Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(4): e0231689, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32298345

RESUMO

The giant sugarcane borer Telchin licus (Drury, 1773) (Lepidoptera: Castniidae) is a day-flying moth pest of sugarcane, pineapples and bananas. To better understand the chemical communication in this species, we examined the morphology of its olfactory system and the chemical composition of its body parts. The ventral surface of the clubbed antennae of T. licus has six morphological types of sensilla: sensilla trichodea, basiconica, chaetica, squamiforma, coeloconica, and auricillica. The telescopic ovipositor shows no evidence of a sexual gland, or female-specific compounds. On the other hand, the midleg basitarsus of males releases (E,Z)-2,13-octadecadienol and (Z,E)-2,13-octadecadienol, which are electroantennographically active in both sexes. These compounds are known female sex pheromones in the Sesiidae family and are male-specific compounds in another castniid moth, although further investigations are necessary to elucidate their ecological role in the Castniidae family.


Assuntos
Mariposas/anatomia & histologia , Mariposas/fisiologia , Animais , Antenas de Artrópodes/anatomia & histologia , Antenas de Artrópodes/química , Antenas de Artrópodes/fisiologia , Antenas de Artrópodes/ultraestrutura , Feminino , Masculino , Mariposas/química , Mariposas/ultraestrutura , Oviposição , Saccharum/parasitologia , Atrativos Sexuais/análise , Atrativos Sexuais/metabolismo
2.
Molecules ; 25(6)2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32168881

RESUMO

Bactrocera frauenfeldi (Schiner) (Diptera: Tephritidae) is a polyphagous fruit fly pest species that is endemic to Papua New Guinea and has become established in several Pacific Islands and Australia. Despite its economic importance for many crops and the key role of chemical-mediated sexual communication in the reproductive biology of tephritid fruit flies, as well as the potential application of pheromones as attractants, there have been no studies investigating the identity or activity of rectal gland secretions or emission profiles of this species. The present study (1) identifies the chemical profile of volatile compounds produced in rectal glands and released by B. frauenfeldi, (2) investigates which of the volatile compounds elicit an electroantennographic or electropalpographic response, and (3) investigates the potential function of glandular emissions as mate-attracting sex pheromones. Rectal gland extracts and headspace collections from sexually mature males and females of B. frauenfeldi were analysed by gas chromatography-mass spectrometry. Male rectal glands contained (E,E)-2-ethyl-8-methyl-1,7-dioxaspiro [5.5]undecane as a major component and (E,E)-2,8-dimethyl-1,7-dioxaspiro[5.5]undecane as a moderate component. Minor components included palmitoleic acid, palmitic acid, and ethyl oleate. In contrast, female rectal glands contained (E,E)-2,8-dimethyl-1,7-dioxaspiro[5.5]undecane and ethyl laurate as major components, ethyl myristate and ethyl palmitoleate as moderate components, and 18 minor compounds including amides, esters, and spiroacetals. Although fewer compounds were detected from the headspace collections of both males and females than from the gland extractions, most of the abundant chemicals in the rectal gland extracts were also detected in the headspace collections. Gas chromatography coupled electroantennographic detection found responses to (E,E)-2,8-dimethyl-1,7-dioxaspiro[5.5]undecane from the antennae of both male and female B. frauenfeldi. Responses to (E,E)-2-ethyl-8-methyl-1,7-dioxaspiro[5.5]undecane were elicited from the antennae of females but not males. The two spiroacetals also elicited electropalpographic responses from both male and female B. frauenfeldi. Ethyl caprate and methyl laurate, found in female rectal glands, elicited responses in female antennae and palps, respectively. Y-maze bioassays showed that females were attracted to the volatiles from male rectal glands but males were not. Neither males nor females were attracted to the volatiles from female rectal glands. Our findings suggest (E,E)-2,8-dimethyl-1,7-dioxaspiro[5.5]undecane and (E,E)-2-ethyl-8-methyl-1,7-dioxaspiro[5.5]undecane as components of a sex-attracting pheromone in B. frauenfeldi.


Assuntos
Antenas de Artrópodes/fisiologia , Percepção Olfatória/fisiologia , Glândula de Sal/fisiologia , Atrativos Sexuais/metabolismo , Tephritidae/fisiologia , Compostos Orgânicos Voláteis/metabolismo , Alcanos/metabolismo , Animais , Antenas de Artrópodes/química , Caproatos/metabolismo , Ácidos Graxos Monoinsaturados/metabolismo , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Lauratos/metabolismo , Masculino , Miristatos/metabolismo , Ácidos Oleicos/metabolismo , Ácido Palmítico/metabolismo , Glândula de Sal/química , Atrativos Sexuais/análise , Atrativos Sexuais/classificação , Especificidade da Espécie , Tephritidae/química , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/classificação
3.
BMC Genomics ; 21(1): 101, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32000664

RESUMO

BACKGROUND: Rhodnius prolixus has become a model for revealing the molecular bases of insect sensory biology due to the publication of its genome and its well-characterized behavioural repertoire. Gene expression modulation underlies behaviour-triggering processes at peripheral and central levels. Still, the regulation of sensory-related gene transcription in sensory organs is poorly understood. Here we study the genetic bases of plasticity in antennal sensory function, using R. prolixus as an insect model. RESULTS: Antennal expression of neuromodulatory genes such as those coding for neuropeptides, neurohormones and their receptors was characterized in fifth instar larvae and female and male adults by means of RNA-Sequencing (RNA-Seq). New nuclear receptor and takeout gene sequences were identified for this species, as well as those of enzymes involved in the biosynthesis and processing of neuropeptides and biogenic amines. CONCLUSIONS: We report a broad repertoire of neuromodulatory and neuroendocrine-related genes expressed in the antennae of R. prolixus and suggest that they may serve as the local basis for modulation of sensory neuron physiology. Diverse neuropeptide precursor genes showed consistent expression in the antennae of all stages studied. Future studies should characterize the role of these modulatory components acting over antennal sensory processes to assess the relative contribution of peripheral and central regulatory systems on the plastic expression of insect behaviour.


Assuntos
Perfilação da Expressão Gênica/veterinária , Proteínas de Insetos/genética , Rhodnius/crescimento & desenvolvimento , Animais , Antenas de Artrópodes/química , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Larva , Masculino , Neuropeptídeos/genética , Neurotransmissores/genética , Filogenia , Receptores de Neuropeptídeos/genética , Receptores de Neurotransmissores/genética , Rhodnius/genética , Análise de Sequência de RNA/veterinária
4.
J R Soc Interface ; 16(154): 20190049, 2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31088259

RESUMO

The antennae of mosquitoes are model systems for acoustic sensation, in that they obey general principles for sound detection, using both active feedback mechanisms and passive structural adaptations. However, the biomechanical aspect of the antennal structure is much less understood than the mechano-electrical transduction. Using confocal laser scanning microscopy, we measured the fluorescent properties of the antennae of two species of mosquito- Toxorhynchites brevipalpis and Anopheles arabiensis-and, noting that fluorescence is correlated with material stiffness, we found that the structure of the antenna is not a simple beam of homogeneous material, but is in fact a rather more complex structure with spatially distributed discrete changes in material properties. These present as bands or rings of different material in each subunit of the antenna, which repeat along its length. While these structures may simply be required for structural robustness of the antennae, we found that in FEM simulation, these banded structures can strongly affect the resonant frequencies of cantilever-beam systems, and therefore taken together our results suggest that modulating the material properties along the length of the antenna could constitute an additional mechanism for resonant tuning in these species.


Assuntos
Anopheles , Estresse Mecânico , Animais , Anopheles/anatomia & histologia , Anopheles/química , Antenas de Artrópodes/anatomia & histologia , Antenas de Artrópodes/química
5.
Sci Rep ; 8(1): 6035, 2018 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-29662070

RESUMO

Constitutive expression of Odorant-Binding Proteins (OBPs) in antennae and other body parts has been examined mainly to infer their involvement in insect olfaction, while their regulation in response to semiochemical stimuli has remained poorly known. Previous studies of semiochemical response were basically done using electrophysiology, which integrates the response of the set of OBPs present in an antenna or sensillum, without revealing the regulation of OBPs or which ones might be involved. In this study we used boll weevil as a model and mined its OBPs by RNA-Seq to study their simultaneous antennal expression by qPCR under controlled semiochemical stimuli with aggregation pheromone and plant volatiles. In the absence of a semiochemical stimulus, 23 of 24 OBPs were constitutively expressed in the antenna in both sexes. Semiochemicals changed systemically the expression of OBPs in both sexes. There were different patterns of up- and down-regulation in female antennae for each semiochemical stimulus, consistent with female chemical ecology. On the other hand, the only response in males was down-regulation of some OBPs. We suggest that these systemic changes in OBP expression might be related to enhancing detection of the semiochemical stimuli and/or priming the olfactory system to detect other environmental chemicals.


Assuntos
Regulação da Expressão Gênica , Proteínas de Insetos/genética , Feromônios/metabolismo , Receptores Odorantes/genética , Gorgulhos/genética , Sequência de Aminoácidos , Animais , Antenas de Artrópodes/química , Antenas de Artrópodes/metabolismo , Feminino , Proteínas de Insetos/análise , Masculino , Receptores Odorantes/análise , Alinhamento de Sequência , Caracteres Sexuais , Transcriptoma , Gorgulhos/química , Gorgulhos/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-28822866

RESUMO

In female mosquitoes, host-seeking and preference as well as several other important behaviors are largely driven by olfaction. Species of the Afrotropical Anopheles gambiae complex display divergent host-preference that are associated with significant differences in their vectorial capacity for human malaria. Olfactory sensitivity begins with signal transduction and activation of peripheral sensory neurons that populate the antennae, maxillary palps and other appendages. We have used shotgun proteomics to characterize the profile of soluble proteins of antennae and maxillary palps of three different species: An. coluzzii, An. arabiensis and An. quadriannulatus that display remarkable differences in anthropophilic behavior. This analysis revealed interspecific differences in the abundance of several proteins that comprise cuticular components, glutathione S-transferase and odorant binding proteins, the latter of which known to be directly involved in odor recognition.


Assuntos
Anopheles/metabolismo , Antenas de Artrópodes/metabolismo , Proteínas de Insetos/análise , Proteoma/análise , Proteômica/métodos , Animais , Antenas de Artrópodes/química , Feminino , Perfilação da Expressão Gênica , Proteínas de Insetos/química , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Proteoma/química , Proteoma/genética , Proteoma/metabolismo , Solubilidade
7.
Artigo em Inglês | MEDLINE | ID: mdl-28756307

RESUMO

A sophisticated olfactory system is part of the explanation for the prominence of insects among animals because of the essential roles of the olfactory system in foraging, host seeking, mating, ovipositing and avoiding toxic substances. In this study, we sequenced and analysed the transcriptomes of olfactory tissue (antennae) and non-olfactory tissue (legs) of the scarab beetle, Holotrichia oblita Faldermann, which is a serious underground pest in China. We obtained approximately 80.2 million 150bp reads that were assembled into 61,038 unigenes with an average length of 890bp. Among the transcripts, 70% of the unigenes were annotated. A total of 44 odorant receptors (ORs) and 9 ionotropic receptors (IRs) were identified based on homology searches. Then, quantitative real-time PCR experiments were performed to investigate the expression patterns of 32 putative chemosensory genes. The results showed that these genes were highly expressed in olfactory organs (antennae) and might play a key role in the olfaction-related behaviours in H. oblita. Based on the results of our phylogenetic analysis and the detailed tissue and sex-biased expression characteristics, the different roles of the receptor proteins in the olfactory system were also indicated. The results of this study will provide the foundation for further understanding of the olfactory odorant receptors of H. oblita at the molecular level and ultimately help to develop novel targets for manipulating this pest.


Assuntos
Antenas de Artrópodes/química , Besouros/genética , Perfilação da Expressão Gênica/métodos , Receptores Odorantes/genética , Animais , Antenas de Artrópodes/metabolismo , Besouros/metabolismo , Besouros/fisiologia , Feminino , Masculino , Especificidade de Órgãos/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores Ionotrópicos de Glutamato/genética , Receptores Ionotrópicos de Glutamato/metabolismo , Receptores Odorantes/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-27085212

RESUMO

Adelphocoris suturalis Jakovlev (Hemiptera: Miridae) is an insect pest that causes severe agricultural damage to cotton and many other important crops. In insects, olfaction is very important throughout their lifetime. There are two groups of small soluble proteins, named odorant binding proteins (OBPs) and chemosensory proteins (CSPs), which are suggested to participate in the initial biochemical recognition steps of insect olfactory signal transduction. In this study, a total of 16 OBPs (12 classical OBPs and 4 plus-C OBPs) and 8 CSPs, were identified in the antennal transcriptome of A. suturalis. The sex- and tissue-specific profiles of these binding protein genes showed that 13 of the 16 OBP transcripts were highly expressed in the antennae of both sexes, and 4 OBPs (AsutOBP1, 4, 5 and 9) were expressed higher in the male antennae compared to the female antennae. Three CSPs (AsutCSP1, 4 and 5) were expressed specifically in the antennae of both sexes, and AsutCSP1 was expressed higher in the male antennae than in the female antennae. Our findings identify several novel OBP and CSP genes for further investigation of the olfactory system of A. suturalis at the molecular level.


Assuntos
Antenas de Artrópodes/metabolismo , Hemípteros/genética , Proteínas de Insetos/metabolismo , Receptores Odorantes/metabolismo , Transcriptoma/genética , Animais , Antenas de Artrópodes/química , Feminino , Perfilação da Expressão Gênica , Hemípteros/metabolismo , Hemípteros/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Insetos/análise , Proteínas de Insetos/genética , Masculino , Reação em Cadeia da Polimerase em Tempo Real , Receptores Odorantes/análise , Receptores Odorantes/genética
9.
Elife ; 52016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27845621

RESUMO

Odorant binding proteins (Obps) are remarkable in their number, diversity, and abundance, yet their role in olfactory coding remains unclear. They are widely believed to be required for transporting hydrophobic odorants through an aqueous lymph to odorant receptors. We construct a map of the Drosophila antenna, in which the abundant Obps are mapped to olfactory sensilla with defined functions. The results lay a foundation for an incisive analysis of Obp function. The map identifies a sensillum type that contains a single abundant Obp, Obp28a. Surprisingly, deletion of the sole abundant Obp in these sensilla does not reduce the magnitude of their olfactory responses. The results suggest that this Obp is not required for odorant transport and that this sensillum does not require an abundant Obp. The results further suggest a novel role for this Obp in buffering changes in the odor environment, perhaps providing a molecular form of gain control.


Assuntos
Antenas de Artrópodes/química , Drosophila/química , Receptores Odorantes/análise , Receptores Odorantes/classificação , Sensilas/química , Animais , Antenas de Artrópodes/fisiologia , Drosophila/fisiologia , Perfilação da Expressão Gênica , Hibridização in Situ Fluorescente , Receptores Odorantes/genética , Receptores Odorantes/isolamento & purificação , Sensilas/fisiologia
10.
Micron ; 90: 43-58, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27585249

RESUMO

The typology, number and distribution pattern of antennal sensilla in two species of the genus Mecopoda were studied using scanning electron microscopy. The antennae of both sexes of both species attain a length of 10cm. The antenna is made up of three basic segments: the scape, pedicel and flagellum, which is composed of more than 200 flagellomeres. We distinguished two types of sensilla chaetica, one type of sensilla trichodea, five types of sensilla basiconica and one type of sensilla coeloconica. The possible function of the sensilla was discussed. Six types of sensilla were considered as olfactory, one of which could also have a thermo- and hygrosensitive function. The remaining types of sensilla identified had a purely mechanosensory function, a dual gustatory- and mechanosensory function and a thermo- and/or hygrosensory function, respectively. Consistent sex specific differences in the types, numbers and distribution of antennal sensilla were not found. Interspecific differences were identified especially in terms of the numbers of sensilla chaetica.


Assuntos
Antenas de Artrópodes/anatomia & histologia , Flagelos/química , Ortópteros/anatomia & histologia , Sensilas/anatomia & histologia , Animais , Antenas de Artrópodes/química , Antenas de Artrópodes/ultraestrutura , Feminino , Flagelos/ultraestrutura , Masculino , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Sensilas/química , Sensilas/ultraestrutura , Caracteres Sexuais
11.
J Chem Phys ; 145(7): 075101, 2016 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-27544127

RESUMO

Water molecules from the solvation shell of the ice-binding surface are considered important for the antifreeze proteins to perform their function properly. Herein, we discuss the problem whether the extent of changes of the mean properties of solvation water can be connected with the antifreeze activity of the protein. To this aim, the structure of solvation water of a type III antifreeze protein from Macrozoarces americanus (eel pout) is investigated. A wild type of the protein is used, along with its three mutants, with antifreeze activities equal to 54% or 10% of the activity of the native form. The solvation water of the ice-binding surface and the rest of the protein are analyzed separately. To characterize the structure of solvation shell, parameters describing radial and angular characteristics of the mutual arrangement of the molecules were employed. They take into account short-distance (first hydration shell) or long-distance (two solvation shells) effects. The obtained results and the comparison with the results obtained previously for a hyperactive antifreeze protein from Choristoneura fumiferana lead to the conclusion that the structure and amino acid composition of the active region of the protein evolved to achieve two goals. The first one is the modification of the properties of the solvation water. The second one is the geometrical adjustment of the protein surface to the specific crystallographic plane of ice. Both of these goals have to be achieved simultaneously in order for the protein to perform its function properly. However, they seem to be independent from one another in a sense that very small antifreeze activity does not imply that properties of water become different from the ones observed for the wild type. The proteins with significantly lower activity still modify the mean properties of solvation water in a right direction, in spite of the fact that the accuracy of the geometrical match with the ice lattice is lost because of the mutations. Therefore, we do not observe any correlation between the antifreeze activity and the extent of modification of the properties of solvation water.


Assuntos
Proteínas Anticongelantes Tipo III , Água/química , Animais , Proteínas Anticongelantes Tipo III/química , Proteínas Anticongelantes Tipo III/genética , Proteínas Anticongelantes Tipo III/metabolismo , Antenas de Artrópodes/química , Domínio Catalítico , Mutação , Perciformes , Solventes/química
12.
Genome Biol Evol ; 7(10): 2843-58, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26430061

RESUMO

Drosophila sechellia relies exclusively on the fruits of Morinda citrifolia, which are toxic to most insects, including its sibling species Drosophila melanogaster and Drosophila simulans. Although several odorant binding protein (Obp) genes and olfactory receptor (Or) genes have been suggested to be associated with the D. sechellia host shift, a broad view of how chemosensory genes have contributed to this shift is still lacking. We therefore studied the transcriptomes of antennae, the main organ responsible for detecting food resource and oviposition, of D. sechellia and its two sibling species. We wanted to know whether gene expression, particularly chemosensory genes, has diverged between D. sechellia and its two sibling species. Using a very stringent definition of differential gene expression, we found a higher percentage of chemosensory genes differentially expressed in the D. sechellia lineage (7.8%) than in the D. simulans lineage (5.4%); for upregulated chemosensory genes, the percentages were 8.8% in D. sechellia and 5.2% in D. simulans. Interestingly, Obp50a exhibited the highest upregulation, an approximately 100-fold increase, and Or85c--previously reported to be a larva-specific gene--showed approximately 20-fold upregulation in D. sechellia. Furthermore, Ir84a (ionotropic receptor 84a), which has been proposed to be associated with male courtship behavior, was significantly upregulated in D. sechellia. We also found expression divergence in most of the chemosensory gene families between D. sechellia and the two sibling species. Our observations suggest that the host shift of D. sechellia was associated with the enrichment of differentially expressed, particularly upregulated, chemosensory genes.


Assuntos
Proteínas de Drosophila/biossíntese , Proteínas de Drosophila/genética , Drosophila/genética , Drosophila/metabolismo , Receptores Odorantes/biossíntese , Receptores Odorantes/genética , Adaptação Biológica , Animais , Antenas de Artrópodes/química , Antenas de Artrópodes/metabolismo , Sequência de Bases , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Frutas , Regulação da Expressão Gênica , Genes de Insetos , Masculino , Dados de Sequência Molecular , Morinda , Fenômenos Fisiológicos Vegetais , RNA/genética , RNA/isolamento & purificação , Especificidade da Espécie , Transcriptoma
13.
J Econ Entomol ; 108(1): 166-72, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26470117

RESUMO

The baldcypress leafroller, Archips goyerana Kruse (Lepidoptera: Tortricidae), is a specialist on Taxodium distichum (L.) Richard and has caused serious defoliation in swamps of southeastern Louisiana, accelerating decline of baldcypress forests concurrently suffering from nutrient depletion, prolonged flooding, and saltwater intrusion. We investigated the composition of the sex pheromone of this species. Coupled gas chromatography-electroantennographic detection (GC-EAD) analyses indicated that male antennae were sensitive to four compounds [(Z)-11-tetradecenyl acetate (Z11-14:OAc), (E)-11-tetradecenyl acetate (E11-14:OAc), (Z)-9-tetradecenyl acetate (Z9-14:OAc), and (Z)-11-tetradecen-1-ol (Z11-14:OH)] present in female abdominal tip extracts in an approximately 100:1.5:0.6:10 ratio. In trapping trials performed in a cypress-tupelo swamp in southeastern Louisiana, moths were attracted to blends of these four components presented in approximately the female-produced ratios. Elimination of Z11-14:OH had no impact on moth response, whereas elimination of any of the three acetates strongly reduced or eliminated attraction. A blend in which the E11:Z11 ratio of 14:OAc was 5:100 was much less attractive than the same blend with the female produced ratio of 1.5:100. A. goyerana is closely related to the sympatric species Archips argyrospilus (Walker) with which it was previously synonymous. Our data revealed differences between the pheromone composition of A. goyerana and that reported for A. argyrospilus, which could account for the apparent absence of cross-attraction between these species. We conclude that a lure containing a 100:1.5:0.6 ratio of Z11-14:OAc, E11-14:OAc, and Z9-14:OAc has the potential to be used in traps to detect and measure A. goyerana populations and thereby monitor an important biotic factor contributing to the loss of coastal baldcypress forests.


Assuntos
Antenas de Artrópodes/química , Mariposas/química , Atrativos Sexuais/isolamento & purificação , Animais , Cromatografia Gasosa , Feminino , Masculino , Atrativos Sexuais/química
14.
Artigo em Inglês | MEDLINE | ID: mdl-26164593

RESUMO

We constructed an antennal transcriptome of the parasitoid wasp, Sclerodermus sp. (Hymenoptera: Bethylidae). Our analysis of the transcriptome yielded 51,830,552 clean reads. A total of 46,269 unigenes were assembled, among which 29,582 unigenes exhibited significant similarity (E-values≤10(-5)) to sequences in the NCBI nonredundant protein database. Gene ontology (GO) and cluster of orthologous groups (COG) analyses were used for the functional classification of these unigenes. We identified ten odorant binding proteins (OBPs), ten chemosensory proteins (CSPs), eight olfactory receptors (ORs), three ionotropic receptors (IRs), six gustatory receptors (GRs), and two sensory neuron membrane proteins (SNMPs). The expression profiles of the ten OBPs were determined based on a qPCR analysis of RNA extracted from the antennae, legs, and abdomens of wingless and winged female adults and whole larvae and pupae. The highest levels of OBP5, OBP6, OBP7, and OBP9 expression were observed in the antennae of adult females. The highest levels of OBP1, OBP2, and OBP4 expression were observed in the abdomen of winged females. The highest levels of OBP3 and OBP10 expression were observed in larvae and pupae, respectively, whereas OBP8 was expressed at high levels in both larvae and pupae. Our findings establish a foundation for future studies of the molecular mechanisms of chemosensory perception in Sclerodermus sp.


Assuntos
Proteínas de Insetos/genética , Receptores Odorantes/genética , Transcriptoma , Vespas/genética , Sequência de Aminoácidos , Animais , Antenas de Artrópodes/química , Antenas de Artrópodes/metabolismo , Análise por Conglomerados , Feminino , Perfilação da Expressão Gênica , Proteínas de Insetos/química , Masculino , Dados de Sequência Molecular , Receptores Odorantes/química , Alinhamento de Sequência , Vespas/química
15.
Insect Mol Biol ; 24(2): 167-82, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25345813

RESUMO

Although many studies on lepidopteran pheromone-binding proteins (PBPs)/ general odorant-binding proteins (GOBPs) have been reported, the functional differentiation within and between the two odorant-binding protein (OBP) subclasses is still elusive. Here we conducted a comparative study on three SexiPBPs and two SexiGOBPs in Spodoptera exigua. Results showed that all five SexiPBP/GOBP genes have the same intron numbers and conserved exon/intron splice sites. Reverse transcription PCR results showed that these five SexiPBP/GOBPs were primarily expressed in antennae of both sexes and some were also detected in other tissues. Further, quantitative real-time PCR showed that five SexiPBP/GOBPs had different sex-biased expression patterns, with PBP1 being highly male-biased (5.96-fold difference) and PBP3 slightly female-biased (2.43-fold difference), while PBP2 and two GOBPs were approximately sex-equivalent (the absolute value<1.90-fold difference). Binding assays showed that all three SexiPBPs could bind all six sex pheromone components, but SexiPBP1 had much higher affinities [dissociation constant (Ki ) <1.10 µM] than did the other two SexiPBPs (Ki >1.20 µM). Very intriguingly, SexiGOBP2 displayed even stronger binding to five sex pheromone components (Ki <0.40 µM) than SexiPBP1. In contrast, SexiGOBP1 only exhibited weak binding to three alcohol-pheromone components. Similar results were obtained for tested pheromone analogues. In addition, each of SexiPBP/GOBPs selectively bound some plant odorants with considerable affinities (Ki <10.0 µM). Taken together, of the three SexiPBPs, SexiPBP1 may play the most important role in female sex pheromone reception, and additionally all three SexiPBPs can detect some plant odorants, while SexiGOBP2 may be involved in the detection of female sex pheromones in addition to plant odorants. The results strongly suggest functional differentiation within and between the two OBP sub-classes.


Assuntos
Proteínas de Insetos/metabolismo , Receptores Odorantes/metabolismo , Atrativos Sexuais/metabolismo , Spodoptera/metabolismo , Sequência de Aminoácidos , Animais , Antenas de Artrópodes/química , Feminino , Concentração de Íons de Hidrogênio , Proteínas de Insetos/química , Proteínas de Insetos/genética , Ligantes , Masculino , Dados de Sequência Molecular , Especificidade de Órgãos , Filogenia , Ligação Proteica , Splicing de RNA , Reação em Cadeia da Polimerase em Tempo Real , Receptores Odorantes/química , Receptores Odorantes/genética , Fatores Sexuais , Transdução de Sinais , Spodoptera/genética
16.
Artigo em Inglês | MEDLINE | ID: mdl-24893337

RESUMO

We assembled antennal transcriptomes of pest Monochamus alternatus and its parasitoid Dastarcus helophoroides to identify the members of the major chemosensory multi-gene families. Gene ontology (GO) annotation indicated that the relative abundance of transcripts associated with specific GO terms was highly similar in the two species. In chemosensory gene families, we identified 52 transcripts encoding putative odorant-binding proteins (OBPs), 19 chemosensory proteins (CSPs), 10 olfactory receptors (ORs), 8 ionotropic receptors (IRs), 2 gustatory receptors (GRs), and 5 sensory neuron membrane proteins (SNMPs) in these two transcriptomes. Predicted protein sequences were compared with Dendroctonus ponderosae, Tribolium castaneum and Drosophila melanogaster. The results of phylogenetic trees showed that some clusters included only OBPs or CSPs from D. helophoroides, some clusters included only OBPs or CSPs from M. alternatus, while some clusters included OBPs or CSPs from both M. alternatus and D. helophoroides. The identification of the chemosensory genes and the phylogenetic relationship of these genes between two species might provide new ideas for controlling M. alternatus and improving current strategies for biological control.


Assuntos
Besouros/genética , Proteínas de Insetos/genética , Receptores Odorantes/genética , Animais , Antenas de Artrópodes/química , Besouros/química , Feminino , Proteínas de Insetos/química , Proteínas de Insetos/classificação , Masculino , Anotação de Sequência Molecular , Filogenia , Receptores Odorantes/química , Receptores Odorantes/classificação , Transcriptoma
17.
J Vis Exp ; (87)2014 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-24834898

RESUMO

Odorant molecules bind to their target receptors in a precise and coordinated manner. Each receptor recognizes a specific signal and relays this information to the brain. As such, determining how olfactory information is transferred to the brain, modifying both perception and behavior, merits investigation. Interestingly, there is emerging evidence that cellular transduction and transcriptional factors are involved in the diversification of olfactory receptor neuron. Here we provide a robust whole mount immunological labeling method to assay in vivo olfactory receptor neuron organization. Using this method, we identified all olfactory receptor neurons with anti-ELAV antibody, a known pan-neural marker and Or49a-mCD8::GFP, an olfactory receptor neuron specifically expressed in Nba neuron using anti-GFP antibody.


Assuntos
Antenas de Artrópodes/química , Antenas de Artrópodes/citologia , Técnicas Imunológicas/métodos , Neurônios Receptores Olfatórios/química , Neurônios Receptores Olfatórios/citologia , Animais , Drosophila
18.
Int J Mol Sci ; 15(5): 7429-43, 2014 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-24786099

RESUMO

Glutathione S-transferases (GSTs) are multifunctional enzymes that are widely distributed in different species. GSTs detoxify exogenous and endogenous substances by conjugation to reduced glutathione. We characterized BmGSTD4, an antenna-specific GST, in male silkmoths. The full-length mRNA of Bmgstd4 was cloned by RACE-PCR and contained an open reading frame of 738 bp encoding a 245 amino acid protein. The antenna specificity of BmGSTD4 was validated at the mRNA and protein levels and BmGSTD4 was shown to localize in the sensillum of male silkmoth antennae. Homology modeling and multi-sequence alignment suggested that BmGSTD4 was a typical GST belonging to the δ class and had a canonical GST fold with a conserved N-terminus, including a glutathione-binding site and a C-terminal domain harboring a hydrophobic substrate-binding site. Restricted expression of BmGSTD4 in silkmoth antennae combined with GST activity suggested that BmGSTD4 was involved in the detoxification of harmful chemicals.


Assuntos
Antenas de Artrópodes/enzimologia , Bombyx/enzimologia , Glutationa Transferase/química , Sequência de Aminoácidos , Animais , Antenas de Artrópodes/química , Antenas de Artrópodes/metabolismo , Bombyx/química , Bombyx/genética , Clonagem Molecular , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Masculino , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência
19.
J Biol Chem ; 288(46): 33427-38, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24097978

RESUMO

Much physiological and behavioral evidence has been provided suggesting that insect odorant-binding proteins (OBPs) are indispensable for odorant recognition and thus are appealing targets for structure-based discovery and design of novel host-seeking disruptors. Despite the fact that more than 60 putative OBP-encoding genes have been identified in the malaria vector Anopheles gambiae, the crystal structures of only six of them are known. It is therefore clear that OBP structure determination constitutes the bottleneck for structure-based approaches to mosquito repellent/attractant discovery. Here, we describe the three-dimensional structure of an A. gambiae "Plus-C" group OBP (AgamOBP48), which exhibits the second highest expression levels in female antennae. This structure represents the first example of a three-dimensional domain-swapped dimer in dipteran species. A combined binding site is formed at the dimer interface by equal contribution of each monomer. Structural comparisons with the monomeric AgamOBP47 revealed that the major structural difference between the two Plus-C proteins localizes in their N- and C-terminal regions, and their concerted conformational change may account for monomer-swapped dimer conversion and furthermore the formation of novel binding pockets. Using a combination of gel filtration chromatography, differential scanning calorimetry, and analytical ultracentrifugation, we demonstrate the AgamOBP48 dimerization in solution. Eventually, molecular modeling calculations were used to predict the binding mode of the most potent synthetic ligand of AgamOBP48 known so far, discovered by ligand- and structure-based virtual screening. The structure-aided identification of multiple OBP binders represents a powerful tool to be employed in the effort to control transmission of the vector-borne diseases.


Assuntos
Anopheles/química , Proteínas de Insetos/química , Lipocalinas/química , Multimerização Proteica , Animais , Anopheles/genética , Anopheles/metabolismo , Antenas de Artrópodes/química , Antenas de Artrópodes/metabolismo , Cristalografia por Raios X , Feminino , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Lipocalinas/genética , Lipocalinas/metabolismo , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
20.
Cell Tissue Res ; 354(2): 431-40, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23955643

RESUMO

Olfaction is an important sensory modality that regulates a plethora of behavioural expressions in insects. Processing of olfactory information takes place in the primary olfactory centres of the brain, namely the antennal lobes (ALs). Neuropeptides have been shown to be present in the olfactory system of various insect species. In the present study, we analyse the distribution of tachykinin, FMRFamide-related peptides, allatotropin, allatostatin, myoinhibitory peptides and SIFamide in the AL of the male Egyptian cotton leafworm, Spodoptera littoralis. Immunocytochemical analyses revealed that most neuropeptides were expressed in different subpopulations of AL neurons. Their arborisation patterns within the AL suggest a significant role of neuropeptide signalling in the modulation of AL processing. In addition to local interneurons, our analysis also revealed a diversity of extrinsic peptidergic neurons that connected the antennal lobe with other brain centres. Their distributions suggest that extrinsic neurons perform various types of context-related modulation.


Assuntos
Antenas de Artrópodes/química , Antenas de Artrópodes/ultraestrutura , Hormônios de Inseto/análise , Neuropeptídeos/análise , Spodoptera/química , Spodoptera/ultraestrutura , Taquicininas/análise , Animais , FMRFamida/análise , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA