Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 356: 120544, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38471323

RESUMO

Biofilters are the important source and sink of antibiotic resistance genes (ARGs) and antibiotic resistance bacteria (ARB) in the drinking water. Current studies generally ascribed the prevalence of BAR in biofilter from the perspective of gene behavior, i.e. horizontal gene transfer (HGT), little attentions have been paid on the ARGs carrier- ARB. In this study, we proposed the hypothesis that ARB participating in pollutant metabolism processes and becoming dominant is an important way for the enrichment of ARGs. To verify this, the antibiotic resistome and bacterial functional metabolic pathways of a sand filter was profiled using heterotrophic bacterial plate counting method (HPC), high-throughput qPCR, Illumina Hiseq sequencing and PICRUSt2 functional prediction. The results illustrated a significant leakage of ARB in the effluent of the sand filter with an average absolute abundance of approximately 102-103 CFU/mL. Further contribution analysis revealed that the dominant genera, such as Acinetobacter spp., Aeromonas spp., Elizabethkingia spp., and Bacillus spp., were primary ARGs hosts, conferring resistance to multiple antibiotics including sulfamethoxazole, tetracycline and ß-lactams. Notably, these ARGs hosts were involved in nitrogen metabolism, including extracellular nitrate/nitrite transport and nitrite reduction, which are crucial in nitrification and denitrification in biofilters. For example, Acinetobacter spp., the dominant bacteria in the filter (relative abundance 69.97 %), contributed the majority of ARGs and 53.79 % of nitrite reduction function. That is, ARB can predominate by participating in the nitrogen metabolism pathways, facilitating the enrichment of ARGs. These findings provide insights into the stable presence of ARGs in biofilters from a functional metabolism perspective, offering a significant supplementary to the mechanisms of the emergence, maintenance, and transmission of BARin drinking water.


Assuntos
Antibacterianos , Água Potável , Antibacterianos/farmacologia , Antibacterianos/análise , Genes Bacterianos , Antagonistas de Receptores de Angiotensina/análise , Nitritos/análise , Resistência Microbiana a Medicamentos/genética , Inibidores da Enzima Conversora de Angiotensina/análise , Nitrogênio/análise
2.
Environ Monit Assess ; 196(2): 208, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38279971

RESUMO

The influence of anthropogenic pollution on the distribution of bacterial diversity, antibiotic-resistant bacteria (ARBs), and antibiotic resistance genes (ARGs) was mapped at various geo-tagged sites of Mini River, Vadodara, Gujarat, India. The high-throughput 16S rRNA gene amplicon sequencing analysis revealed a higher relative abundance of Planctomycetota at the polluted sites, compared to the pristine site. Moreover, the relative abundance of Actinobacteriota increased, whereas Chloroflexi decreased in the water samples of polluted sites than the pristine site. The annotation of functional genes in the metagenome samples of Mini River sites indicated the presence of genes involved in the defence mechanisms against bacitracin, aminoglycosides, cephalosporins, chloramphenicol, streptogramin, streptomycin, methicillin, and colicin. The analysis of antibiotic resistome at the polluted sites of Mini River revealed the abundance of sulfonamide, beta-lactam, and aminoglycoside resistance. The presence of pathogens and ARB was significantly higher in water and sediment samples of polluted sites compared to the pristine site. The highest resistance of bacterial populations in the Mini River was recorded against sulfonamide (≥ 7.943 × 103 CFU/mL) and ampicillin (≥ 8.128 × 103 CFU/mL). The real-time PCR-based quantification of ARGs revealed the highest abundance of sulfonamide resistance genes sul1 and sul2 at the polluted sites of the Mini River. Additionally, the antimicrobial resistance genes aac(6')-Ib-Cr and blaTEM were also found abundantly at polluted sites of the Mini River. The findings provide insights into how anthropogenic pollution drives the ARG and ARB distribution in the riverine ecosystem, which may help with the development of antimicrobial resistance mitigation strategies.


Assuntos
Antibacterianos , Genes Bacterianos , Antibacterianos/farmacologia , Antibacterianos/análise , Antagonistas de Receptores de Angiotensina/análise , RNA Ribossômico 16S/genética , Ecossistema , Monitoramento Ambiental , Inibidores da Enzima Conversora de Angiotensina/análise , Bactérias/genética , Sulfanilamida/análise , Água/análise
3.
Water Res ; 247: 120761, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37918195

RESUMO

Urban wastewater treatment plants (UWTPs) are essential for reducing the pollutants load and protecting water bodies. However, wastewater catchment areas and UWTPs emit continuously antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs), with recognized impacts on the downstream environments. Recently, the European Commission recommended to monitor antibiotic resistance in UWTPs serving more than 100 000 population equivalents. Antibiotic resistance monitoring in environmental samples can be challenging. The expected complexity of these systems can jeopardize the interpretation capacity regarding, for instance, wastewater treatment efficiency, impacts of environmental contamination, or risks due to human exposure. Simplified monitoring frameworks will be essential for the successful implementation of analytical procedures, data analysis, and data sharing. This study aimed to test a set of biomarkers representative of ARG contamination, selected based on their frequent human association and, simultaneously, rare presence in pristine environments. In addition to the 16S rRNA gene, ten potential biomarkers (intI1, sul1, ermB, ermF, aph(3'')-Ib, qacEΔ1, uidA, mefC, tetX, and crAssphage) were monitored in DNA extracts (n = 116) from raw wastewater, activated sludge, treated wastewater, and surface water (upstream and downstream of UWTPs) samples collected in the Czech Republic, Denmark, Israel, the Netherlands, and Portugal. Each biomarker was sensitive enough to measure decreases (on average by up to 2.5 log-units gene copy/mL) from raw wastewater to surface water, with variations in the same order of magnitude as for the 16S rRNA gene. The use of the 10 biomarkers allowed the typing of water samples whose origin or quality could be predicted in a blind test. The results show that, based on appropriate biomarkers, qPCR can be used for a cost-effective and technically accessible approach to monitoring wastewater and the downstream environment.


Assuntos
Genes Bacterianos , Águas Residuárias , Humanos , RNA Ribossômico 16S/genética , Antagonistas de Receptores de Angiotensina/análise , Inibidores da Enzima Conversora de Angiotensina/análise , Resistência Microbiana a Medicamentos/genética , Antibacterianos/farmacologia , Antibacterianos/análise , Água/análise
4.
Sci Total Environ ; 904: 166753, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37673265

RESUMO

Antimicrobial resistance (AMR) is now recognized as a leading global threat to human health. Nevertheless, there currently is a limited understanding of the environment's role in the spread of AMR and antibiotic resistance genes (ARGs). In 2019, the U.S. Geological Survey conducted the first statewide assessment of antibiotic resistant bacteria (ARB) and ARGs in surface water and bed sediment collected from 34 stream locations across Iowa. Environmental samples were analyzed for a suite of 29 antibiotics and plated on selective media for 15 types of bacteria growth; DNA was extracted from culture growth and used in downstream polymerase chain reaction (PCR) assays for the detection of 24 ARGs. ARGs encoding resistance to antibiotics of clinical importance to human health and disease prevention were prioritized as their presence in stream systems has the potential for environmental significance. Total coliforms, Escherichia coli (E. coli), and staphylococci were nearly ubiquitous in both stream water and stream bed sediment samples, with enterococci present in 97 % of water samples, and Salmonella spp. growth present in 94 % and 67 % of water and bed sediment samples. Bacteria enumerations indicate that high bacteria loads are common in Iowa's streams, with 23 (68 %) streams exceeding state guidelines for primary contact for E. coli in recreational waters and 6 (18 %) streams exceeding the secondary contact advisory level. Although antibiotic-resistant E. coli growth was detected from 40 % of water samples, vancomycin-resistant enterococci (VRE) and penicillinase-resistant Staphylococcus aureus (MRSA) colony growth was detected from nearly all water samples. A total of 14 different ARGs were detected from viable bacteria cells from 30 Iowa streams (88 %, n = 34). Study results provide the first baseline understanding of the prevalence of ARB and ARGs throughout Iowa's waterways and health risk potential for humans, wildlife, and livestock using these waterways for drinking, irrigating, or recreating.


Assuntos
Genes Bacterianos , Staphylococcus aureus Resistente à Meticilina , Humanos , Estados Unidos , Escherichia coli/genética , Staphylococcus aureus Resistente à Meticilina/genética , Antagonistas de Receptores de Angiotensina/análise , Inibidores da Enzima Conversora de Angiotensina/análise , Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Iowa , Água/análise , Antibacterianos/farmacologia , Antibacterianos/análise
5.
Sci Total Environ ; 882: 163511, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37080303

RESUMO

Integrated and monoculture freshwater aquaculture systems are often regarded as important reservoirs for antimicrobial resistance genes (ARGs) and antimicrobial resistance bacteria (ARBs), yet only a few studies have assessed differences in the antimicrobial resistome and antibiotic residues between aquaculture modes. In this study, a metagenomic approach was used to comprehensively explore the dynamic patterns and potential transmission mechanisms of ARGs in ducks, human workers, fish, water and sediments during the transition from an integrated to a monoculture freshwater aquaculture mode and to investigate the associations of ARGs with potential hosts in microbial communities using network analysis and a binning approach. The results showed that the abundance and diversity of ARGs were higher under integrated fish-duck farming than in single fish ponds. During the transition from an integrated to a monoculture aquaculture farm, ARGs in workers and sediments were not easily removed. However, ARGs in the aquatic environment underwent regular changes. In addition, duck manure was probably the most dominant source of ARGs in the duck farm environment. Network analysis indicated that Escherichia spp. were the most dominant hosts of ARGs. Variation partitioning analysis (VPA) showed that in water samples, the bacterial community played an important role in the ARG profile. In addition, we identified a potential risk of the presence of highly virulent and antimicrobial-resistant Klebsiella pneumoniae in workers. These results help assess the risk of ARG transmission in integrated and monoculture aquaculture farms and suggest that we should strengthen the monitoring of long-term resistance in integrated aquaculture environments.


Assuntos
Antagonistas de Receptores de Angiotensina , Genes Bacterianos , Animais , Humanos , Antagonistas de Receptores de Angiotensina/análise , Resistência Microbiana a Medicamentos/genética , Inibidores da Enzima Conversora de Angiotensina/análise , Bactérias/genética , Aquicultura/métodos , Antibacterianos/análise , Água/análise , China
6.
Environ Pollut ; 324: 121390, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36870596

RESUMO

Dissolved organic carbon (DOC) is a significant component of regional and global carbon cycles and an important surface water quality indicator. DOC affects the processes of solubility, bioavailability and transport for a number of contaminants, such as heavy metals. Therefore, it is crucial to understand DOC fate and transport in the watershed and the transport pathways of DOC load. We modified a previously developed watershed-scale organic carbon model by incorporating the DOC load from glacier melt runoff and used the modified model to simulate periodic daily DOC load in the upper Athabasca River Basin (ARB) in the cold region of western Canada. The calibrated model achieved an overall acceptable performance for simulating daily DOC load with model uncertainties mainly from the underestimation of peak loads. Parameter sensitivity analysis indicates that the fate and transport of DOC load in upper ARB are mainly controlled by DOC production in the soil layers, DOC transport at the soil surface, and reactions in the stream system. The modeling results indicated that the DOC load is mainly from the terrestrial sources and the stream system was a negligible sink in the upper ARB. It also indicated that rainfall-induced surface runoff was the major transport pathway of DOC load in the upper ARB. However, the DOC loads transported by glacier melt runoff were negligible and only accounted for 0.02% of the total DOC loads. In addition, snowmelt-induced surface runoff and lateral flow contributed 18.7% of total DOC load, which is comparable to the contribution from the groundwater flow. Our study investigated the DOC dynamics and sources in the cold region watershed in western Canada and quantified the contribution of different hydrological pathways to DOC load, which could provide a useful reference and insight for understanding watershed-scale carbon cycle processes.


Assuntos
Matéria Orgânica Dissolvida , Monitoramento Ambiental , Monitoramento Ambiental/métodos , Antagonistas de Receptores de Angiotensina/análise , Inibidores da Enzima Conversora de Angiotensina/análise , Carbono/análise , Solo , Rios
7.
Water Res ; 235: 119905, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36989799

RESUMO

Drinking water treatment plants (DWTPs) are designed to remove physical, chemical, and biological contaminants. However, until recently, the role of DWTPs in minimizing the cycling of antibiotic resistance determinants has got limited attention. In particular, the risk of selecting antibiotic-resistant bacteria (ARB) is largely overlooked in chlorine-free DWTPs where biological processes are applied. Here, we combined high-throughput quantitative PCR and metagenomics to analyze the abundance and dynamics of microbial communities, antibiotic resistance genes (ARGs), and mobile genetic elements (MGEs) across the treatment trains of two chlorine-free DWTPs involving dune-based and reservoir-based systems. The microbial diversity of the water increased after all biological unit operations, namely rapid and slow sand filtration (SSF), and granular activated carbon filtration. Both DWTPs reduced the concentration of ARGs and MGEs in the water by circa 2.5 log gene copies mL-1, despite their relative increase in the disinfection sub-units (SSF in dune-based and UV treatment in reservoir-based DWTPs). The total microbial concentration was also reduced (2.5 log units), and none of the DWTPs enriched for bacteria containing genes linked to antibiotic resistance. Our findings highlight the effectiveness of chlorine-free DWTPs in supplying safe drinking water while reducing the concentration of antibiotic resistance determinants. To the best of our knowledge, this is the first study that monitors the presence and dynamics of antibiotic resistance determinants in chlorine-free DWTPs.


Assuntos
Água Potável , Microbiota , Purificação da Água , Água Potável/análise , Antagonistas de Receptores de Angiotensina/análise , Inibidores da Enzima Conversora de Angiotensina/análise , Bactérias/genética , Genes Bacterianos , Antibacterianos/análise , Cloro/análise
8.
Environ Sci Pollut Res Int ; 30(12): 35294-35306, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36527555

RESUMO

This study investigates the antibiotic resistance fate in the urban water cycle, evaluating the dynamics of antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs) in three different full-scale wastewater treatment plants (WWTPs) and two drinking water treatment plants (DWTPs) located in the same geographical area (North-West of Italy). ARB (tetracycline-, ampicillin-, and sulfonamide-resistant bacteria) were quantified by plate counting and the abundances of selected ARGs (i.e., tetA, blaTEM, and sulII) and intI1 gene were measured using quantitative real-time PCR (qPCR). Higher concentrations of ARB and ARGs were observed in the WWTPs with respect to the DWTPs identifying the WWTP as hotspot for the spread of antibiotic resistances. Although a significant reduction of ARB and ARGs was observed in WWTPs and DWTPs after the treatment, none of the detected ARB or ARGs was completely removed in drinking water. The stability of the antibiotic-resistant rates between inlet and outlet associated with the reduction of relative ARG abundances underlined that both the treatments (WWTs and DWTs) did not apply any selective pressure. The overall results highlighted the importance to investigate the antibiotic resistance dynamics in aquatic ecosystems involved in urban water cycle integrating the information obtained by culture-dependent method with the culture-independent one and the need to monitor the presence of ARB and ARGs mainly in drinking water that represents a potential route of transmission to human.


Assuntos
Água Potável , Purificação da Água , Humanos , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Genes Bacterianos , Bactérias/genética , Ecossistema , Água Potável/análise , Antagonistas de Receptores de Angiotensina/análise , Ciclo Hidrológico , Inibidores da Enzima Conversora de Angiotensina , Antibacterianos/farmacologia , Antibacterianos/análise
9.
Environ Sci Pollut Res Int ; 29(16): 23806-23822, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34817812

RESUMO

Pond aquaculture has become the most important and broadest breeding model in China, and an extremely important source of aquatic products, but the potential hazard factors of potential pathogenic bacteria (PPB), antibiotic resistance bacteria (ARB), and antibiotic resistance genes (ARGs) in aquaculture environment are largely invisible. In the present study, the bacterial communities in the larvae, juvenile, rearing, and harvesting culture stages of great grass carp (Ctenopharyngodon idellus) ponds were investigated and the structure of microbial flora analysis showed that the larvae culture stage has the highest abundance and the most dominant phyla were Proteobacteria (27.8%). A total of 123 significant Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotations and the relative abundance of nine bacterial phenotypes implied that the larvae culture stage had the most abundance of pathogenic potential and mobile elements. The correlation analyses of environmental factors showed that temperature, stocking density, pH, and transparency showed the significant impacts on both the distribution of microbiome and the PPB. More importantly, a total of 40 ARB were identified, and 16 ARGs have the detection rates of 100%, which revealed that they are widely distributed and highly enriched in the aquaculture production. Notably, this is the first robust report to analyze and understand the PPB, ARB, and ARGs characteristics and dynamic changes in the pond aquaculture.


Assuntos
Carpas , Lagoas , Antagonistas de Receptores de Angiotensina/análise , Inibidores da Enzima Conversora de Angiotensina , Animais , Antibacterianos/análise , Antibacterianos/farmacologia , Aquicultura , Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Lagoas/microbiologia , Água/análise
10.
Environ Geochem Health ; 44(10): 3343-3358, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34559332

RESUMO

The spread of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) has become an increasingly serious global public health issue. This study investigated the distribution characteristics and influencing factors of ARB and ARGs in greenhouse vegetable soils with long-term application of manure. Five typical ARGs, four heavy metal resistance genes (MRGs), and two mobile genetic elements (MGEs) were quantified by real-time quantitative polymerase chain reaction (qPCR). The amount of ARB in manure-improved soil greatly exceeded that in control soil, and the bacterial resistance rate decreased significantly with increases in antibiotic concentrations. In addition, the resistance rate of ARB to enrofloxacin (ENR) was lower than that of tylosin (TYL). Real-time qPCR results showed that long-term application of manure enhanced the relative abundance of ARGs in vegetable soils, and the content and proportion of quinolone resistance genes were higher than those of macrolide resistance genes. Redundancy analysis (RDA) showed that qepA and qnrS significantly correlated with total and available amounts of Cu and Zn, highlighting that certain heavy metals can influence persistence of ARGs. Integrase gene intI1 correlated significantly with the relative abundance of qepA, qnrS, and ermF, suggesting that intI1 played an important role in the horizontal transfer of ARGs. Furthermore, there was a weakly but not significantly positive correlation between specific detected MRGs and ARGs and MGEs. The results of this study enhance understanding the potential for increasing ARGs in manure-applied soil, assessing ecological risk and reducing the spread of ARGs.


Assuntos
Metais Pesados , Quinolonas , Antagonistas de Receptores de Angiotensina/análise , Inibidores da Enzima Conversora de Angiotensina/análise , Antibacterianos/análise , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Enrofloxacina , Genes Bacterianos , Integrases/genética , Macrolídeos/análise , Macrolídeos/farmacologia , Esterco/microbiologia , Metais Pesados/análise , Quinolonas/farmacologia , Solo , Microbiologia do Solo , Tilosina/análise , Verduras
11.
Drug Metab Pharmacokinet ; 36: 100363, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33189558

RESUMO

Organic anion transporter (OAT) 4, which is localized at the apical membrane of human renal proximal tubules, transports olmesartan, an angiotensin II receptor blocker (ARB). Many ARBs, including olmesartan, undergo partial tubular secretion as active forms, and inhibit OAT4-mediated uptake activity. Here, we examined the substrate recognition of various ARBs by OAT4 in order to assess whether OAT4 might be involved in the renal handling of ARBs. Concentration-dependent OAT4-mediated uptake of azilsartan, candesartan, carboxylosartan, losartan, and valsartan was observed with Km values of 6.6, 31, 7.2, 13, and 1.7 µM, respectively, in the absence of extracellular Cl-. In the presence of extracellular Cl-, OAT4-mediated uptake of dianionic ARBs (azilsartan, candesartan, carboxylosartan, and valsartan) was lower and reached a steady state faster than in the absence of extracellular Cl-. Thus, OAT4 is proposed to use extracellular Cl- as a counterpart for anion efflux. Our results suggest that OAT4 may play a role in the excretion of azilsartan, candesartan, carboxylosartan, and valsartan, as well as olmesartan. In contrast, OAT4-mediated uptake of losartan, a monoanionic ARB, was little affected by extracellular Cl-, suggesting that only OAT4-mediated dianion transport is Cl--sensitive.


Assuntos
Antagonistas de Receptores de Angiotensina/metabolismo , Rim/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Espectrometria de Massas em Tandem/métodos , Antagonistas de Receptores de Angiotensina/análise , Antagonistas de Receptores de Angiotensina/farmacologia , Cromatografia Líquida/métodos , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Rim/efeitos dos fármacos , Espectrometria de Massas/métodos , Transportadores de Ânions Orgânicos Sódio-Independentes/análise , Especificidade por Substrato/fisiologia
12.
J Sep Sci ; 43(8): 1398-1405, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31991050

RESUMO

In this study, a sensitive high-performance liquid chromatography method was developed and validated for the simultaneous determination of seven angiotensin II receptor blockers, namely, hydrochlorothiazide, chlorthalidone, eprosartan mesylate, valsartan, losartan potassium, irbesartan, and candesartan cilexetil. Different chromatographic parameters were tested and fully optimized. Best chromatographic separation was accomplished on a reversed-phase octadecylsilyl column (250 × 4.6 mm id; 5 µm) under gradient elution using methanol/sodium phosphate monobasic buffer (0.01 M, pH 6.5) as mobile phase. The detection of target analytes was obtained at 254 nm. The pH of the buffer has been selected according to Marvin® sketch software. The proposed method was validated according to ICH guidelines and showed good precision (relative standard deviation < 1), good linearity (square of correlation coefficient ≥ 0.999), and high accuracy (between 98 and 102%) with detection limit and quantitation limit (40 and 160 ng/mL, respectively) for all the detected analytes.


Assuntos
Antagonistas de Receptores de Angiotensina/análise , Acrilatos/análise , Benzimidazóis/análise , Compostos de Bifenilo/análise , Clortalidona/análise , Cromatografia Líquida de Alta Pressão , Hidroclorotiazida/análise , Imidazóis/análise , Irbesartana/análise , Losartan/análise , Estrutura Molecular , Software , Comprimidos/análise , Tetrazóis/análise , Tiofenos/análise , Valsartana/análise
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 193: 365-374, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29272807

RESUMO

Different innovative spectrophotometric methods were introduced for the first time for simultaneous quantification of sacubitril/valsartan in their binary mixture and in their combined dosage form without prior separation through two manipulation approaches. These approaches were developed and based either on two wavelength selection in zero-order absorption spectra namely; dual wavelength method (DWL) at 226nm and 275nm for valsartan, induced dual wavelength method (IDW) at 226nm and 254nm for sacubitril and advanced absorbance subtraction (AAS) based on their iso-absorptive point at 246nm (λiso) and 261nm (sacubitril shows equal absorbance values at the two selected wavelengths) or on ratio spectra using their normalized spectra namely; ratio difference spectrophotometric method (RD) at 225nm and 264nm for both of them in their ratio spectra, first derivative of ratio spectra (DR1) at 232nm for valsartan and 239nm for sacubitril and mean centering of ratio spectra (MCR) at 260nm for both of them. Both sacubitril and valsartan showed linearity upon application of these methods in the range of 2.5-25.0µg/mL. The developed spectrophotmetric methods were successfully applied to the analysis of their combined tablet dosage form ENTRESTO™. The adopted spectrophotometric methods were also validated according to ICH guidelines. The results obtained from the proposed methods were statistically compared to a reported HPLC method using Student t-test, F-test and a comparative study was also developed with one-way ANOVA, showing no statistical difference in accordance to precision and accuracy.


Assuntos
Aminobutiratos/análise , Antagonistas de Receptores de Angiotensina/análise , Espectrofotometria/métodos , Estatística como Assunto , Tetrazóis/análise , Valsartana/análise , Compostos de Bifenilo , Combinação de Medicamentos , Comprimidos
14.
J Chromatogr Sci ; 55(4): 393-397, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28013242

RESUMO

A new gas chromatographic method for the simultaneous determination of six organic residual solvents (acetonitrile, tetrahydrofuran, ethanol, acetone, 2-propanol and ethyl acetate) in azilsartan bulk drug is described. The chromatographic determination was achieved on an OV-624 capillary column employing programmed temperature within 21 min. The validation was carried out according to International Conference on Harmonization validation guidelines. The method was shown to be specific (no interference in the blank solution), sensitive (Limit of detection can achieve 1.5 µg/mL), precise (relative standard deviation of repeatability and intermediate precision ≤5.0%), linear (r≥ 0.999), accurate (recoveries range from 98.8% to 107.8%) and robust (carrier gas flow from 2.7 to 3.3 mL/min, initial oven temperature from 35°C to 45°C, temperature ramping rate from 19°C/min to 21°C/min, final oven temperature from 145°C to 155°C, injector temperature from 190°C to 210°C and detector temperature from 240°C to 260°C did not significantly affect the system suitability, test parameters and peak areas). This extensively validated method has been applied to the determination of residual solvents in real azilsartan bulk samples.


Assuntos
Antagonistas de Receptores de Angiotensina/análise , Benzimidazóis/análise , Cromatografia Gasosa/métodos , Oxidiazóis/análise , Solventes/análise , Contaminação de Medicamentos , Limite de Detecção , Controle de Qualidade
15.
J Pharm Biomed Anal ; 54(1): 100-5, 2011 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-20724092

RESUMO

A simple matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) method was developed to analyze irbesartan in human plasma. Irbesartan is a kind of angiotensin II receptor blocker (ARB) and is used as an antihypertensive drug. MALDI-TOF MS is a rare application for clinical drug analysis in human plasma. After simple micro-liquid-liquid extraction, irbesartan-containing supernatant was spotted on a target plate, mixed with matrix and then detected by MALDI-TOF MS within the clinically therapeutic range. Furthermore, we used cheaper chemical analogues to label the major proteins in human plasma for protein quantitation. After enzyme digestion, peptide mixtures were injected into nanoliquid chromatography (nanoLC) coupled with tandem mass spectrometry (MS-MS). Protein identification could be carried out simultaneously by peptide sequencing and database searching. Chemical analogue labeling method is an alternative way for expensive isotope reagents. Quantity change of proteins before and after administration of irbesartan could be detected by this method. Application of these methods in human plasma demonstrated that these two micro-scale MS methods used for clinical drug monitoring, protein quantitation and identification are successful.


Assuntos
Antagonistas de Receptores de Angiotensina/análise , Compostos de Bifenilo/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Tetrazóis/análise , Antagonistas de Receptores de Angiotensina/sangue , Antagonistas de Receptores de Angiotensina/farmacocinética , Compostos de Bifenilo/sangue , Compostos de Bifenilo/farmacocinética , Técnicas de Química Analítica , Cromatografia/métodos , Dissulfetos/química , Humanos , Irbesartana , Modelos Químicos , Mapeamento de Peptídeos/métodos , Peptídeos/química , Tetrazóis/sangue , Tetrazóis/farmacocinética , Tripsina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA