BioNTech (BNT162b1) and Moderna (mRNA-1273) have been widely used, including in Japan. Various adverse events have been reported following the COVID-19 mRNA vaccination, with differences observed among individuals. However, analyses of the genetic background associated with the susceptibility to side effects have been limited. In the present study, we performed genome-wide association studies (GWAS) for self-reported adverse events of the COVID-19 mRNA vaccination in 4545 Japanese individuals and identified 14 associated loci. Among these, 6p21 was associated with 37.5 °C or higher fever, 38 °C or higher fever, and muscle pain. HLA allele association analysis revealed that various HLA alleles were associated with the adverse effects; HLA-DQA1*03:01 and HLA-A*11:01 were more reliably associated with the adverse effects. Our results may enable the preparation and management of adverse effects by identifying the susceptibility to these adverse events. Furthermore, we obtained valuable data that may lead to a better understanding of the mechanisms of action of the COVID-19 mRNA vaccines.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Cromossomos Humanos Par 6 , População do Leste Asiático , Antígenos de Histocompatibilidade , Vacinação , Humanos , Vacina BNT162 , Cromossomos Humanos Par 6/genética , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , População do Leste Asiático/genética , Estudo de Associação Genômica Ampla , Antígenos de Histocompatibilidade/genética , Internet , RNA Mensageiro/genética , Vacinação/efeitos adversos , Predisposição Genética para Doença/etnologia , Predisposição Genética para Doença/genética
2.
Int J Mol Sci ; 24(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37894922

RESUMO

Changes in epigenetic programming have been proposed as being key events in the initiation and progression of childhood cancers. HMT euchromatic histone lysine methyltransferase 2 (G9a, EHMT2), which is encoded by the G9a (Ehmt2) gene, as well as its related protein GLP, which is encoded by the GLP/Ehmt1 gene, participate in epigenetic regulation by contributing to a transcriptionally repressed chromatin state. G9a/GLP activation has been reported in several cancer types. Herein, we evaluated the role of G9a in two solid pediatric tumors: neuroblastoma (NB) and Ewing sarcoma (ES). Our results show that G9a/Ehmt2 and GLP/Ehmt1 expression is higher in tumors with poorer prognosis, including St4 International Neuroblastoma Staging System (INSS) stage, MYCN amplified NB, and metastatic ES. Importantly, higher G9a and GLP levels were associated with shorter patient overall survival (OS) in both NB and ES. Moreover, pharmacological inhibition of G9a/GLP reduced cell viability in NB and ES cells. These findings suggest that G9a and GLP are associated with more aggressive NB and ES tumors and should be further investigated as being epigenetic targets in pediatric solid cancers.


Assuntos
Neuroblastoma , Sarcoma de Ewing , Criança , Humanos , Sobrevivência Celular/genética , Epigênese Genética , Antígenos de Histocompatibilidade/genética , Antígenos de Histocompatibilidade/metabolismo , Histona Metiltransferases/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Neuroblastoma/genética , Sarcoma de Ewing/genética
3.
Cell Chem Biol ; 30(12): 1525-1541.e7, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-37858336

RESUMO

We report a novel translation-regulatory function of G9a, a histone methyltransferase and well-understood transcriptional repressor, in promoting hyperinflammation and lymphopenia; two hallmarks of endotoxin tolerance (ET)-associated chronic inflammatory complications. Using multiple approaches, we demonstrate that G9a interacts with multiple translation regulators during ET, particularly the N6-methyladenosine (m6A) RNA methyltransferase METTL3, to co-upregulate expression of certain m6A-modified mRNAs that encode immune-checkpoint and anti-inflammatory proteins. Mechanistically, G9a promotes m6A methyltransferase activity of METTL3 at translational/post-translational level by regulating its expression, its methylation, and its cytosolic localization during ET. Additionally, from a broader view extended from the G9a-METTL3-m6A translation regulatory axis, our translatome proteomics approach identified numerous "G9a-translated" proteins that unite the networks associated with inflammation dysregulation, T cell dysfunction, and systemic cytokine response. In sum, we identified a previously unrecognized function of G9a in protein-specific translation that can be leveraged to treat ET-related chronic inflammatory diseases.


Assuntos
Antígenos de Histocompatibilidade , Histona-Lisina N-Metiltransferase , Inflamação , Humanos , Histona Metiltransferases/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Inflamação/genética , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Antígenos de Histocompatibilidade/genética , Antígenos de Histocompatibilidade/metabolismo
4.
HLA ; 102(3): 343-347, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37376846

RESUMO

HLA genes are the most polymorphic in the human genome. High resolution HLA typing from 13,870 bone marrow donors in Hong Kong was obtained using Next-generation sequencing (NGS) technology. Among the 67 novel alleles identified, official HLA allele names of 50 novel class I alleles (HLA-A, -B, -C) and 8 novel class II alleles (HLA-DRB1, -DQB1) were assigned by the World Health Organization (WHO) Nomenclature Committee for Factors of the HLA System.


Assuntos
População do Leste Asiático , Antígenos de Histocompatibilidade , Humanos , Alelos , População do Leste Asiático/genética , Frequência do Gene , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala , Antígenos de Histocompatibilidade/genética
5.
Mol Oncol ; 17(11): 2275-2294, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36896891

RESUMO

Hepatocellular carcinoma (HCC) is the third deadliest and sixth most common cancer in the world. Histone-lysine N-methyltransferase EHMT2 (also known as G9a) is a histone methyltransferase frequently overexpressed in many cancer types, including HCC. We showed that Myc-driven liver tumours have a unique H3K9 methylation pattern with corresponding G9a overexpression. This phenomenon of increased G9a was further observed in our c-Myc-positive HCC patient-derived xenografts. More importantly, we showed that HCC patients with higher c-Myc and G9a expression levels portend a poorer survival with lower median survival months. We demonstrated that c-Myc interacts with G9a in HCC and cooperates to regulate c-Myc-dependent gene repression. In addition, G9a stabilises c-Myc to promote cancer development, contributing to the growth and invasive capacity in HCC. Furthermore, combination therapy between G9a and synthetic-lethal target of c-Myc, CDK9, demonstrates strong efficacy in patient-derived avatars of Myc-driven HCC. Our work suggests that targeting G9a could prove to be a potential therapeutic avenue for Myc-driven liver cancer. This will increase our understanding of the underlying epigenetic mechanisms of aggressive tumour initiation and lead to improved therapeutic and diagnostic options for Myc-driven hepatic tumours.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Epigênese Genética , Antígenos de Histocompatibilidade/genética , Antígenos de Histocompatibilidade/metabolismo , Antígenos de Histocompatibilidade/uso terapêutico , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Metilação
6.
J Pathol ; 259(3): 342-356, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36573560

RESUMO

The relatively quiet mutational landscape of rhabdomyosarcoma (RMS) suggests that epigenetic deregulation could be central to oncogenesis and tumour aggressiveness. Histone variants have long been recognised as important epigenetic regulators of gene expression. However, the role of histone variants in RMS has not been studied hitherto. In this study, we show that histone variant H3.3 is overexpressed in alveolar RMS (ARMS), an aggressive subtype of RMS. Functionally, knockdown of H3F3A, which encodes for H3.3, significantly impairs the ability of ARMS cells to undertake migration and invasion and reduces Rho activation. In addition, a striking reduction in metastatic tumour burden and improved survival is apparent in vivo. Using RNA-sequencing and ChIP-sequencing analyses, we identified melanoma cell adhesion molecule (MCAM/CD146) as a direct downstream target of H3.3. Loss of H3.3 resulted in a reduction in the presence of active marks and an increase in the occupancy of H1 at the MCAM promoter. Cell migration and invasion were rescued in H3F3A-depleted cells through MCAM overexpression. Moreover, we identified G9a, a lysine methyltransferase encoded by EHMT2, as an upstream regulator of H3F3A. Therefore, this study identifies a novel H3.3 dependent axis involved in ARMS metastasis. These findings establish the potential of MCAM as a therapeutic target for high-risk ARMS patients. © 2022 The Pathological Society of Great Britain and Ireland.


Assuntos
Histonas , Rabdomiossarcoma Alveolar , Humanos , Linhagem Celular Tumoral , Antígenos de Histocompatibilidade/genética , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Histonas/metabolismo , Regiões Promotoras Genéticas , Rabdomiossarcoma Alveolar/genética , Rabdomiossarcoma Alveolar/patologia
7.
Nucleic Acids Res ; 51(D1): D1053-D1060, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36350643

RESUMO

It is 24 years since the IPD-IMGT/HLA Database, http://www.ebi.ac.uk/ipd/imgt/hla/, was first released, providing the HLA community with a searchable repository of highly curated HLA sequences. The database now contains over 35 000 alleles of the human Major Histocompatibility Complex (MHC) named by the WHO Nomenclature Committee for Factors of the HLA System. This complex contains the most polymorphic genes in the human genome and is now considered hyperpolymorphic. The IPD-IMGT/HLA Database provides a stable and user-friendly repository for this information. Uptake of Next Generation Sequencing technology in recent years has driven an increase in the number of alleles and the length of sequences submitted. As the size of the database has grown the traditional methods of accessing and presenting this data have been challenged, in response, we have developed a suite of tools providing an enhanced user experience to our traditional web-based users while creating new programmatic access for our bioinformatics user base. This suite of tools is powered by the IPD-API, an Application Programming Interface (API), providing scalable and flexible access to the database. The IPD-API provides a stable platform for our future development allowing us to meet the future challenges of the HLA field and needs of the community.


Assuntos
Bases de Dados Genéticas , Antígenos HLA , Humanos , Antígenos HLA/genética , Antígenos de Histocompatibilidade/genética , Complexo Principal de Histocompatibilidade/genética , Software , Alelos
8.
Int J Oral Sci ; 14(1): 44, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064768

RESUMO

Traumatic brain injury (TBI) contributes to the key causative elements of neurological deficits. However, no effective therapeutics have been developed yet. In our previous work, extracellular vesicles (EVs) secreted by stem cells from human exfoliated deciduous teeth (SHED) offered new insights as potential strategies for functional recovery of TBI. The current study aims to elucidate the mechanism of action, providing novel therapeutic targets for future clinical interventions. With the miRNA array performed and Real-time PCR validated, we revealed the crucial function of miR-330-5p transferred by SHED-derived EVs (SHED-EVs) in regulating microglia, the critical immune modulator in central nervous system. MiR-330-5p targeted Ehmt2 and mediated the transcription of CXCL14 to promote M2 microglia polarization and inhibit M1 polarization. Identified in our in vivo data, SHED-EVs and their effector miR-330-5p alleviated the secretion of inflammatory cytokines and resumed the motor functional recovery of TBI rats. In summary, by transferring miR-330-5p, SHED-EVs favored anti-inflammatory microglia polarization through Ehmt2 mediated CXCL14 transcription in treating traumatic brain injury.


Assuntos
Lesões Encefálicas Traumáticas , Quimiocinas CXC , Vesículas Extracelulares , Histona-Lisina N-Metiltransferase , MicroRNAs , Microglia , Animais , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/terapia , Quimiocinas CXC/genética , Quimiocinas CXC/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Antígenos de Histocompatibilidade/genética , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Microglia/metabolismo , Ratos , Células-Tronco/metabolismo
9.
Elife ; 112022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35983994

RESUMO

Lung development, integrity and repair rely on precise Wnt signaling, which is corrupted in diverse diseases, including cancer. Here, we discover that EHMT2 methyltransferase regulates Wnt signaling in the lung by controlling the transcriptional activity of chromatin-bound ß-catenin, through a non-histone substrate in mouse lung. Inhibition of EHMT2 induces transcriptional, morphologic, and molecular changes consistent with alveolar type 2 (AT2) lineage commitment. Mechanistically, EHMT2 activity functions to support regenerative properties of KrasG12D tumors and normal AT2 cells-the predominant cell of origin of this cancer. Consequently, EHMT2 inhibition prevents KrasG12D lung adenocarcinoma (LUAD) tumor formation and propagation and disrupts normal AT2 cell differentiation. Consistent with these findings, low gene EHMT2 expression in human LUAD correlates with enhanced AT2 gene expression and improved prognosis. These data reveal EHMT2 as a critical regulator of Wnt signaling, implicating Ehmt2 as a potential target in lung cancer and other AT2-mediated lung pathologies.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/genética , Animais , Genes ras , Antígenos de Histocompatibilidade/genética , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Metiltransferases/metabolismo , Camundongos , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
10.
J Cell Biochem ; 123(8): 1340-1355, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35696556

RESUMO

Epigenetics factors are critical for normal cell function and their regulation is sensitive to malignancy development. EHMT2/G9a and KDM2b are key epigenetics players in different cancer types. However, their expression profiles and related consequences in acute myeloid leukemia (AML) patients have not been known yet. In addition to routine lab work, expression levels of EHMT2/G9a and KDM2b were determined in 110 adult and pediatric patients with De Novo AML. Relations between their expression and patients' clinical data were tested by statistical methods. EHMT2/G9a and KDM2b were highly expressed in AML patients against control cases and associated with the presence of adverse genomic alterations. In response to induction chemotherapy, EHMT2/G9a and KDM2b showed to be significantly high in resistant and relapsed patients in comparison to the complete remission group. KDM2b overexpression was associated with CD11c (integrin alpha X) downregulation. Kaplan-Meier analysis indicated that EHMT2/G9a and KDM2b overexpression was correlated with poor survival status in AML patients. We conclude that EHMT2/G9a and KDM2b expression levels could be used as independent prognostic factors for AML disease.


Assuntos
Cromatina , Leucemia Mieloide Aguda , Adulto , Criança , Epigênese Genética , Antígenos de Histocompatibilidade/genética , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Prognóstico
11.
Int J Cancer ; 151(9): 1586-1601, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35666536

RESUMO

Epigenetic dysregulation is an important feature of colorectal cancer (CRC). Combining epigenetic drugs with other antineoplastic agents is a promising treatment strategy for advanced cancers. Here, we exploited the concept of synthetic lethality to identify epigenetic targets that act synergistically with histone deacetylase (HDAC) inhibitors to reduce the growth of CRC. We applied a pooled CRISPR-Cas9 screen using a custom sgRNA library directed against 614 epigenetic regulators and discovered that knockout of the euchromatic histone-lysine N-methyltransferases 1 and 2 (EHMT1/2) strongly enhanced the antiproliferative effect of clinically used HDAC inhibitors. Using tissue microarrays from 1066 CRC samples with different tumor stages, we showed that low EHMT2 protein expression is predominantly found in advanced CRC and associated with poor clinical outcome. Cotargeting of HDAC and EHMT1/2 with specific small molecule inhibitors synergistically reduced proliferation of CRC cell lines. Mechanistically, we used a high-throughput Western blot assay to demonstrate that both inhibitors elicited distinct cellular mechanisms to reduce tumor growth, including cell cycle arrest and modulation of autophagy. On the epigenetic level, the compounds increased H3K9 acetylation and reduced H3K9 dimethylation. Finally, we used a panel of patient-derived CRC organoids to show that HDAC and EHMT1/2 inhibition synergistically reduced tumor viability in advanced models of CRC.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Acetilação , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Antígenos de Histocompatibilidade/genética , Antígenos de Histocompatibilidade/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos
12.
Carcinogenesis ; 43(8): 797-807, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-35640269

RESUMO

The histone methyltransferase G9a is expressed in various types of cancer cells, including colorectal cancer (CRC) cells. Interleukin 8 (IL)-8, also known as C-X-C motif chemokine ligand 8 (CXCL8), is a chemokine that plays a pleiotropic function in the regulation of inflammatory responses and cancer development. Here, we examined the relationship between G9a and IL-8 and the clinical relevance of this association. We immunohistochemically analyzed 235 resected CRC samples to correlate clinical features. Samples with high G9a expression had better overall survival and relapse-free survival than those with low G9a expression. Univariate and multivariate analyses demonstrated that low G9a expression remained a significant independent prognostic factor for increased disease recurrence and decreased survival (P < 0.05). G9a was expressed at high levels in commercially available CRC cell lines HCT116 and HT29. Knockdown of G9a by siRNA, shRNA or the G9a-specific inhibitor BIX01294 upregulated IL-8 expression. The number of spheroids was significantly increased in HCT116 cells with stably suppressed G9a expression, and the number of spheroids was significantly decreased in HCT116 cells with stably suppressed IL-8 expression. Thus, the suppression of IL-8 by G9a may result in a better prognosis in CRC cases with high G9a expression. Furthermore, G9a may suppress cancer stemness and increase chemosensitivity by controlling IL-8. Therefore, G9a is a potential novel marker for predicting CRC prognosis, and therapeutic targeting of G9a in CRC should be controversial.


Assuntos
Neoplasias Colorretais , Antígenos de Histocompatibilidade , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Antígenos de Histocompatibilidade/genética , Antígenos de Histocompatibilidade/metabolismo , Histona Metiltransferases/genética , Histona Metiltransferases/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Interleucina-8/genética , Ligantes , RNA Interferente Pequeno
13.
Hum Immunol ; 83(6): 477-479, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35459551

RESUMO

Azeri people are at present day mainly living in an area which comprises North (Azerbaijan) and South (Azeri Iran provinces) parts, living the biggest population in Azeri Iran provinces with about 17-20 million people. They were studied HLA-A, -B, -DRB1 and -DQB1 allele and extended haplotype frequencies in unrelated Iranian Tabriz Azeris from a rural area close to Tabriz City. The HLA extended haplotypes with highest frequencies are: 1) HLA- A*24:02-B*35:01-DRB1*11:01-DQB1*03:01, shared with Mediterraneans and southern Russians (Chuvash, which also show Mediterranean characters); and 2) HLA-A*01:02-B*08:01-DRB1*03:01-DQB1*02:01, found also in Chuvash and other Azeri samples from Tabriz. Neí's DA HLA-DRB1 genetic distances, HLA-DRB1 Neighbour-Joining dendrogram and Vista analyses show that population with closest distance is Kurdish, followed by Iranian Gorgan and Southern Russia/ North Caucasus Chuvash; probably these latter groups and Azeris were populating North Mesopotamia/ Caucasus Mts. since prehistoric times. Kurds (in Iraq and Iran) do not speak Turk while Azeris do: they are both genetically close, but they are not genetically close to present day Anatolia (Turkey) Turks who also speak Turk language and show a typical Mediterranean HLA profile. In summary, Azeri population studies show examples that genes and languages do not correlate, contradicting the postulate asserted by others.


Assuntos
Etnicidade , Genética Populacional , Antígenos de Histocompatibilidade , Idioma , Alelos , Etnicidade/genética , Frequência do Gene , Antígenos HLA-A/genética , Antígenos HLA-B/genética , Cadeias beta de HLA-DQ/genética , Cadeias HLA-DRB1/genética , Haplótipos , Antígenos de Histocompatibilidade/genética , Humanos , Irã (Geográfico)
14.
BMC Cardiovasc Disord ; 22(1): 182, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35439934

RESUMO

BACKGROUND: Heart disease is a major cause of mortality in developed countries. The associated pathology is mainly characterized by the loss of cardiomyocytes that contributes to heart failure (HF). This study aims to investigate the mechanism of euchromatic histone lysine methyltransferase 2 (EHMT2, also term G9a) in HF in rats. METHODS: Differentially expressed mRNAs in HF were screened using GEO database. Sera from subjects with or without HF were collected, and PCR was performed to detect the G9a expression. G9a was downregulated in cardiomyocytes exposed to oxygen-glucose deprivation (OGD), followed by CCK8, flow cytometry, colorimetric method, and western blot assays. Established HF rats were delivered with lentiviral vectors carrying sh-G9a, and TTC staining, HE staining, TUNEL, ELISA, and western blot were performed. The regulation of G9a on the downstream target BDNF was investigated by RT-qPCR, Western blot, and ChIP-qPCR. Finally, rescue experiments were carried out to substantiate the effect of G9a on cardiomyocyte apoptosis and injury via the BDNF/TrkB axis. RESULTS: G9a was overexpressed, whereas BDNF was downregulated in HF. Knockdown of G9a inhibited apoptosis and injury in OGD-treated cardiomyocytes and attenuated the extent of HF and myocardial injury in rats. Silencing of G9a promoted BDNF transcription by repressing H3K9me2 modification of the BDNF promoter. Further depletion of BDNF partially reversed the effect of sh-G9a in alleviating cardiomyocyte apoptosis and injury by inhibiting the TrkB signaling pathway. CONCLUSION: G9a inhibits BDNF expression through H3K9me2 modification, thereby impairing the TrkB signaling pathway and exacerbating the development of HF.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Insuficiência Cardíaca , Animais , Apoptose , Fator Neurotrófico Derivado do Encéfalo/genética , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Antígenos de Histocompatibilidade/genética , Antígenos de Histocompatibilidade/metabolismo , Antígenos de Histocompatibilidade/farmacologia , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Miócitos Cardíacos/metabolismo , Ratos
15.
J Ethnopharmacol ; 291: 115095, 2022 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-35176466

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Bufonis (VB), an animal drug called Chansu in China, is the product of the secretion of Bufo gargarizans Cantor or B. melanostictus Schneider. As a traditional Chinese medicine (TCM) for a long time, it has been widely used in the treatment of heart failure, ulcer, pain, and various cancers. Cinobufaginn (CNB), the cardiotonic steroid or bufalene lactone extracted from VB, has the effects of detoxification, detumescence, and analgesia. AIM OF THE STUDY: The present study aimed to define the effects of CNB on non-small-cell lung cancer (NSCLC) and identify the potential molecular mechanisms. MATERIALS AND METHODS: A549 cells were treated with cinobufagin and cell viability, apoptosis, migration, and invasion were then evaluated using Cell Counting Kit-8 (CCK8) assays, flow cytometry, and Transwell assays, respectively. Moreover, the levels of proliferating cell nuclear antigen (PCNA), cytokeratin8 (CK8), poly ADP-ribose polymerase (PARP), Caspase3, Caspase8, B-cell lymphoma/lewkmia-2(Bcl-2), Bcl2-Associated X(Bax), forkhead box O1 (FOXO1), and euchromatic histone-lysine N-methyltransferase2 (G9a, EHMT2) in A549 cells were evaluated using qRT-PCR and/or Western blot analysis (WB), Co-IP, immunofluorescence, and immunohistochemistry. An in vivo imaging system, TUNEL, Immunofluorescence, and immunohistochemistry were also used to detect proliferating cell nuclear antigen(PCNA), Ki67, E-Cadherin(E-Cad), FOXO1, and G9a in mouse xenograft model experiments. RESULTS: CNB suppressed cell proliferation, migration, and invasion but promoted apoptosis in A549 cells in a dose- and time-dependent manner, while cinobufagin had no cytotoxic effect on BEAS-2B cells. In vivo, cinobufagin inhibited the proliferation, migration, and invasion of A549 cells and promoted their apoptosis. The occurrence of the above phenomena was accompanied by an increase in FOXO1 expression and a decrease in G9a expression. In A549 cells, CNB did not reverse the changes in the proliferation, migration, invasion, and apoptosis of A549 cells after FOXO1 was successfully silenced. CONCLUSION: Our study provides the first evidence that cinobufagin suppresses the malignant biological behaviours of NSCLC cells in vivo and in vitro and suggests that mechanistically, this effect may be achieved by inhibiting the expression of the histone methyltransferase G9a and activating the tumour suppressor gene FOXO1. Taken together, our findings provide important insights into the molecular mechanism underlying cinobufagin's anticancer activity, and suggest that cinobufagin could be a candidate for targeted cancer therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Células A549 , Animais , Apoptose , Bufanolídeos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/farmacologia , Regulação Neoplásica da Expressão Gênica , Antígenos de Histocompatibilidade/genética , Antígenos de Histocompatibilidade/metabolismo , Antígenos de Histocompatibilidade/farmacologia , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Camundongos
16.
Neuromolecular Med ; 24(4): 392-398, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35113321

RESUMO

Changes in epigenetic programming are associated with cancer development during childhood. Components of the epigenetic machinery involved in normal embryonic development and hijacked by pediatric cancers include enzymes mediating post-translational modifications of DNA and histones that regulate chromatin structure, such as histone methyltransferases (HMTs). Overexpression of the HMT G9a (euchromatic histone lysine methyltransferase 2, EHMT2) has been described in several cancer types. Medulloblastoma (MB), the main type of malignant brain tumor afflicting children, is currently classified into four molecular subgroups. Here, we show that expression level of the G9a/Ehmt2 gene is higher in MB tumors belonging to the SHH, Group 3, and Group 4 subgroups, compared to Wnt tumors. Remarkably, high G9a expression was significantly associated with shorter overall survival in MB patients. We also present evidence that G9a inhibition dose-dependently reduces MB cell viability. Our findings suggest that higher transcription of G9a may be a predictor of poor prognosis in patients with SHH MB, and that inhibiting G9a activity can display antitumor effects in MB.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Criança , Humanos , Histona-Lisina N-Metiltransferase/genética , Meduloblastoma/genética , Prognóstico , Neoplasias Cerebelares/genética , Biomarcadores , Proteínas Hedgehog/genética , Antígenos de Histocompatibilidade/genética , Antígenos de Histocompatibilidade/metabolismo
17.
Cancer Res ; 82(7): 1208-1221, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35149587

RESUMO

G9a and EZH2 are two histone methyltransferases commonly upregulated in several cancer types, yet the precise roles that these enzymes play cooperatively in cancer is unclear. We demonstrate here that frequent concurrent upregulation of both G9a and EZH2 occurs in several human tumors. These methyltransferases cooperatively repressed molecular pathways responsible for tumor cell death. In genetically distinct tumor subtypes, concomitant inhibition of G9a and EZH2 potently induced tumor cell death, highlighting the existence of tumor cell survival dependency at the epigenetic level. G9a and EZH2 synergistically repressed expression of genes involved in the induction of endoplasmic reticulum (ER) stress and the production of reactive oxygen species. IL24 was essential for the induction of tumor cell death and was identified as a common target of G9a and EZH2. Loss of function of G9a and EZH2 activated the IL24-ER stress axis and increased apoptosis in cancer cells while not affecting normal cells. These results indicate that G9a and EZH2 promotes the evasion of ER stress-mediated apoptosis by repressing IL24 transcription, therefore suggesting that their inhibition may represent a potential therapeutic strategy for solid cancers. SIGNIFICANCE: These findings demonstrate a novel role for G9a and EZH2 histone methyltransferases in suppressing apoptosis, which can be targeted with small molecule inhibitors as a potential approach to improve solid cancer treatment.


Assuntos
Histona-Lisina N-Metiltransferase , Neoplasias , Apoptose/genética , Linhagem Celular Tumoral , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Antígenos de Histocompatibilidade/genética , Antígenos de Histocompatibilidade/metabolismo , Histona Metiltransferases/genética , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética
18.
Biochem Biophys Res Commun ; 590: 169-176, 2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-34979318

RESUMO

During the development of colorectal cancer, tumor cells will generate some cancer stem cells with self-renewal ability because they adapt to the environment. Therefore, in the treatment of colorectal cancer, it has certain potential clinical application value to effectively inhibit cancer stem cells. A small molecule EHMT-2 inhibitor, BIX-01294, was evaluated for its activity in inhibiting cancer stem cells in human colorectal cancer by in vitro and in vivo experiments. Transcriptome analysis was performed on BIX-01294 treated cells for holistic analysis to elucidate how BIX-01294 inhibits the expression of genes related to cancer stem cells. The results show that BIX-01294 significantly inhibited the proliferative phenotype of human colorectal cancer in vivo and in vitro, reduced the proportion of cancer stem cells, and inhibited some stemness-related gene. Morever, it is synergistic with 5-fluorouracil in inhibiting the proliferation of colorectal cancer. In summary, EHMT-2 is a novel target of anti-tumor drugs. The combination of BIX-01294 and 5-fluorouracil has a synergistic therapeutic effect on human colorectal cancer.


Assuntos
Azepinas/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica , Células-Tronco Neoplásicas/metabolismo , Quinazolinas/uso terapêutico , Animais , Azepinas/farmacologia , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Feminino , Fluoruracila/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Antígenos de Histocompatibilidade/genética , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Quinazolinas/farmacologia , Receptores Acoplados a Proteínas G/metabolismo
19.
Eur J Immunol ; 52(2): 197-203, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34609741

RESUMO

Genome-wide association studies (GWAS) have identified many genes that are associated with the development of certain autoimmune disorders, but the MHC haplotypes still represent the most prevalent genetic risk factor for many autoimmune diseases. The mechanisms by which MHC-associated genetic susceptibility translates into B cell autoimmunity and the development of autoimmune diseases are complex. There is increasing evidence that the MHC haplotype modulates autoreactive B cell responses in multiple ways. Instead of merely inhibiting the production of IgG autoantibodies and mediating complete immunological tolerance, the non-permitting MHC haplotypes seem to facilitate the production of IgG autoantibodies exhibiting Fc glycosylation patterns that are associated with reduced pathogenicity and a protective cytokine profile of T follicular helper (Tfh) cells. Here, we discuss mechanisms linking MHC haplotypes to the production of pathogenic IgG autoantibodies, which could be relevant for the development of improved diagnosis, particularly in the context of individual medicine.


Assuntos
Autoanticorpos/imunologia , Doenças Autoimunes/imunologia , Linfócitos B/imunologia , Haplótipos/imunologia , Antígenos de Histocompatibilidade/imunologia , Imunoglobulina G/imunologia , Animais , Autoanticorpos/genética , Doenças Autoimunes/genética , Glicosilação , Antígenos de Histocompatibilidade/genética , Humanos , Imunoglobulina G/genética , Linfócitos T Auxiliares-Indutores/imunologia
20.
Mol Cancer Res ; 20(3): 350-360, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34880125

RESUMO

Cholangiocarcinoma (CCA) is a lethal malignancy with few therapeutic options. NAD+-dependent 15-hydroxyprostaglandin dehydrogenase (15-PGDH) has been shown to inhibit CCA cell growth in vitro and in xenograft models. However, the role of 15-PGDH in CCA development has not been investigated and the mechanism for 15-PGDH gene regulation remains unclear. Here, we evaluated the role of 15-PGDH in CCA development by using a mouse model with hydrodynamic tail vein injection of transposase-based plasmids expressing Notch1 intracellular domain and myr-Akt, with or without co-injection of 15-PGDH expression plasmids. Our results reveal that 15-PGDH overexpression effectively prevents CCA development. Through patient data mining and experimental approaches, we provide novel evidences that 15-PGDH is epigenetically silenced by histone methyltransferase G9a. We observe that 15-PGDH and G9a expressions are inversely correlated in both human and mouse CCAs. By using CCA cells and mouse models, we show that G9a inhibition restores 15-PGDH expression and inhibited CCA in vitro and in vivo. Mechanistically, our data indicate that G9a is recruited to 15-PGDH gene promoter via protein-protein interaction with the E-box binding Myc/Max heterodimer. The recruited G9a then silences 15-PGDH gene through enhanced methylation of H3K9. Our further experiments have led to the identification of STAT4 as a key transcription factor involved in the regulation of 15-PGDH by G9a. Collectively, our findings disclose a novel G9a-15PGDH signaling axis which is importantly implicated in CCA development and progression. IMPLICATIONS: The current study describes a novel G9a-15PGDH signaling axis which is importantly implicated in CCA development and progression.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Colangiocarcinoma/patologia , Epigênese Genética , Antígenos de Histocompatibilidade/genética , Histona Metiltransferases/genética , Histona Metiltransferases/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Hidroxiprostaglandina Desidrogenases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA