Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 352
Filtrar
1.
PLoS One ; 19(9): e0308632, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39316620

RESUMO

Autism spectrum disorder (ASD) is one of the leading causes of distorted social communication, impaired speech, hyperactivity, anxiety, and stereotyped repetitive behaviour. The aetiology of ASD is complex; therefore, multiple drugs have been suggested to manage the symptoms. Studies with histamine H3 receptor (H3R) blockers and acetylcholinesterase (AchE) blockers are considered potential therapeutic agents for the management of various cognitive impairments. Therefore, the aim of this study was to evaluate the neuro-behavioural effects of Betahistine, an H3R antagonist, and Donepezil, an acetylcholinesterase inhibitor on Swiss albino mouse model of autism. The mice were intraperitoneally injected with valproic acid (VPA) on the embryonic 12.5th day to induce autism-like symptoms in their offspring. This induced autism-like symptoms persists throughout the life. After administration of different experimental doses, various locomotor tests: Open Field, Hole-Board, Hole Cross and behavioural tests by Y-Maze Spontaneous Alternation and histopathology of brain were performed and compared with the control and negative control (NC1) groups of mice. The behavioural Y-Maze test exhibits significant improvement (p <0.01) on the short term memory of the test subjects upon administration of lower dose of Betahistine along with MAO-B inhibitor Rasagiline once compared with the NC1 group (VPA-exposed mice). Furthermore, the tests showed significant reduction in locomotion in line crossing (p <0.05), rearing (p <0.001) of the Open Field Test, and the Hole Cross Test (p <0.01) with administration of higher dose of Betahistine. Both of these effects were observed upon administration of acetylcholinesterase inhibitor, Donepezil. Brain-histopathology showed lower neuronal loss and degeneration in the treated groups of mice in comparison with the NC1 VPA-exposed mice. Administration of Betahistine and Rasagiline ameliorates symptoms like memory deficit and hyperactivity, proving their therapeutic effects. The effects found are dose dependent. The findings suggest that H3R might be a viable target for the treatment of ASD.


Assuntos
Transtorno Autístico , Comportamento Animal , Encéfalo , Modelos Animais de Doenças , Donepezila , Ácido Valproico , Animais , Camundongos , Feminino , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Comportamento Animal/efeitos dos fármacos , Gravidez , Donepezila/farmacologia , Transtorno Autístico/tratamento farmacológico , Transtorno Autístico/induzido quimicamente , Masculino , beta-Histina , Inibidores da Colinesterase/farmacologia , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Aprendizagem em Labirinto/efeitos dos fármacos , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/induzido quimicamente , Antagonistas dos Receptores Histamínicos H3/farmacologia
2.
ACS Chem Neurosci ; 15(18): 3363-3383, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39208251

RESUMO

At present, one of the most promising strategies to tackle the complex challenges posed by Alzheimer's disease (AD) involves the development of novel multitarget-directed ligands (MTDLs). To this end, we designed and synthesized nine new MTDLs using a straightforward and cost-efficient one-pot Biginelli three-component reaction. Among these newly developed compounds, one particular small molecule, named 3e has emerged as a promising MTDL. This compound effectively targets critical biological factors associated with AD, including the simultaneous inhibition of cholinesterases (ChEs), selective antagonism of H3 receptors, and blocking voltage-gated calcium channels. Additionally, compound 3e exhibited remarkable neuroprotective activity against H2O2 and Aß1-40, and effectively restored cognitive function in AD mice treated with scopolamine in the novel object recognition task, confirming that this compound could provide a novel and innovative therapeutic approach for the effective treatment of AD.


Assuntos
Doença de Alzheimer , Bloqueadores dos Canais de Cálcio , Inibidores da Colinesterase , Antagonistas dos Receptores Histamínicos H3 , Animais , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Bloqueadores dos Canais de Cálcio/farmacologia , Camundongos , Doença de Alzheimer/tratamento farmacológico , Antagonistas dos Receptores Histamínicos H3/farmacologia , Antagonistas dos Receptores Histamínicos H3/química , Humanos , Fármacos Neuroprotetores/farmacologia , Masculino , Descoberta de Drogas/métodos
3.
Bioorg Chem ; 151: 107704, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39126870

RESUMO

A series of scutellarein 7-l-amino acid carbamate-4'-cycloalkylamine propyl ether conjugates were designed and synthesized for the first time as multifunctional agents for Alzheimer's disease (AD) therapy. The designed compounds exhibited more balanced and effective multi-target potency. Among them, compound 11l, l-Valine carbamate derivative of scutellarein cycloheptylamine ether, exhibited the most potent inhibition of electric eel AChE enzymes and human AChE enzymes, with an IC50 values of 7.04 µM and 9.73 µM, respectively. Moreover, 11l exhibited more potent H3R antagonistic activities than clobenpropit, with an IC50 value of 1.09 nM. Compound 11l not only displayed excellent inhibition of self- and Cu2+-induced Aß1-42 aggregation (95.48 % and 88.63 % inhibition, respectively) but also induced the disassembly of self- and Cu2+-induced Aß fibrils (80.16 % and 89.30 % disaggregation, respectively). Moreover, 11l significantly reduced tau protein hyperphosphorylation induced by Aß25-35. It exhibited effective antioxidant activity and neuroprotective potency, and inhibited RSL3-induced PC12 cell ferroptosis. Assays of hCMEC/D3 and hPepT1-MDCK cell line permeability indicated that 11l would have optimal blood-brain barrier permeability and intestinal absorption characteristics. In addition, in vivo studies revealed that compound 11l significantly attenuated learning and memory impairment in an AD mouse model. Finally, a pharmacokinetic characterization of 11l indicated favorable druggability and pharmacokinetic properties. Taken together, our results suggest that 11l is a potential candidate for AD treatment and merits further investigation.


Assuntos
Acetilcolinesterase , Doença de Alzheimer , Apigenina , Inibidores da Colinesterase , Antagonistas dos Receptores Histamínicos H3 , Receptores Histamínicos H3 , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Inibidores da Colinesterase/síntese química , Humanos , Animais , Relação Estrutura-Atividade , Acetilcolinesterase/metabolismo , Camundongos , Antagonistas dos Receptores Histamínicos H3/farmacologia , Antagonistas dos Receptores Histamínicos H3/química , Antagonistas dos Receptores Histamínicos H3/síntese química , Ligantes , Apigenina/farmacologia , Apigenina/química , Apigenina/síntese química , Receptores Histamínicos H3/metabolismo , Estrutura Molecular , Relação Dose-Resposta a Droga , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/síntese química , Electrophorus , Ratos , Fragmentos de Peptídeos/metabolismo , Masculino , Células PC12
5.
Biomed Pharmacother ; 174: 116527, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579399

RESUMO

The aims of this work were to evaluate the expression of histamine H3 receptor (H3R) in triple negative breast cancer (TNBC) samples and to investigate the antitumoral efficacy and safety of the LINS01 series of H3R antagonists, through in silico, in vitro, and in vivo approaches. Antitumor activity of LINS01009, LINS01010, LINS01022, LINS01023 was assayed in vitro in 4T1 and MDA-MB-231 TNBC cells (0.01-100 µM), and in vivo in 4T1 tumors orthotopically established in BALB/c mice (1 or 20 mg/kg). Additionally, H3R expression was assessed in 50 human TNBC samples. We have described a higher H3R mRNA expression in basal-like/TNBC tumors vs. matched normal tissue using TCGA Pan-Cancer Atlas data, and a higher H3R expression in human tumor samples vs. peritumoral tissue evidenced by immunohistochemistry associated with poorer survival. Furthermore, while all the essayed compounds showed antitumoral properties, LINS01022 and LINS01023 exhibited the most potent antiproliferative effects by: i) inducing cell apoptosis and suppressing cell migration in 4T1 and MDA-MB-231 TNBC cells, and ii) inhibiting cell growth in paclitaxel-resistant 4T1 cells (potentiating the paclitaxel antiproliferative effect). Moreover, 20 mg/kg LINS01022 reduced tumor size in 4T1 tumor-bearing mice, exhibiting a safe toxicological profile and potential for druggability estimated by ADME calculations. We conclude that the H3R is involved in the regulation of TNBC progression, offering promising therapeutic potential for the novel LINS01 series of H3R antagonists.


Assuntos
Antineoplásicos , Antagonistas dos Receptores Histamínicos H3 , Neoplasias de Mama Triplo Negativas , Animais , Feminino , Humanos , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Antagonistas dos Receptores Histamínicos H3/farmacologia , Antagonistas dos Receptores Histamínicos H3/uso terapêutico , Camundongos Endogâmicos BALB C , Receptores Histamínicos H3/metabolismo , Receptores Histamínicos H3/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
6.
J Med Chem ; 67(5): 3643-3667, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38393759

RESUMO

Steroid-based histamine H3 receptor antagonists (d-homoazasteroids) were designed by combining distinct structural elements of HTS hit molecules. They were characterized, and several of them displayed remarkably high affinity for H3 receptors with antagonist/inverse agonist features. Especially, the 17a-aza-d-homolactam chemotype demonstrated excellent H3R activity together with significant in vivo H3 antagonism. Optimization of the chemotype was initiated with special emphasis on the elimination of the hERG and muscarinic affinity. Additionally, ligand-based SAR considerations and molecular docking studies were performed to predict binding modes of the molecules. The most promising compounds (XXI, XXVIII, and XX) showed practically no muscarinic and hERG affinity. They showed antagonist/inverse agonist property in the in vitro functional tests that was apparent in the rat in vivo dipsogenia test. They were considerably stable in human and rat liver microsomes and provided significant in vivo potency in the place recognition and novel object recognition cognitive paradigms.


Assuntos
Antagonistas dos Receptores Histamínicos H3 , Receptores Histamínicos H3 , Ratos , Humanos , Animais , Histamina , Agonismo Inverso de Drogas , Receptores Histamínicos H3/metabolismo , Simulação de Acoplamento Molecular , Agonistas dos Receptores Histamínicos/farmacologia , Agonistas dos Receptores Histamínicos/metabolismo , Esteroides , Microssomos Hepáticos/metabolismo , Antagonistas dos Receptores Histamínicos H3/farmacologia , Antagonistas dos Receptores Histamínicos
7.
Int J Mol Sci ; 24(16)2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37628900

RESUMO

The role of histamine H3 receptors (H3Rs) in memory and the prospective of H3R antagonists in pharmacological control of neurodegenerative disorders, e.g., Alzheimer's disease (AD), is well-accepted. Therefore, the procognitive effects of acute systemic administration of H3R antagonist E169 (2.5-10 mg/kg, i.p.) on MK801-induced amnesia in C57BL/6J mice using the novel object recognition test (NORT) were evaluated. E169 (5 mg) provided a significant memory-improving effect on MK801-induced short- and long-term memory impairments in NORT. The E169 (5 mg)-provided effects were comparable to those observed with the reference phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 and were abrogated with the H3R agonist (R)-α-methylhistamine (RAMH). Additionally, our results demonstrate that E169 ameliorated MK801-induced memory deficits by antagonism of H3Rs and by modulation of the level of disturbance in the expression of PI3K, Akt, and GSK-3ß proteins, signifying that E169 mitigated the Akt-mTOR signaling pathway in the hippocampus of tested mice. Moreover, the results observed revealed that E169 (2.5-10 mg/kg, i.p.) did not alter anxiety levels and locomotor activity of animals in open field tests, demonstrating that performances improved following acute systemic administration with E169 in NORT are unrelated to changes in emotional response or in spontaneous locomotor activity. In summary, these obtained results suggest the potential of H3R antagonists such as E169, with good in silico physicochemical properties and stable retained key interactions in docking studies at H3R, in simultaneously modulating disturbed brain neurotransmitters and the imbalanced Akt-mTOR signaling pathway related to neurodegenerative disorders, e.g., AD.


Assuntos
Doença de Alzheimer , Antagonistas dos Receptores Histamínicos H3 , Animais , Camundongos , Camundongos Endogâmicos C57BL , Glicogênio Sintase Quinase 3 beta , Fosfatidilinositol 3-Quinases , Maleato de Dizocilpina , Antagonistas dos Receptores Histamínicos H3/farmacologia , Antagonistas dos Receptores Histamínicos H3/uso terapêutico , Proteínas Proto-Oncogênicas c-akt , Fosfatidilinositol 3-Quinase , Serina-Treonina Quinases TOR , Amnésia/induzido quimicamente , Amnésia/tratamento farmacológico , Doença de Alzheimer/tratamento farmacológico , Transdução de Sinais , Cognição
8.
Behav Pharmacol ; 34(4): 179-196, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37171458

RESUMO

Autism spectrum disorder is a neurodevelopmental disorder characterized by deficits in social communication and repetitive behavior. Many studies show that the number of cognitive impairmentscan be reduced by antagonists of the histamine H3 receptor (H3R). In this study, the effects of ciproxifan (CPX) (1 and 3 mg/kg, intraperitoneally) on cognitive impairments in rat pups exposed to valproic acid (VPA) (600 mg/kg, intraperitoneally) wereexamined on postnatal day 48-50 (PND 48-50) using marble-burying task (MBT), open field, novel object recognition (NOR), and Passive avoidance tasks. Famotidine (FAM) (10, 20, and 40 mg/kg, intraperitoneally) was also used to determine whether histaminergic neurotransmission exerts its procognitive effects via H2 receptors (H2Rs). Furthermore, a histological investigation was conducted to assess the degree of degeneration of hippocampal neurons. The results revealed that repetitive behaviors increased in VPA-exposed rat offspring in the MBT. In addition, VPA-exposed rat offspring exhibited more anxiety-like behaviors in the open field than saline-treated rats. It was found that VPA-exposed rat offspring showed memory deficits in NOR and Passive avoidance tasks. Our results indicated that 3 mg/kg CPX improved cognitive impairments induced by VPA, while 20 mg/kg FAM attenuated them. We concluded that 3 mg/kg CPX improved VPA-induced cognitive impairments through H3Rs. The histological assessment showed that the number of CA1 neurons decreased in the VPA-exposed rat offspring compared to the saline-exposed rat offspring, but this decrease was not significant. The histological assessment also revealed no significant differences in CA1 neurons in VPA-exposed rat offspring compared to saline-exposed rat offspring. However, CPX3 increased the number of CA1 neurons in the VPA + CPX3 group compared to the VPA + Saline group, but this increase was not significant. This study showed that rats prenatally exposed to VPA exhibit cognitive impairments in the MBT, open field, NOR, and Passive avoidance tests, which are ameliorated by CPX treatment on PND 48-50. In addition, morphological investigations showed that VPA treatment did not lead to neuronal degeneration in the CA1 subfield of the hippocampus in rat pups.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Disfunção Cognitiva , Antagonistas dos Receptores Histamínicos H3 , Efeitos Tardios da Exposição Pré-Natal , Ratos , Animais , Feminino , Humanos , Ácido Valproico/efeitos adversos , Transtorno Autístico/induzido quimicamente , Transtorno Autístico/tratamento farmacológico , Transtorno Autístico/patologia , Histamina/farmacologia , Modelos Animais de Doenças , Antagonistas dos Receptores Histamínicos H3/farmacologia , Cognição , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Comportamento Animal , Comportamento Social
9.
Int J Mol Sci ; 24(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37108661

RESUMO

Many studies have shown the high efficacy of histamine H3 receptor ligands in preventing weight gain. In addition to evaluating the efficacy of future drug candidates, it is very important to assess their safety profile, which is established through numerous tests and preclinical studies. The purpose of the present study was to evaluate the safety of histamine H3/sigma-2 receptor ligands by assessing their effects on locomotor activity and motor coordination, as well as on the cardiac function, blood pressure, and plasma activity of certain cellular enzymes. The ligands tested at a dose of 10 mg/kg b.w. did not cause changes in locomotor activity (except for KSK-74) and did not affect motor coordination. Significant reductions in blood pressure were observed after the administration of compounds KSK-63, KSK-73, and KSK-74, which seems logically related to the increased effect of histamine. Although the results of in vitro studies suggest that the tested ligands can block the human ether-a-go-go-related gene (hERG) potassium channels, they did not affect cardiac parameters in vivo. It should be noted that repeated administration of the tested compounds prevented an increase in the activity of alanine aminotransferase (AlaT) and gamma-glutamyl transpeptidases (gGT) observed in the control animals fed a palatable diet. The obtained results show that the ligands selected for this research are not only effective in preventing weight gain but also demonstrate safety in relation to the evaluated parameters, allowing the compounds to proceed to the next stages of research.


Assuntos
Antagonistas dos Receptores Histamínicos H3 , Receptores Histamínicos H3 , Humanos , Animais , Histamina , Antagonistas dos Receptores Histamínicos H3/farmacologia , Obesidade/tratamento farmacológico , Aumento de Peso , Ligantes , Antagonistas dos Receptores Histamínicos
10.
Molecules ; 28(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37110645

RESUMO

H3R is becoming an attractive and promising target for epilepsy treatment as well as the discovery of antiepileptics. In this work, a series of 6-aminoalkoxy-3,4-dihydroquinolin-2(1H)-ones was prepared to screen their H3R antagonistic activities and antiseizure effects. The majority of the target compounds displayed a potent H3R antagonistic activity. Among them, compounds 2a, 2c, 2h, and 4a showed submicromolar H3R antagonistic activity with an IC50 of 0.52, 0.47, 0.12, and 0.37 µM, respectively. The maximal electroshock seizure (MES) model screened out three compounds (2h, 4a, and 4b) with antiseizure activity. Meanwhile, the pentylenetetrazole (PTZ)-induced seizure test gave a result that no compound can resist the seizures induced by PTZ. Additionally, the anti-MES action of compound 4a fully vanished when it was administrated combined with an H3R agonist (RAMH). These results showed that the antiseizure role of compound 4a might be achieved by antagonizing the H3R receptor. The molecular docking of 2h, 4a, and PIT with the H3R protein predicted their possible binding patterns and gave a presentation that 2h, 4a, and PIT had a similar binding model with H3R.


Assuntos
Antagonistas dos Receptores Histamínicos H3 , Receptores Histamínicos H3 , Ratos , Animais , Humanos , Histamina , Ratos Wistar , Simulação de Acoplamento Molecular , Antagonistas dos Receptores Histamínicos H3/química , Receptores Histamínicos H3/metabolismo , Relação Dose-Resposta a Droga , Anticonvulsivantes/química , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Pentilenotetrazol/efeitos adversos
11.
Curr Top Behav Neurosci ; 59: 169-191, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35704272

RESUMO

Substance use disorders are a leading cause of morbidity and mortality, and available pharmacological treatments are of modest efficacy. Histamine is a biogenic amine with four types of receptors. The histamine H3 receptor (H3R) is an autoreceptor and also an heteroreceptor. H3Rs are highly expressed in the basal ganglia, hippocampus and cortex, and regulate a number of neurotransmitters including acetylcholine, norepinephrine, GABA and dopamine. Its function and localization suggest that the H3R may be relevant to a number of psychiatric disorders and could represent a potential therapeutic target for substance use disorders. The purpose of the present review is to summarize preclinical studies investigating the effects of H3R agonists and antagonists on animal models of alcohol, nicotine and psychostimulant use. At present, the effects of H3R antagonists such as thioperamide, pitolisant or ciproxifan have been investigated in drug-induced locomotion, conditioned place preference, drug self-administration, reinstatement, sensitization and drug discrimination. For alcohol and nicotine, the effects of H3R ligands on two-bottle choice and memory tasks, respectively, have also been investigated. The results of these studies are inconsistent. For alcohol, H3R antagonists generally decreased the reward-related properties of ethanol, which suggests that H3R antagonists may be effective as a treatment option for alcohol use disorder. However, the effects of H3R antagonists on nicotine and psychostimulant motivation and reward are less clear. H3R antagonists potentiated the abuse-related properties of nicotine, but only a handful of studies have been conducted. For psychostimulants, evidence is mixed and suggests that more research is needed to establish whether H3R antagonists are a viable therapeutic option. The fact that different drugs of abuse have different brain targets may explain the differential effects of H3R ligands.


Assuntos
Estimulantes do Sistema Nervoso Central , Antagonistas dos Receptores Histamínicos H3 , Receptores Histamínicos H3 , Transtornos Relacionados ao Uso de Substâncias , Acetilcolina , Animais , Autorreceptores , Estimulantes do Sistema Nervoso Central/farmacologia , Dopamina , Etanol/farmacologia , Histamina , Antagonistas dos Receptores Histamínicos H3/farmacologia , Antagonistas dos Receptores Histamínicos H3/uso terapêutico , Ligantes , Nicotina , Norepinefrina , Receptores Histamínicos H3/fisiologia , Transtornos Relacionados ao Uso de Substâncias/tratamento farmacológico , Ácido gama-Aminobutírico
12.
Psychopharmacology (Berl) ; 239(8): 2673-2693, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35538250

RESUMO

RATIONALE: Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social communication and cognitive behaviors. Histamine H3 receptor (H3R) antagonists are considered as therapeutic factors for treating cognitive impairments. OBJECTIVES: The aim of the present study was to evaluate the effects of the H3R antagonist, ciproxifan (CPX), on cognition impairment especially, spatial learning memory, and synaptic plasticity in the CA1 region of the hippocampus in autistic rats. METHODS: Pregnant rats were injected with either valproic acid (VPA) (600 mg/kg, i.p.) or saline on an embryonic day 12.5 (E12.5). The effects of the H3R antagonist, ciproxifan (CPX) (1, 3 mg/kg, i.p.), were investigated on learning and memory in VPA-exposed rat pups and saline-exposed rat pups using Morris water maze (MWM) and social interaction tasks. The H2R antagonist, famotidine (FAM) (10, 20, 40 mg/kg, i.p.), was used to determine whether brain histaminergic neurotransmission exerted its procognitive effects through the H2R. In addition, synaptic reinforcement was evaluated by in vivo field potential recording. RESULTS: The results showed that VPA-exposed rat pups had significantly lower sociability and social memory performance compared to the saline rats. VPA-exposed rat pups exhibited learning and memory impairments in the MWM task. In addition, VPA caused suppression of long-term potentiation (LTP) in the CA1 area of the hippocampus. Our results demonstrated that CPX 3 mg/kg improved VPA-induced cognitive impairments and FAM 20 mg/kg attenuated cognitive behaviors as well as electrophysiological properties. CONCLUSIONS: CPX 3 mg/kg improved VPA-induced impairments of LTP as well as learning and memory deficits through H2R.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Antagonistas dos Receptores Histamínicos H3 , Efeitos Tardios da Exposição Pré-Natal , Animais , Cognição , Modelos Animais de Doenças , Feminino , Antagonistas dos Receptores Histamínicos H3/farmacologia , Humanos , Imidazóis , Transtornos da Memória , Plasticidade Neuronal , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Ratos , Aprendizagem Espacial , Ácido Valproico/efeitos adversos
13.
Curr Drug Res Rev ; 14(3): 162-170, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35431009

RESUMO

BACKGROUND: Methamphetamine (METH) is classified as a Schedule II stimulant drug under the United Nations Convention on Psychotropic Substances of 1971. METH and other amphetamine analogues (AMPHs) are powerful addictive drugs. Treatments are needed to treat the symptoms of METH addiction, chronic METH use, and acute METH overdose. No effective treatment for METH abuse has been established because alterations of brain functions under the excessive intake of abused drug intake are largely irreversible due in part to brain damage that occurs in the course of chronic METH use. OBJECTIVE: Modulation of brain histamine neurotransmission is involved in several neuropsychiatric disorders, including substance use disorders. This review discusses the possible mechanisms underlying the therapeutic effects of histamine H3 receptor antagonists on symptoms of methamphetamine abuse. CONCLUSION: Treatment of mice with centrally acting histamine H3 receptor antagonists increases hypothalamic histamine contents and reduces high-dose METH effects while potentiating lowdose effects via histamine H3 receptors that bind released histamine. On the basis of experimental evidence, it is hypothesized that histamine H3 receptors may be an effective target for the treatment METH use disorder or other adverse effects of chronic METH use.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas , Estimulantes do Sistema Nervoso Central , Metanfetamina , Animais , Camundongos , Estimulantes do Sistema Nervoso Central/farmacologia , Histamina , Metanfetamina/farmacologia , Receptores Histamínicos , Antagonistas dos Receptores Histamínicos H3
14.
Biomed Pharmacother ; 150: 112947, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35447544

RESUMO

Human histamine H3 receptor (H3R) was initially described in the brain of rat in 1983 and cloned in 1999. It can be found in the human brain and functions as a regulator of histamine synthesis and release. H3 receptors are predominantly resident in the presynaptic region of neurons containing histamine, where they modulate the synthesis and release of histamine (autoreceptor) or other neurotransmitters such as dopamine, norepinephrine, gamma-aminobutyric acid (GABA), glutamate, acetylcholine and serotonin (all heteroreceptors). The human histamine H3 receptor has twenty isoforms of which eight are functional. H3 receptor expression is seen in the cerebral cortex, neurons of the basal ganglia and hippocampus, which are important for process of cognition, sleep and homoeostatic regulation. In addition, histamine H3R antagonists stimulate insulin release, through inducing the release of acetylcholine and cause significant reduction in total body weight and triglycerides in obese subjects by causing a feeling of satiety in the hypothalamus. The ability of histamine H3R antagonist to reduce diabetes-induced hyperglycaemia is comparable to that of metformin. It is reasonable therefore, to claim that H3 receptor antagonists may play an important role in the therapy of disorders of cognition, the ability to sleep, oxidative stress, inflammation and anomaly of glucose homoeostasis. A large number of H3R antagonists are being developed by pharmaceutical companies and university research centres. As examples of these new drugs, this review will discuss a number of drugs, including the first histamine H3R receptor antagonist produced.


Assuntos
Diabetes Mellitus , Antagonistas dos Receptores Histamínicos H3 , Receptores Histamínicos H3 , Acetilcolina , Animais , Histamina , Antagonistas dos Receptores Histamínicos/farmacologia , Antagonistas dos Receptores Histamínicos H3/farmacologia , Antagonistas dos Receptores Histamínicos H3/uso terapêutico , Humanos , Ratos , Receptores Histamínicos H3/metabolismo
15.
Pharmacol Biochem Behav ; 212: 173304, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34856309

RESUMO

BACKGROUND: Autism spectrum disorders (ASDs) are a group of neurodevelopmental conditions defined by behavioral deficits in social communication and interactions, mental inflexibility and repetitive behaviors. Converging evidence from observational and preclinical studies suggest that excessive repetitive behaviors in people with ASD may be due to elevated histaminergic H3 receptor signaling in the striatum. We hypothesized that systemic administration of pharmacological histamine H3 receptor antagonists would attenuate the expression of repetitive behaviors in the BTBR T+Itpr3tf/J (BTBR) mouse inbred strain, an established mouse model presenting autism-like repetitive behaviors and novelty-induced hyperactivity. We further aimed to investigate whether agonism of the histamine H3 receptor would be sufficient to induce repetitive behaviors in the C57BL/6J control mouse strain. METHODS: Different doses of H3 receptor agonists (i.e., (R)-α-methylhistamine and immethridine) and H3 receptor antagonists/inverse agonists (i.e., ciproxifan and pitolisant) were administered via intraperitoneal (i.p.) injection in male mice to characterize the acute effects of these compounds on ASD-related behavioral readouts. RESULTS: The highly selective H3 receptor agonist immethridine significantly increased the time spent in stereotypic patterns in C57BL/6J mice, but this effect appeared to be driven by general sedative properties of the compound. High doses of pitolisant significantly decreased locomotor hyperactivity in novel environments in BTBR mice, without significant effects on repetitive behaviors. CONCLUSIONS: Based on our findings, we conclude that acute H3 receptor manipulation mainly affected general motor activity levels in novel environments. Small changes in stereotyped behaviors were observed but appeared to be driven by altered general activity levels.


Assuntos
Transtorno do Espectro Autista/tratamento farmacológico , Comportamento Animal/efeitos dos fármacos , Antagonistas dos Receptores Histamínicos H3/farmacologia , Hipercinese/tratamento farmacológico , Receptores Histamínicos H3/metabolismo , Animais , Transtorno do Espectro Autista/metabolismo , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Asseio Animal/efeitos dos fármacos , Agonistas dos Receptores Histamínicos/farmacologia , Humanos , Hipercinese/metabolismo , Imidazóis/farmacologia , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Piperidinas/farmacologia , Comportamento Social , Comportamento Estereotipado/efeitos dos fármacos
16.
ACS Chem Neurosci ; 13(1): 1-15, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34908391

RESUMO

In an attempt to extend recent studies showing that some clinically evaluated histamine H3 receptor (H3R) antagonists possess nanomolar affinity at sigma-1 receptors (σ1R), we selected 20 representative structures among our previously reported H3R ligands to investigate their affinity at σRs. Most of the tested compounds interact with both sigma receptors to different degrees. However, only six of them showed higher affinity toward σ1R than σ2R with the highest binding preference to σ1R for compounds 5, 11, and 12. Moreover, all these ligands share a common structural feature: the piperidine moiety as the fundamental part of the molecule. It is most likely a critical structural element for dual H3/σ1 receptor activity as can be seen by comparing the data for compounds 4 and 5 (hH3R Ki = 3.17 and 7.70 nM, σ1R Ki = 1531 and 3.64 nM, respectively), where piperidine is replaced by piperazine. We identified the putative protein-ligand interactions responsible for their high affinity using molecular modeling techniques and selected compounds 5 and 11 as lead structures for further evaluation. Interestingly, both ligands turned out to be high-affinity histamine H3 and σ1 receptor antagonists with negligible affinity at the other histamine receptor subtypes and promising antinociceptive activity in vivo. Considering that many literature data clearly indicate high preclinical efficacy of individual selective σ1 or H3R ligands in various pain models, our research might be a breakthrough in the search for novel, dual-acting compounds that can improve existing pain therapies. Determining whether such ligands are more effective than single-selective drugs will be the subject of our future studies.


Assuntos
Antagonistas dos Receptores Histamínicos H3 , Receptores Histamínicos H3 , Analgésicos/farmacologia , Histamina , Antagonistas dos Receptores Histamínicos , Antagonistas dos Receptores Histamínicos H3/farmacologia , Ligantes , Piperazina , Piperidinas/farmacologia , Receptores sigma , Relação Estrutura-Atividade , Receptor Sigma-1
17.
Bioorg Med Chem ; 50: 116462, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34695709

RESUMO

Alzheimers disease (AD) is the most prominent neurodegenerative disorder with high medical need. Protein-protein-interactions (PPI) interactions have a critical role in AD where ß-amyloid structures (Aß) build toxic oligomers. Design of disease modifying multi target directed ligand (MTDL) has been performed, which disable PPI on the one hand and on the other hand, act as procognitive antagonists at the histamine H3 receptor (H3R). The synthetized compounds are structurally based on peptidomimetic amino acid-like structures mainly as keto, diketo-, or acyl variations of a piperazine moiety connected to an H3R pharmacophore. Most of them showed low nanomolar affinities at H3R and some with promising affinity to Aß-monomers. The structure-activity relationships (SAR) described offer new possibilities for MTDL with an optimized profile combining symptomatic and potential causal therapeutic approaches in AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/antagonistas & inibidores , Antagonistas dos Receptores Histamínicos H3/farmacologia , Peptidomiméticos/farmacologia , Piperazina/farmacologia , Receptores Histamínicos H3/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Relação Dose-Resposta a Droga , Antagonistas dos Receptores Histamínicos H3/síntese química , Antagonistas dos Receptores Histamínicos H3/química , Humanos , Estrutura Molecular , Peptidomiméticos/síntese química , Peptidomiméticos/química , Piperazina/síntese química , Piperazina/química , Relação Estrutura-Atividade
18.
Biomolecules ; 11(8)2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34439851

RESUMO

Glaucoma is a multifactorial neuropathy characterized by increased intraocular pressure (IOP), and it is the second leading cause of blindness worldwide after cataracts. Glaucoma combines a group of optic neuropathies characterized by the progressive degeneration of retinal ganglionic cells (RGCs). Increased IOP and short-term IOP fluctuation are two of the most critical risk factors in glaucoma progression. Histamine is a well-characterized neuromodulator that follows a circadian rhythm, regulates IOP and modulates retinal circuits and vision. This review summarizes findings from animal models on the role of histamine and its receptors in the eye, focusing on the effects of histamine H3 receptor antagonists for the future treatment of glaucomatous patients.


Assuntos
Glaucoma , Antagonistas dos Receptores Histamínicos H3/uso terapêutico , Histamina/fisiologia , Receptores Histamínicos H3/fisiologia , Animais , Modelos Animais de Doenças , Glaucoma/tratamento farmacológico , Glaucoma/metabolismo , Humanos
19.
J Med Chem ; 64(15): 11695-11708, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34309390

RESUMO

The histamine H3 receptor (H3R) is considered an attractive drug target for various neurological diseases. We here report the synthesis of UR-NR266, a novel fluorescent H3R ligand. Broad pharmacological characterization revealed UR-NR266 as a sub-nanomolar compound at the H3R with an exceptional selectivity profile within the histamine receptor family. The presented neutral antagonist showed fast association to its target and complete dissociation in kinetic binding studies. Detailed characterization of standard H3R ligands in NanoBRET competition binding using UR-NR266 highlights its value as a versatile pharmacological tool to analyze future H3R ligands. The low nonspecific binding observed in all experiments could also be verified in TIRF and confocal microscopy. This fluorescent probe allows the highly specific analysis of native H3R in various assays ranging from optical high throughput technologies to biophysical analyses and single-molecule studies in its natural environment. An off-target screening at 14 receptors revealed UR-NR266 as a selective compound.


Assuntos
Técnicas de Transferência de Energia por Ressonância de Bioluminescência , Corantes Fluorescentes/farmacologia , Antagonistas dos Receptores Histamínicos H3/farmacologia , Receptores Histamínicos H3/metabolismo , Imagem Individual de Molécula , Sítios de Ligação/efeitos dos fármacos , Relação Dose-Resposta a Droga , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Células HEK293 , Antagonistas dos Receptores Histamínicos H3/síntese química , Antagonistas dos Receptores Histamínicos H3/química , Humanos , Ligantes , Estrutura Molecular , Relação Estrutura-Atividade
20.
J Med Chem ; 64(12): 8246-8262, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34107215

RESUMO

Adenosine A1/A2A receptors (A1R/A2AR) represent targets in nondopaminergic treatment of motor disorders such as Parkinson's disease (PD). As an innovative strategy, multitargeting ligands (MTLs) were developed to achieve comprehensive PD therapies simultaneously addressing comorbid symptoms such as sleep disruption. Recognizing the wake-promoting capacity of histamine H3 receptor (H3R) antagonists in combination with the "caffeine-like effects" of A1R/A2AR antagonists, we designed A1R/A2AR/H3R MTLs, where a piperidino-/pyrrolidino(propyloxy)phenyl H3R pharmacophore was introduced with overlap into an adenosine antagonist arylindenopyrimidine core. These MTLs showed distinct receptor binding profiles with overall nanomolar H3R affinities (Ki < 55 nM). Compound 4 (ST-2001, Ki (A1R) = 11.5 nM, Ki (A2AR) = 7.25 nM) and 12 (ST-1992, Ki (A1R) = 11.2 nM, Ki (A2AR) = 4.01 nM) were evaluated in vivo. l-DOPA-induced dyskinesia was improved after administration of compound 4 (1 mg kg-1, i.p. rats). Compound 12 (2 mg kg-1, p.o. mice) increased wakefulness representing novel pharmacological tools for PD therapy.


Assuntos
Antagonistas do Receptor A1 de Adenosina/uso terapêutico , Antagonistas do Receptor A2 de Adenosina/uso terapêutico , Antagonistas dos Receptores Histamínicos H3/uso terapêutico , Doença de Parkinson Secundária/tratamento farmacológico , Antagonistas do Receptor A1 de Adenosina/síntese química , Antagonistas do Receptor A1 de Adenosina/metabolismo , Antagonistas do Receptor A2 de Adenosina/síntese química , Antagonistas do Receptor A2 de Adenosina/metabolismo , Animais , Discinesias/tratamento farmacológico , Antagonistas dos Receptores Histamínicos H3/síntese química , Antagonistas dos Receptores Histamínicos H3/metabolismo , Humanos , Levodopa/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Oxidopamina , Doença de Parkinson Secundária/induzido quimicamente , Piperidinas/síntese química , Piperidinas/metabolismo , Piperidinas/uso terapêutico , Pirimidinas/síntese química , Pirimidinas/metabolismo , Pirimidinas/uso terapêutico , Pirrolidinas/síntese química , Pirrolidinas/metabolismo , Pirrolidinas/uso terapêutico , Ratos Sprague-Dawley , Receptor A2A de Adenosina/metabolismo , Receptores Histamínicos H3/metabolismo , Vigília/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA