Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
2.
J Med Chem ; 65(4): 3434-3459, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35113556

RESUMO

High affinity phenyl-piperidine P2Y14R antagonist 1 (PPTN) was modified with piperidine bridging moieties to probe receptor affinity and hydrophobicity. Various 2-azanorbornane, nortropane, isonortropane, isoquinuclidine, and ring-opened cyclopentylamino derivatives preserved human P2Y14R affinity (fluorescence binding assay), and their pharmacophoric overlay was compared. Enantiomeric 2-azabicyclo[2.2.1]hept-5-en-3-one precursors assured stereochemically unambiguous, diverse products. Pure (S,S,S) 2-azanorbornane enantiomer 15 (MRS4738) displayed higher affinity than 1 (3-fold higher affinity than enantiomer 16) and in vivo antihyperallodynic and antiasthmatic activity. Its double prodrug 143 (MRS4815) dramatically reduced lung inflammation in a mouse asthma model. Related lactams 21-24 and dicarboxylate 42 displayed intermediate affinity and enhanced aqueous solubility. Isoquinuclidine 34 (IC50 15.6 nM) and isonortropanol 30 (IC50 21.3 nM) had lower lipophilicity than 1. In general, rigidified piperidine derivatives did not lower lipophilicity dramatically, except those rings with multiple polar groups. P2Y14R molecular modeling based on a P2Y12R structure showed stable and persistent key interactions for compound 15.


Assuntos
Piperidinas/química , Antagonistas do Receptor Purinérgico P2/farmacologia , Animais , Camundongos , Antagonistas do Receptor Purinérgico P2/química , Relação Estrutura-Atividade
3.
Eur J Med Chem ; 227: 113933, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34689072

RESUMO

The P2Y14 nucleotide receptor, a subtype of P2Y receptors, is implicated in many human inflammatory diseases. Based on the identification of favorable residues of two screening hits in the almost symmetrical P2Y14 binding domain, we describe the structural optimization of previously identified virtual screening hits 6 and 7 that result in the development of P2Y14R antagonists with a novel 2-phenyl-benzoxazole acetamide chemical scaffold. Notably, compound 52 showed potent P2Y14R antagonistic activity (IC50 = 2 nM), and a stronger inhibitory effect on MSU-induced inflammatory in vitro, better than a previously described P2Y14R antagonist PPTN. In vivo evaluation demonstrated that compound 52 also had satisfactory inhibitory activity on the inflammatory response of gout flares in mice. Moreover, P2Y14R antagonist 52 decreased paw swelling and inflammatory cell infiltration through cAMP/NLRP3/GSDMD signaling pathways in MSU-induced acute gouty arthritis mice. The discussions on the binding mechanism that employ MM/GBSA free energy calculations/decompositions also provide some useful clues for further structural designing of compound 52. Taken together, 2-phenyl-benzoxazole acetamide derivative 52 with potent P2Y14R antagonistic activity and in vivo potency could be a promising strategy for gout therapy and deserves further optimization.


Assuntos
Acetamidas/farmacologia , Benzoxazóis/farmacologia , Descoberta de Drogas , Gota/tratamento farmacológico , Antagonistas do Receptor Purinérgico P2/farmacologia , Receptores Purinérgicos P2Y/metabolismo , Acetamidas/síntese química , Acetamidas/química , Animais , Benzoxazóis/síntese química , Benzoxazóis/química , Células Cultivadas , Relação Dose-Resposta a Droga , Gota/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Simulação de Acoplamento Molecular , Estrutura Molecular , Antagonistas do Receptor Purinérgico P2/síntese química , Antagonistas do Receptor Purinérgico P2/química , Relação Estrutura-Atividade
4.
Microvasc Res ; 139: 104256, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34530027

RESUMO

BACKGROUND: The purine adenosine triphosphate (ATP) plays a significant role in retinal blood flow regulation and recent evidence suggests that the vasoactive effect of the compound differs in vessels at different branching level. However, the cellular basis for the regulation of retinal blood flow mediated by ATP has only been scarcely studied. METHODS: Perfused porcine hemiretinas (n = 60) were loaded with the calcium-sensitive fluorophore Oregon Green ex vivo. Spontaneous oscillations in fluorescence were studied in perivascular cells at five different vascular branching levels ranging from the main arteriole to the capillaries, before and after the addition of intra- and extravascular ATP alone or in the presence of a P2-purinergic receptor antagonist. RESULTS: Intravascular ATP induced an overall significant (p < 0.01) constriction of (mean ± SD) -9.79 ± 13.40% and extravascular ATP an overall significant (p < 0.01) dilatation of (mean ± SD) 19.62 ± 13.47%. Spontaneous oscillations of fluorescence in perivascular cells were significantly more intense around third order arterioles than around vessels at both lower and higher branching levels (p < 0.05 for all comparisons). ATP increased intracellular fluorescence in perivascular cells of first and second order arterioles after extravascular application, and the increase correlated with the accompanying vasodilatation (p < 0.03). Blocking of P2-receptors reduced oscillating fluorescence in pre-capillary arterioles secondary to intravascular ATP (p = 0.03). CONCLUSIONS: Spontaneous oscillations of calcium-sensitive fluorescence in perivascular retinal cells differ at different vascular branching levels. Extravascular ATP increases fluorescence in cells around the larger retinal arterioles exposed to the retinal surface. Future studies should investigate calcium signaling activity in perivascular retinal cells during interventions that simulate retinal pathology such as hypoxia.


Assuntos
Trifosfato de Adenosina/farmacologia , Arteríolas/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Capilares/efeitos dos fármacos , Agonistas do Receptor Purinérgico P2/farmacologia , Vasos Retinianos/efeitos dos fármacos , Vasoconstrição/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Animais , Arteríolas/metabolismo , Capilares/metabolismo , Microambiente Celular , Antagonistas do Receptor Purinérgico P2/farmacologia , Vasos Retinianos/metabolismo , Sus scrofa
6.
Trends Cancer ; 7(8): 731-750, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34074623

RESUMO

ATP hydrolysis and downstream signaling pathways in the extracellular space have a major impact upon tumor progression and metastasis. The complexity and interdependence of various cell types in the extracellular space have been increasingly appreciated in recent years. With increased awareness of the importance of this signaling pathway in the pathogenic development and progression of malignancies, there has been attention to therapeutic strategies targeting extracellular adenosine metabolism and signaling. This review summarizes the molecular and physiologic roles of extracellular ATP and adenosine in normal and disease states, and potential therapeutic applications.


Assuntos
Trifosfato de Adenosina/metabolismo , Adenosina/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias/tratamento farmacológico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/imunologia , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Intervalo Livre de Progressão , Antagonistas de Receptores Purinérgicos P1/farmacologia , Antagonistas de Receptores Purinérgicos P1/uso terapêutico , Antagonistas do Receptor Purinérgico P2/farmacologia , Antagonistas do Receptor Purinérgico P2/uso terapêutico , Receptores Purinérgicos P1/metabolismo , Receptores Purinérgicos P2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Sci Rep ; 11(1): 12389, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34117330

RESUMO

To investigate the effect of P2 receptor on microglia and its inhibitor PPADS on choroidal neovascularization. Forty CX3CR1GFP/+ mice were randomly divided into 8 groups. In addition to the normal group, the rest of groups were receiving laser treatment. The retina and choroid from the second, third, fourth and fifth group of mice were taken in the 1, 4, 7, 14 days after laser treatment. The mice in the sixth and seventh group received intravitreal injection of 2 µl PPADS or PBS respectively immediately after laser treatment. The mice in the eighth group received topical application of PPADS once per day of three days. The mice in sixth, seventh and eighth group received AF and FFA examination on the fourth day after laser treatment. Immunofluorescence histochemical staining and real-time quantitative PCR were used to evaluate P2 expression and its effect on choroidal neovascularization. After laser treatment, activated microglia can express P2 receptors (P2X4, P2X7, P2Y2 and P2Y12). The expression of P2 increased on the first day after laser damage, peaked on the fourth day (tP2X4 = 6.05, tP2X7 = 2.95, tP2Y2 = 3.67, tP2Y12 = 5.98, all P < 0.01), and then decreased. After PPADS inhibition, compared with the PBS injection group, the mRNA of P2X4, P2X7, P2Y2 and P2Y12 were decreased significantly in the PPADS injection group (tP2X4 = 5.54, tP2X7 = 9.82, tP2Y2 = 3.86, tP2Y12 = 7.91, all P < 0.01) and the PPADS topical application group (tP2X4 = 3.24, tP2X7 = 5.89, tP2Y2 = 6.75, tP2Y12 = 4.97, all P < 0.01). Compared with the PBS injection group, not only the activity of microglia cells but also the leakage of CNV decreased significantly (P < 0.01) in the PPADS injection group and the PPADS topical application group. But between two PPADS groups, the leakage of CNV had no difference (P = 0.864). After laser induced CNV, activated microglia can express P2 receptors. The P2 receptor inhibitor, PPADS, can significantly affect the function of microglia and inhibit the formation of choroidal neovascularization.


Assuntos
Neovascularização de Coroide/metabolismo , Microglia/metabolismo , Receptores Purinérgicos P2/metabolismo , Animais , Neovascularização de Coroide/tratamento farmacológico , Neovascularização de Coroide/etiologia , Lasers/efeitos adversos , Camundongos , Microglia/efeitos dos fármacos , Antagonistas do Receptor Purinérgico P2/farmacologia , Antagonistas do Receptor Purinérgico P2/uso terapêutico , Fosfato de Piridoxal/análogos & derivados , Fosfato de Piridoxal/farmacologia , Fosfato de Piridoxal/uso terapêutico , Receptores Purinérgicos P2/genética
8.
Eur J Med Chem ; 216: 113313, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33667846

RESUMO

P2Y14 nucleotide receptor plays important roles in series of physiological and pathologic events especially associated with immune and inflammation. Based on the 3-amide benzoic acid scaffold reported by our group previously, a series of 5-aryl-3-amide benzoic acid derivatives were designed as novel P2Y14 antagonists with improved pharmacokinetic properties. Among which compound 11m showed most potent P2Y14 antagonizing activity with an IC50 value of 2.18 nM, furnishing greatly improved water solubility and bioavailability compared with PPTN. In MSU-induced acute gouty arthritis model in mice, 11m exerted promising in vivo efficacy in alleviating mice paw swelling and inflammatory infiltration. Mechanistically, compound 11m notably blocked pyroptosis of macrophages through inhibiting NLRP3 inflammasome activation. This work may contribute to the identification of potential therapeutic agents to intervene in acute gouty arthritis.


Assuntos
Ácido Benzoico/química , Desenho de Fármacos , Antagonistas do Receptor Purinérgico P2/síntese química , Receptores Purinérgicos P2Y/química , Amidas/química , Animais , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Artrite Gotosa/induzido quimicamente , Artrite Gotosa/tratamento farmacológico , Artrite Gotosa/patologia , Ácido Benzoico/metabolismo , Ácido Benzoico/farmacologia , Ácido Benzoico/uso terapêutico , Regulação da Expressão Gênica/efeitos dos fármacos , Meia-Vida , Humanos , Camundongos , Microssomos Hepáticos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Antagonistas do Receptor Purinérgico P2/metabolismo , Antagonistas do Receptor Purinérgico P2/farmacologia , Antagonistas do Receptor Purinérgico P2/uso terapêutico , Piroptose/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2Y/metabolismo , Solubilidade , Relação Estrutura-Atividade
9.
Am J Physiol Heart Circ Physiol ; 320(2): H563-H574, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33164582

RESUMO

Heart failure (HF) is associated with neurohumoral activation, which in turn leads to an increased peripheral resistance. In mesenteric vasculature, perivascular innervation plays relevant role maintaining vascular tonus and resistance. Therefore, we aimed to determine the possible alterations in superior mesenteric artery (SMA) perivascular innervation function in HF rats. HF was induced by coronary artery occlusion in male Wistar rats, and sham-operated (SO) rats were used as controls. After 12 wk, a greater vasoconstrictor response to electrical field stimulation (EFS) was observed in endothelium-intact and endothelium-denuded SMA of HF rats. Alpha-adrenoceptor antagonist phentolamine diminished this response in a higher magnitude in HF than in SO animals. However, the noradrenaline (NA) reuptake inhibitor desipramine increased EFS-induced vasoconstriction more in segments from HF rats. Besides, EFS-induced NA release was greater in HF animals, due to a higher tyrosine hydroxylase expression and activity. P2 purinoceptor antagonist suramin reduced EFS-induced vasoconstriction only in segments from SO rats, and adenosine 5'-triphosphate (ATP) release was lower in HF than in SO. Moreover, nitric oxide (NO) synthase inhibitor Nω-nitro-L-arginine methyl ester (L-NAME) enhanced EFS-induced vasoconstriction in a similar extent in both groups. HF was not associated with changes in EFS-induced NO release or the vasodilator response to NO donor sodium nitroprusside. In conclusion, HF postmyocardial infarction enhanced noradrenergic function and diminished purinergic cotransmission in SMA and did not change nitrergic innervation. The net effect was an increased sympathetic participation on the EFS-induced vasoconstriction that could help to understand the neurotransduction involved on the control of vascular tonus in HF.NEW & NOTEWORTHY This study reinforces the pivotal role of noradrenergic innervation in the regulation of mesenteric vascular tone in a rat model of heart failure. Moreover, our results highlight the counteracting role of ATP and NA reuptake, and help to understand the signaling pathways involved on the control of vascular tonus and resistance in heart failure postmyocardial infarction.


Assuntos
Trifosfato de Adenosina/metabolismo , Insuficiência Cardíaca/metabolismo , Norepinefrina/metabolismo , Transmissão Sináptica , Inibidores da Captação Adrenérgica/farmacologia , Antagonistas Adrenérgicos alfa/farmacologia , Animais , Desipramina/farmacologia , Inibidores Enzimáticos/farmacologia , Insuficiência Cardíaca/fisiopatologia , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/metabolismo , Artérias Mesentéricas/fisiopatologia , NG-Nitroarginina Metil Éster/farmacologia , Doadores de Óxido Nítrico/farmacologia , Nitroprussiato/farmacologia , Fentolamina/farmacologia , Antagonistas do Receptor Purinérgico P2/farmacologia , Ratos , Ratos Wistar , Suramina/farmacologia , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/metabolismo , Sistema Nervoso Simpático/fisiopatologia , Vasoconstrição
10.
Int J Mol Sci ; 21(21)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105750

RESUMO

Neonatal seizures are one of the most common comorbidities of neonatal encephalopathy, with seizures aggravating acute injury and clinical outcomes. Current treatment can control early life seizures; however, a high level of pharmacoresistance remains among infants, with increasing evidence suggesting current anti-seizure medication potentiating brain damage. This emphasises the need to develop safer therapeutic strategies with a different mechanism of action. The purinergic system, characterised by the use of adenosine triphosphate and its metabolites as signalling molecules, consists of the membrane-bound P1 and P2 purinoreceptors and proteins to modulate extracellular purine nucleotides and nucleoside levels. Targeting this system is proving successful at treating many disorders and diseases of the central nervous system, including epilepsy. Mounting evidence demonstrates that drugs targeting the purinergic system provide both convulsive and anticonvulsive effects. With components of the purinergic signalling system being widely expressed during brain development, emerging evidence suggests that purinergic signalling contributes to neonatal seizures. In this review, we first provide an overview on neonatal seizure pathology and purinergic signalling during brain development. We then describe in detail recent evidence demonstrating a role for purinergic signalling during neonatal seizures and discuss possible purine-based avenues for seizure suppression in neonates.


Assuntos
Receptores Purinérgicos P1/metabolismo , Receptores Purinérgicos P2/metabolismo , Convulsões/etiologia , Convulsões/terapia , Animais , Sistema Nervoso Central/crescimento & desenvolvimento , Sistema Nervoso Central/metabolismo , Modelos Animais de Doenças , Humanos , Hipotermia Induzida/métodos , Lactente , Recém-Nascido , Terapia de Alvo Molecular , Antagonistas do Receptor Purinérgico P2/farmacologia , Purinas/metabolismo , Convulsões/tratamento farmacológico
11.
Int J Mol Sci ; 21(17)2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867347

RESUMO

BACKGROUND: Human mesenchymal stem cells (hMSCs) have shown their multipotential including differentiating towards endothelial and smooth muscle cell lineages, which triggers a new interest for using hMSCs as a putative source for cardiovascular regenerative medicine. Our recent publication has shown for the first time that purinergic 2 receptors are key players during hMSC differentiation towards adipocytes and osteoblasts. Purinergic 2 receptors play an important role in cardiovascular function when they bind to extracellular nucleotides. In this study, the possible functional role of purinergic 2 receptors during MSC endothelial and smooth muscle differentiation was investigated. METHODS AND RESULTS: Human MSCs were isolated from liposuction materials. Then, endothelial and smooth muscle-like cells were differentiated and characterized by specific markers via Reverse Transcriptase-PCR (RT-PCR), Western blot and immunochemical stainings. Interestingly, some purinergic 2 receptor subtypes were found to be differently regulated during these specific lineage commitments: P2Y4 and P2Y14 were involved in the early stage commitment while P2Y1 was the key player in controlling MSC differentiation towards either endothelial or smooth muscle cells. The administration of natural and artificial purinergic 2 receptor agonists and antagonists had a direct influence on these differentiations. Moreover, a feedback loop via exogenous extracellular nucleotides on these particular differentiations was shown by apyrase digest. CONCLUSIONS: Purinergic 2 receptors play a crucial role during the differentiation towards endothelial and smooth muscle cell lineages. Some highly selective and potent artificial purinergic 2 ligands can control hMSC differentiation, which might improve the use of adult stem cells in cardiovascular tissue engineering in the future.


Assuntos
Células Endoteliais/citologia , Células-Tronco Mesenquimais/citologia , Miócitos de Músculo Liso/citologia , Receptores Purinérgicos P2/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular , Células Cultivadas , Células Endoteliais/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Lipectomia , Células-Tronco Mesenquimais/metabolismo , Miócitos de Músculo Liso/metabolismo , Agonistas do Receptor Purinérgico P2/farmacologia , Antagonistas do Receptor Purinérgico P2/farmacologia , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2Y1/genética , Receptores Purinérgicos P2Y1/metabolismo , Adulto Jovem
12.
J Med Chem ; 63(17): 9563-9589, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32787142

RESUMO

Various heteroaryl and bicyclo-aliphatic analogues of zwitterionic biaryl P2Y14 receptor (P2Y14R) antagonists were synthesized, and affinity was measured in P2Y14R-expressing Chinese hamster ovary cells by flow cytometry. Given this series' low water solubility, various polyethylene glycol derivatives of the distally binding piperidin-4-yl moiety of moderate affinity were synthesized. Rotation of previously identified 1,2,3-triazole attached to the central m-benzoic acid core (25) provided moderate affinity but not indole and benzimidazole substitution of the aryl-triazole. The corresponding P2Y14R region is predicted by homology modeling as a deep, sterically limited hydrophobic pocket, with the outward pointing piperidine moiety being the most flexible. Bicyclic-substituted piperidine ring derivatives of naphthalene antagonist 1, e.g., quinuclidine 17 (MRS4608, IC50 ≈ 20 nM at hP2Y14R/mP2Y14R), or of triazole 2, preserved affinity. Potent antagonists 1, 7a, 17, and 23 (10 mg/kg) protected in an ovalbumin/Aspergillus mouse asthma model, and PEG conjugate 12 reduced chronic pain. Thus, we expanded P2Y14R antagonist structure-activity relationship, introducing diverse physical-chemical properties.


Assuntos
Desenho de Fármacos , Antagonistas do Receptor Purinérgico P2/química , Antagonistas do Receptor Purinérgico P2/farmacologia , Receptores Purinérgicos P2/metabolismo , Triazóis/química , Triazóis/farmacologia , Animais , Células HEK293 , Humanos , Concentração Inibidora 50 , Camundongos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Neuralgia/tratamento farmacológico , Conformação Proteica , Antagonistas do Receptor Purinérgico P2/metabolismo , Antagonistas do Receptor Purinérgico P2/uso terapêutico , Receptores Purinérgicos P2/química , Solubilidade , Relação Estrutura-Atividade , Triazóis/metabolismo , Triazóis/uso terapêutico
13.
Fitoterapia ; 146: 104709, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32829014

RESUMO

In recent years, interest in the research of P2 receptor (P2R)-mediated responses has grown significantly due to the recognition of the involvement of these receptors in various physiological and pathological processes. Despite all the progress made in the functional characterization of P2Rs, purinergic signaling research is still limited by the lack of selective or efficient ligands for different receptor subtypes. In this sense, several molecules have been tested towards these receptors as agonists or antagonists. Historically, natural products have always been sources of new bioactive substances for diverse purposes. However, compared to synthetic molecules, the number of natural products assessed for P2R ligands is still low. In this review, we present examples of studies that demonstrated plant natural products acting directly on P2R and modulating their functionality. In some cases, we highlight that the pharmacological activity previously described for the original organism could be correlated to an agonist or antagonist activity of a specific natural product on these receptors. These examples reinforce the need for more studies to investigate the pharmacological potential of new or known natural compounds targeting P2 receptors.


Assuntos
Compostos Fitoquímicos/farmacologia , Receptores Purinérgicos P2/metabolismo , Transdução de Sinais , Produtos Biológicos/farmacologia , Ensaios Clínicos como Assunto , Humanos , Ligantes , Agonistas do Receptor Purinérgico P2/farmacologia , Antagonistas do Receptor Purinérgico P2/farmacologia
14.
Drug Discov Today ; 25(3): 568-573, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31926135

RESUMO

As a member of the P2Y receptor family with a typical 7-transmembrane structure, P2Y6 purinergic receptor (P2Y6R) belongs to the G-protein-coupled nucleotide receptor activating the phospholipase-C signaling pathway. P2Y6R is widely involved in a range of human diseases, including atherosclerosis and other cardiovascular diseases, gradually attracting attention owing to its inappropriate or excessive activation. In addition, it was reported that P2Y6R might regulate inflammatory responses by governing the maturation and secretion of proinflammatory cytokines. Hence, several P2Y6R antagonists have been subjected to evaluation as new therapeutic strategies in recent years. This review was aimed at summarizing the role of P2Y6R in the pathogenesis of cardiovascular diseases, with an insight into the recent progress on discovery of P2Y6R antagonists.


Assuntos
Doenças Cardiovasculares/tratamento farmacológico , Antagonistas do Receptor Purinérgico P2/farmacologia , Receptores Purinérgicos P2/efeitos dos fármacos , Animais , Doenças Cardiovasculares/fisiopatologia , Citocinas/metabolismo , Desenvolvimento de Medicamentos/métodos , Descoberta de Drogas/métodos , Humanos , Receptores Purinérgicos P2/metabolismo , Transdução de Sinais/efeitos dos fármacos
15.
Int J Mol Sci ; 22(1)2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33383710

RESUMO

ATP is a major energy source in the mammalian cells, but it is an extracellular chemical messenger acting on P2 purinergic receptors. A line of evidence has shown that ATP is released from many different types of cells including neurons, endothelial cells, and muscle cells. In this review, we described the distribution of P2 receptor subtypes in the cardiac cells and their physiological and pathological roles in the heart. So far, the effects of external application of ATP or its analogues, and those of UTP on cardiac contractility and rhythm have been reported. In addition, specific genetic alterations and pharmacological agonists and antagonists have been adopted to discover specific roles of P2 receptor subtypes including P2X4-, P2X7-, P2Y2- and P2Y6-receptors in cardiac cells under physiological and pathological conditions. Accumulated data suggest that P2X4 receptors may play a beneficial role in cardiac muscle function, and that P2Y2- and P2Y6-receptors can induce cardiac fibrosis. Recent evidence further demonstrates P2Y1 receptor and P2X4 receptor as important mechanical signaling molecules to alter membrane potential and Ca2+ signaling in atrial myocytes and their uneven expression profile between right and left atrium.


Assuntos
Mecanotransdução Celular , Miócitos Cardíacos/metabolismo , Receptores Purinérgicos P2/metabolismo , Transdução de Sinais , Trifosfato de Adenosina/metabolismo , Animais , Biomarcadores , Suscetibilidade a Doenças , Espaço Extracelular/metabolismo , Regulação da Expressão Gênica , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/genética , Humanos , Mecanotransdução Celular/efeitos dos fármacos , Contração Miocárdica , Miocárdio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Agonistas do Receptor Purinérgico P2/farmacologia , Antagonistas do Receptor Purinérgico P2/farmacologia , Receptores Purinérgicos P2/genética , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética
16.
Methods Mol Biol ; 2041: 45-64, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31646479

RESUMO

Membrane receptors that are activated by the purine nucleoside adenosine (adenosine receptors) or by purine or pyrimidine nucleotides (P2Y and P2X receptors) transduce extracellular signals to the cytosol. They play important roles in physiology and disease. The G protein-coupled adenosine receptors comprise four subtypes: A1, A2A, A2B, and A3. The G-protein-coupled P2Y receptors are subdivided into eight subtypes: P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, and P2Y14, while the P2X receptors represent ATP-gated homomeric or heteromeric ion channels consisting of three subunits; the most important subunits are P2X1, P2X2, P2X3, P2X4, and P2X7. This chapter provides guidance for selecting suitable tool compounds for studying these large and important purine receptor families.


Assuntos
Trifosfato de Adenosina/metabolismo , Agonistas do Receptor Purinérgico P2/farmacologia , Antagonistas do Receptor Purinérgico P2/farmacologia , Receptores Purinérgicos/química , Receptores Purinérgicos/fisiologia , Animais , Humanos , Transdução de Sinais
17.
Pharmacol Rep ; 71(6): 1034-1043, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31600634

RESUMO

BACKGROUND: In the current investigation, the effects of the P2Y12 blocker ticagrelor, the sodium/glucose transporter-2-inhibitor empagliflozin, and the selective estrogen receptor modulator tamoxifen were examined against rheumatoid arthritis (RA)/diabetes mellitus (DM)-co-morbidity-induced defects in vascular reactivity. METHODS: After model setting, rats were allocated into a normal control, an RA/DM-co-morbidity, and three treatment groups receiving ticagrelor, empagliflozin and tamoxifen. Aorta tissue was isolated for enzyme-linked immunosorbent assay (ELISA) and western blot estimation of the pro-inflammatory molecules angiotensin-II (Ang-II) and endothelin-1 (ET-1), the adhesion molecules P-selectin and vascular cell adhesion molecule-1 (VCAM-1), the energy preserving molecule adenosine-5'-monophosphate-activated protein kinase (AMPK), and the anti-inflammatory molecule vasoactive intestinal peptide (VIP). Estimations of endothelial nitric oxide synthase (eNOS) and matrix metalloproteinase (MMP)-2 were performed immunohistochemically, together with histopathological examination using hematoxylin and eosin and Masson trichrome staining. An in vitro study on rat aortic strips was conducted to assess aorta vasorelaxation. RESULTS: Ticagrelor, empagliflozin and tamoxifen significantly increased aorta tissue AMPK and eNOS and decreased Ang-II, ET-1, P-selectin, VCAM-1 and VIP levels compared with RA/DM-co-morbidity, coupled with improved acetylcholine vasorelaxation in vitro. CONCLUSION: Ticagrelor, empagliflozin and tamoxifen may correct vascular reactivity defects, where modulation of vascular AMPK, eNOS, Ang-II, ET-1, P-selectin, VCAM-1 and MMP-2 underline their protective effects.


Assuntos
Compostos Benzidrílicos/farmacologia , Endotélio Vascular/efeitos dos fármacos , Glucosídeos/farmacologia , Antagonistas do Receptor Purinérgico P2/farmacologia , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Tamoxifeno/farmacologia , Ticagrelor/farmacologia , Quinases Proteína-Quinases Ativadas por AMP , Angiotensina II/metabolismo , Animais , Aorta/efeitos dos fármacos , Aorta/patologia , Artrite Reumatoide/tratamento farmacológico , Diabetes Mellitus Experimental/tratamento farmacológico , Feminino , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Proteínas Quinases/metabolismo , Ratos , Ratos Endogâmicos WF , Receptores Purinérgicos P2Y12 , Molécula 1 de Adesão de Célula Vascular/metabolismo , Vasodilatação/efeitos dos fármacos
18.
Folia Neuropathol ; 57(2): 161-169, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31556575

RESUMO

The present investigation evaluated the effect of inhibiting the P2Y12 gene on anaesthetic-induced neuronal injury in a rat model. Neuronal injury was induced by exposing the animals for 6 h to 30% oxygen containing 0.75% isoflurane and 1.2 mg/kg prasugrel (a P2Y12 inhibitor) p.o. for 14 days. Cognitive function was determined by the Morris water maze, and the neurological severity score was determined. Enzyme-linked immunosorbent assay was used to estimate the level of oxidative stress and mediators of inflammation in brain tissues of isoflurane-induced neuronal injury rats. Apoptosis of neuronal cells was estimated by terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) and western blot assays. Real time-polymerase chain reaction was performed to estimate the expression levels of several proteins. The data revealed that inhibiting the P2Y12 gene ameliorated changes in the modified neurological severity score and cognitive function in neuronal injury rats. Moreover the levels of proinflammatory mediators, oxidative stress, and cyclic AMP, and the number of TUNEL-positive cells, decreased significantly (p < 0.01) in the prasugrel-treated group compared to the negative control group. In addition, apoptosis of neuronal cells decreased in the prasugrel-treated group, as it ameliorated expression of the PI3K, Bcl-2, Bad, and Akt proteins in the isoflurane-induced neuronal injury rats. Expression of brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) proteins was enhanced, whereas the Toll-like receptor-4 (TLR-4) and nuclear factor κB (NF-κB) proteins decreased in the brain tissues of the prasugrel-treated group compared to the negative control group of rats. These results suggest that inhibiting the P2YR12 gene protects against neuronal injury in isoflurane-induced neuronal injury rats. Inhibiting the P2YR12 gene ameliorated neuronal apoptosis by regulating the BDNF/TLR-4/TNF-α pathway.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Isoflurano/toxicidade , Neurônios/metabolismo , Inibidores da Agregação Plaquetária/farmacologia , Antagonistas do Receptor Purinérgico P2/farmacologia , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Cognição/efeitos dos fármacos , AMP Cíclico/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Cloridrato de Prasugrel/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2/metabolismo
19.
Proc Natl Acad Sci U S A ; 116(38): 18971-18982, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31481624

RESUMO

Human cytomegalovirus (HCMV) manipulates many aspects of host cell biology to create an intracellular milieu optimally supportive of its replication and spread. Our study reveals that levels of several components of the purinergic signaling system, including the P2Y2 and P2X5 receptors, are elevated in HCMV-infected fibroblasts. Knockdown and drug treatment experiments demonstrated that P2Y2 enhances the yield of virus, whereas P2X5 reduces HCMV production. The HCMV IE1 protein induces P2Y2 expression; and P2Y2-mediated signaling is important for efficient HCMV gene expression, DNA synthesis, and the production of infectious HCMV progeny. P2Y2 cooperates with the viral UL37x1 protein to regulate cystolic Ca2+ levels. P2Y2 also regulates PI3K/Akt signaling and infected cell motility. Thus, P2Y2 functions at multiple points within the viral replication cycle to support the efficient production of HCMV progeny, and it may facilitate in vivo viral spread through its role in cell migration.


Assuntos
Cálcio/metabolismo , Movimento Celular , Infecções por Citomegalovirus/virologia , Citomegalovirus/fisiologia , Receptores Purinérgicos P2Y2/metabolismo , Linhagem Celular , Infecções por Citomegalovirus/metabolismo , Infecções por Citomegalovirus/patologia , DNA Viral/metabolismo , Fibroblastos/metabolismo , Fibroblastos/virologia , Expressão Gênica , Técnicas de Silenciamento de Genes , Interações Hospedeiro-Patógeno , Humanos , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Mutação , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Antagonistas do Receptor Purinérgico P2/farmacologia , Receptores Purinérgicos P2X5/genética , Receptores Purinérgicos P2X5/metabolismo , Receptores Purinérgicos P2Y2/genética , Transdução de Sinais , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos
20.
Eur J Med Chem ; 181: 111564, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31376563

RESUMO

The P2Y14 receptor (P2Y14R) plays a key role in the modulation of inflammatory process, but very few classes of antagonists have been reported. A series of 3-amide benzoic acid derivatives were identified as novel and potent P2Y14R antagonists. The most potent antagonist, 16c, showed comparable activity (IC50 = 1.77 nM) to PPTN, the most potent P2Y14R antagonist reported. Compound 16c demonstrated dramatically improved aqueous solubility and excellent metabolic stability in rat and human microsomes. Investigation of the anti-inflammatory effect of 16c was performed in MSU treated THP-1 cells by flow cytometry, Western Blot and immunofluorescence labeling technology, which exhibited that 16c might be a promising candidate for further research.


Assuntos
Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Ácido Benzoico/química , Ácido Benzoico/farmacologia , Antagonistas do Receptor Purinérgico P2/química , Antagonistas do Receptor Purinérgico P2/farmacologia , Amidas/síntese química , Amidas/química , Amidas/farmacologia , Animais , Anti-Inflamatórios/síntese química , Ácido Benzoico/síntese química , Linhagem Celular , Desenho de Fármacos , Humanos , Simulação de Acoplamento Molecular , Antagonistas do Receptor Purinérgico P2/síntese química , Ratos , Receptores Purinérgicos P2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA