Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
BMC Microbiol ; 22(1): 9, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34986788

RESUMO

BACKGROUND: Peanut stem rot is a serious plant disease that causes great economic losses. At present, there are no effective measures to prevent or control the occurrence of this plant disease. Biological control is one of the most promising plant disease control measures. In this study, Pseudomonas chlororaphis subsp. aurantiaca strain zm-1, a bacterial strain with potential biocontrol properties isolated by our team from the rhizosphere soil of Anemarrhena asphodeloides, was studied to control this plant disease. METHODS: We prepared extracts of Pseudomonas chloroaphis zm-1 extracellular antibacterial compounds (PECEs), determined their antifungal activities by confrontation assay, and identified their components by UPLC-MS/MS. The gene knockout strains were constructed by homologous recombination, and the biocontrol efficacy of P. chlororaphis zm-1 and its mutant strains were evaluated by pot experiments under greenhouse conditions and plot experiments, respectively. RESULTS: P. chlororaphis zm-1 could produce extracellular antifungal substances and inhibit the growth of Sclerotium rolfsii, the main pathogenic fungus causing peanut stem rot. The components of PECEs identified by UPLC-MS/MS showed that three kinds of phenazine compounds, i.e., 1-hydroxyphenazine, phenazine-1-carboxylic acid (PCA), and the core phenazine, were the principal components. In particular, 1-hydroxyphenazine produced by P. chlororaphis zm-1 showed antifungal activities against S. rolfsii, but 2-hydroxyphenazine did not. This is quite different with the previously reported. The extracellular compounds of two mutant strains, ΔphzH and ΔphzE, was analysed and showed that ΔphzE did not produce any phenazine compounds, and ΔphzH no longer produced 1-hydroxyphenazine but could still produce PCA and phenazine. Furthermore, the antagonistic ability of ΔphzH declined, and that of ΔphzE was almost completely abolished. According to the results of pot experiments under greenhouse conditions, the biocontrol efficacy of ΔphzH dramatically declined to 47.21% compared with that of wild-type P. chlororaphis zm-1 (75.63%). Moreover, ΔphzE almost completely lost its ability to inhibit S. rolfsii (its biocontrol efficacy was reduced to 6.19%). The results of the larger plot experiments were also consistent with these results. CONCLUSIONS: P. chlororaphis zm-1 has the potential to prevent and control peanut stem rot disease. Phenazines produced and secreted by P. chlororaphis zm-1 play a key role in the control of peanut stem rot caused by S. rolfsii. These findings provide a new idea for the effective prevention and treatment of peanut stem rot.


Assuntos
Agentes de Controle Biológico/metabolismo , Doenças das Plantas/prevenção & controle , Pseudomonas/metabolismo , Antibiose/genética , Antifúngicos/análise , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Arachis , Proteínas de Bactérias/genética , Basidiomycota/efeitos dos fármacos , Basidiomycota/crescimento & desenvolvimento , Agentes de Controle Biológico/análise , Mutação , Fenazinas/análise , Fenazinas/metabolismo , Fenazinas/farmacologia , Doenças das Plantas/microbiologia , Pseudomonas/genética
2.
Nucleic Acids Res ; 49(19): 10868-10878, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34606606

RESUMO

To provide protection against viral infection and limit the uptake of mobile genetic elements, bacteria and archaea have evolved many diverse defence systems. The discovery and application of CRISPR-Cas adaptive immune systems has spurred recent interest in the identification and classification of new types of defence systems. Many new defence systems have recently been reported but there is a lack of accessible tools available to identify homologs of these systems in different genomes. Here, we report the Prokaryotic Antiviral Defence LOCator (PADLOC), a flexible and scalable open-source tool for defence system identification. With PADLOC, defence system genes are identified using HMM-based homologue searches, followed by validation of system completeness using gene presence/absence and synteny criteria specified by customisable system classifications. We show that PADLOC identifies defence systems with high accuracy and sensitivity. Our modular approach to organising the HMMs and system classifications allows additional defence systems to be easily integrated into the PADLOC database. To demonstrate application of PADLOC to biological questions, we used PADLOC to identify six new subtypes of known defence systems and a putative novel defence system comprised of a helicase, methylase and ATPase. PADLOC is available as a standalone package (https://github.com/padlocbio/padloc) and as a webserver (https://padloc.otago.ac.nz).


Assuntos
Antibiose/genética , Archaea/genética , Proteínas Arqueais/genética , Bactérias/genética , Proteínas de Bactérias/genética , Bacteriófagos/genética , Software , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Archaea/classificação , Archaea/metabolismo , Archaea/virologia , Proteínas Arqueais/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Bactérias/virologia , Proteínas de Bactérias/metabolismo , Bacteriófagos/crescimento & desenvolvimento , Sistemas CRISPR-Cas , DNA Helicases/genética , DNA Helicases/metabolismo , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Cadeias de Markov , Filogenia , Terminologia como Assunto
3.
Protein Sci ; 30(12): 2474-2481, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34676610

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPRs)-CRISPR-associated protein systems are bacterial and archaeal defense mechanisms against invading elements such as phages and viruses. To overcome these defense systems, phages and viruses have developed inhibitors called anti-CRISPRs (Acrs) that are capable of inhibiting the host CRISPR-Cas system via different mechanisms. Although the inhibitory mechanisms of AcrIIC1, AcrIIC2, and AcrIIC3 have been revealed, the inhibitory mechanisms of AcrIIC4 and AcrIIC5 have not been fully understood and structural data are unavailable. In this study, we elucidated the crystal structure of Type IIC anti-CRISPR protein, AcrIIC4. Our structural analysis revealed that AcrIIC4 exhibited a helical bundle fold comprising four helixes. Further biochemical and biophysical analyses showed that AcrIIC4 formed a monomer in solution, and monomeric AcrIIC4 directly interacted with Cas9 and Cas9/sgRNA complex. Discovery of the structure of AcrIIC4 and their interaction mode on Cas9 will help us elucidate the diversity in the inhibitory mechanisms of the Acr protein family.


Assuntos
Antibiose/genética , Proteínas de Bactérias/química , Proteína 9 Associada à CRISPR/química , Sistemas CRISPR-Cas , Haemophilus parainfluenzae/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Proteína 9 Associada à CRISPR/antagonistas & inibidores , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Clonagem Molecular , Cristalografia por Raios X , DNA/química , DNA/genética , DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Edição de Genes , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Haemophilus parainfluenzae/metabolismo , Modelos Moleculares , Neisseria meningitidis/genética , Neisseria meningitidis/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , RNA Guia de Cinetoplastídeos/química , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
4.
Int J Biol Macromol ; 192: 369-378, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34634329

RESUMO

Trichothecene toxins cause serious hazard towards human health and economical crops. However, there are no sufficient molecular strategies to reduce the hazard of trichothecene toxins. Thus it is urgent to exploit novel approaches to control the hazard of trichothecenes. In this study, four trichothecene toxin-resistance genes including mfs1, GNAT1, TRP1 and tri12 in Paramyrothecium roridum were excavated based on genome sequencing results, and then expressed in toxin-sensitive Saccharomyces cerevisiae BJ5464, the toxin resistance genes pdr5, pdr10 and pdr15 of which were firstly knocked out simultaneously by the introduction of TAA stop codon employing CRISPR/Cas9 system. Therefore, three novel hazardous toxin-resistance genes mfs1, GNAT1, TRP1 in P. roridum were firstly excavated by the co-incubation of DON toxin and toxin resistant genes-containing BJ5464 strains. The in vitro function and properties of novel toxin-resistance genes coding proteins including GNAT1, MFS1 and TRP1 were identified by heterologous expression and cellular location analysis as well as in vitro biochemical reaction. The excavation of novel trichothecene toxin-resistance genes provide novel molecular clues for controlling the harm of trichothecenes, meanwhile, this study will also pave a new way for the yield improvement of trichothecenes by heterologous expression to facilitate the development of trichothecenes as anti-tumor lead compounds.


Assuntos
Antibiose , Proteínas Fúngicas/metabolismo , Hypocreales/metabolismo , Toxinas Biológicas/antagonistas & inibidores , Tricotecenos/antagonistas & inibidores , Antibiose/genética , Proteínas Fúngicas/genética , Expressão Gênica , Loci Gênicos , Hypocreales/genética , Proteínas Recombinantes de Fusão , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Tricotecenos/metabolismo
5.
mBio ; 12(3): e0150221, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34182776

RESUMO

Previously, we documented that Stenotrophomonas maltophilia encodes a type IV secretion system (T4SS) that allows the organism to kill, in contact-dependent fashion, heterologous bacteria, including wild-type Pseudomonas aeruginosa. Bioinformatic screens based largely on the presence of both a C-terminal consensus sequence and an adjacent gene encoding a cognate immunity protein identified 13 potential antibacterial effectors, most of which were highly conserved among sequenced strains of S. maltophilia. The immunity proteins of two of these proved especially capable of protecting P. aeruginosa and Escherichia coli against attack from the Stenotrophomonas T4SS. In turn, S. maltophilia mutants lacking the putative effectors RS14245 and RS14255 were impaired for killing not only laboratory E. coli but clinical isolates of P. aeruginosa, including ones isolated from the lungs of cystic fibrosis patients. That complemented mutants behaved as wild type did confirmed that RS14245 and RS14255 are required for the bactericidal activity of the S. maltophilia T4SS. Moreover, a mutant lacking both of these proteins was as impaired as a mutant lacking the T4SS apparatus, indicating that RS14245 and RS14255 account for (nearly) all of the bactericidal effects seen. Utilizing an interbacterial protein translocation assay, we determined that RS14245 and RS14255 are bona fide substrates of the T4SS, a result confirmed by examination of mutants lacking both the T4SS and the individual effectors. Delivery of the cloned 14245 protein (alone) into the periplasm resulted in the killing of target bacteria, indicating that this effector, a putative lipase, is both necessary and sufficient for bactericidal activity. IMPORTANCE S. maltophilia is an increasingly important opportunistic pathogen. Inherently resistant to many antibiotics, S. maltophilia is often associated with lung infection, being, among other things, a complicating factor in cystic fibrosis patients. Moreover, it is a common form of coinfection in COVID-19 patients. In these various clinical settings and in natural habitats, S. maltophilia coexists with other pathogens, including P. aeruginosa. Previously, we documented that S. maltophilia possesses a T4SS that kills other bacteria, a notable observation given that most prior work on interbacterial competition has highlighted bactericidal effects of type VI secretion systems. By utilizing approaches ranging from bioinformatics to mutant analysis to protein translocation assays, we have now identified two substrates of the Stenotrophomonas T4SS that largely mediate the killing of pathogenic P. aeruginosa. These results represent a major advance in understanding S. maltophilia, the roles of T4SSs, concepts regarding clinically relevant, interbacterial competition, and activities of bactericidal effectors.


Assuntos
Antibiose/genética , Escherichia coli/metabolismo , Pseudomonas aeruginosa/metabolismo , Stenotrophomonas maltophilia/genética , Sistemas de Secreção Tipo IV/metabolismo , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/prevenção & controle , Humanos , Stenotrophomonas maltophilia/metabolismo , Sistemas de Secreção Tipo IV/genética
6.
Sci Rep ; 11(1): 12001, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099817

RESUMO

Staphylococcus epidermidis (S. epidermidis) ATCC 12228 was incubated with 2% polyethylene glycol (PEG)-8 Laurate to yield electricity which was measured by a voltage difference between electrodes. Production of electron was validated by a Ferrozine assay. The anti-Cutibacterium acnes (C. acnes) activity of electrogenic S. epidermidis was assessed in vitro and in vivo. The voltage change (~ 4.4 mV) reached a peak 60 min after pipetting S. epidermidis plus 2% PEG-8 Laurate onto anodes. The electricity produced by S. epidermidis caused significant growth attenuation and cell lysis of C. acnes. Intradermal injection of C. acnes and S. epidermidis plus PEG-8 Laurate into the mouse ear considerably suppressed the growth of C. acnes. This suppressive effect was noticeably reversed when cyclophilin A of S. epidermidis was inhibited, indicating the essential role of cyclophilin A in electricity production of S. epidermidis against C. acnes. In summary, we demonstrate for the first time that skin S. epidermidis, in the presence of PEG-8 Laurate, can mediate cyclophilin A to elicit an electrical current that has anti-C. acnes effects. Electricity generated by S. epidermidis may confer immediate innate immunity in acne lesions to rein in the overgrowth of C. acnes at the onset of acne vulgaris.


Assuntos
Acne Vulgar/terapia , Antibiose/genética , Proteínas de Bactérias/genética , Ciclofilina A/genética , Propionibacteriaceae/patogenicidade , Staphylococcus epidermidis/efeitos dos fármacos , Acne Vulgar/microbiologia , Animais , Proteínas de Bactérias/metabolismo , Técnicas de Cocultura , Meios de Cultura/química , Meios de Cultura/farmacologia , Ciclofilina A/metabolismo , Modelos Animais de Doenças , Orelha/microbiologia , Eletricidade , Eletrodos , Feminino , Expressão Gênica , Lauratos/farmacologia , Camundongos , Camundongos Endogâmicos ICR , Polietilenoglicóis/farmacologia , Propionibacteriaceae/crescimento & desenvolvimento , Pele/microbiologia , Staphylococcus epidermidis/fisiologia , Tensoativos/farmacologia
7.
Mol Cell ; 81(11): 2361-2373.e9, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33838104

RESUMO

Toxin-antitoxin (TA) systems are widespread in bacteria, but their activation mechanisms and bona fide targets remain largely unknown. Here, we characterize a type III TA system, toxIN, that protects E. coli against multiple bacteriophages, including T4. Using RNA sequencing, we find that the endoribonuclease ToxN is activated following T4 infection and blocks phage development primarily by cleaving viral mRNAs and inhibiting their translation. ToxN activation arises from T4-induced shutoff of host transcription, specifically of toxIN, leading to loss of the intrinsically unstable toxI antitoxin. Transcriptional shutoff is necessary and sufficient for ToxN activation. Notably, toxIN does not strongly protect against another phage, T7, which incompletely blocks host transcription. Thus, our results reveal a critical trade-off in blocking host transcription: it helps phage commandeer host resources but can activate potent defense systems. More generally, our results now reveal the native targets of an RNase toxin and activation mechanism of a phage-defensive TA system.


Assuntos
Bacteriófago T4/genética , Bacteriófago T7/genética , Endorribonucleases/genética , Proteínas de Escherichia coli/genética , Escherichia coli/virologia , Sistemas Toxina-Antitoxina/genética , Antibiose/genética , Bacteriófago T4/crescimento & desenvolvimento , Bacteriófago T4/metabolismo , Bacteriófago T7/crescimento & desenvolvimento , Bacteriófago T7/metabolismo , Endorribonucleases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Transcrição Gênica
8.
PLoS One ; 16(3): e0247978, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33651829

RESUMO

Damage caused to cultivated carrots by the hawthorn-carrot aphid, Dysaphis crataegi Kalt. (Hemiptera: Aphididae) is one of the factors limiting carrot production in Poland. Planting resistant and tolerant cultivars could reduce yield losses due to the damage caused by this pest. This study was conducted to evaluate the resistance and/or tolerance of 10 carrot genotypes to hawthorn-carrot aphid. Their field resistance was determined under field conditions based on five indicators, namely, mean number of alates (migrants) per plant and mean percentage of plants colonized by them, mean seasonal number of aphids per plant, mean number of aphids per plant and mean percentage of infested plants at peak abundance. Antibiosis experiments were conducted under laboratory conditions and pre-reproductive, reproductive time, fertility, and demographic parameters, represented by the net reproduction rate (Ro), intrinsic rate of increase (rm) and mean generation time (T), were calculated. Five cultivars, Afro F1, Nipomo F1, Samba F1, White Satin F1, and Yellowstone showed field resistance. Antibiosis experiments revealed significant differences among the carrot cultivars in the length of the reproductive period, female fecundity in the time equal to the pre-reproduction time, and total progeny of hawthorn-carrot aphid. The intrinsic rate of natural increase (rm) for apterous aphids varied significantly, ranging between 0.181 (Nipomo F1) and 0.343 females/female/day (White Satin F1). Additionally, the estimated net reproductive rate (R0) was the lowest on Nipomo F1, and this genotype was determined to be resistant. Our results suggest that a very high density of trichomes on the leaf petioles (71.94 trichomes/cm2) could adversely affect the feeding, bionomy, and demographic parameters of hawthorn-carrot aphid on the cultivar Nipomo F1. In addition, Napa F1 and Kongo F1 demonstrated high tolerance. Considering all the results collectively, four genotypes, Afro F1, Kongo F1, Napa F1 and Nipomo F1, were relatively resistant/tolerant to the hawthorn-carrot aphid.


Assuntos
Antibiose/genética , Afídeos , Daucus carota/genética , Genes de Plantas , Genótipo , Animais , Folhas de Planta , Polônia , Reprodução
9.
mBio ; 12(1)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33563841

RESUMO

One of the most important ways that bacteria compete for resources and space is by producing antibiotics that inhibit competitors. Because antibiotic production is costly, the biosynthetic gene clusters coordinating their synthesis are under strict regulatory control and often require "elicitors" to induce expression, including cues from competing strains. Although these cues are common, they are not produced by all competitors, and so the phenotypes causing induction remain unknown. By studying interactions between 24 antibiotic-producing strains of streptomycetes, we show that strains commonly inhibit each other's growth and that this occurs more frequently if strains are closely related. Next, we show that antibiotic production is more likely to be induced by cues from strains that are closely related or that share secondary metabolite biosynthetic gene clusters (BGCs). Unexpectedly, antibiotic production is less likely to be induced by competitors that inhibit the growth of a focal strain, indicating that cell damage is not a general cue for induction. In addition to induction, antibiotic production often decreases in the presence of a competitor, although this response was not associated with genetic relatedness or overlap in BGCs. Finally, we show that resource limitation increases the chance that antibiotic production declines during competition. Our results reveal the importance of social cues and resource availability in the dynamics of interference competition in streptomycetes.IMPORTANCE Bacteria secrete antibiotics to inhibit their competitors, but the presence of competitors can determine whether these toxins are produced. Here, we study the role of the competitive and resource environment on antibiotic production in Streptomyces, bacteria renowned for their production of antibiotics. We show that Streptomyces cells are more likely to produce antibiotics when grown with competitors that are closely related or that share biosynthetic pathways for secondary metabolites, but not when they are threatened by competitor's toxins, in contrast to predictions of the competition sensing hypothesis. Streptomyces cells also often reduce their output of antibiotics when grown with competitors, especially under nutrient limitation. Our findings highlight that interactions between the social and resource environments strongly regulate antibiotic production in these medicinally important bacteria.


Assuntos
Antibacterianos/biossíntese , Antibiose/genética , Regulação Bacteriana da Expressão Gênica , Interações Microbianas , Streptomyces/genética , Streptomyces/fisiologia , Antibacterianos/metabolismo , Família Multigênica , Metabolismo Secundário/genética , Metabolismo Secundário/fisiologia , Streptomyces/classificação , Streptomyces/crescimento & desenvolvimento
10.
J Plant Physiol ; 258-259: 153376, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33571892

RESUMO

Bruchids (Callosobruchus spp.) are destructive storage pests of mung beans (Vigna radiata). Bruchids infest mature seeds during storage and in the field causing heavy losses. Bruchid resistance in mung bean has been characterized as a dominant trait controlled by a single gene. Several independent mapping studies showed that the Br locus on chromosome 5 was a key quantitative trait loci (QTL) involved in bruchid resistance. Two polygalacturonase-inhibitor protein (PGIP) family genes, VrPGIP1 and VrPGIP2, located in the Br locus may be the primary genes responsible for bruchid resistance in mung bean but no experimental proof is available. We isolated the VrPGIP1 and VrPGIP2 genes from bruchid resistant mung bean cultivar V2802 and purified the proteins by prokaryotic expression. Both VrPGIP1 and VrPGIP2 had polygalacturonase inhibitor activity and both of the PGIP proteins conferred resistance to bruchids in an artificial seed test system. VrPGIPs can inhibit the enzyme activity of polygalacturonase present in males, females and fourth instar larvae of C. maculatus. These results demonstrated that VrPGIP1 and VrPGIP2 play a critical role in bruchid resistance probably through inhibiting polygalacturonase activity.


Assuntos
Antibiose/genética , Besouros/fisiologia , Proteínas de Plantas/genética , Poligalacturonase/antagonistas & inibidores , Vigna/genética , Animais , Besouros/crescimento & desenvolvimento , Feminino , Larva/crescimento & desenvolvimento , Larva/fisiologia , Masculino , Filogenia , Proteínas de Plantas/metabolismo , Vigna/metabolismo
11.
BMC Biol ; 19(1): 7, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446206

RESUMO

BACKGROUND: Horizontal gene transfer (HGT) has been documented in many herbivorous insects, conferring the ability to digest plant material and promoting their remarkable ecological diversification. Previous reports suggest HGT of antibacterial enzymes may have contributed to the insect immune response and limit bacterial growth. Carnivorous insects also display many evolutionary successful lineages, but in contrast to the plant feeders, the potential role of HGTs has been less well-studied. RESULTS: Using genomic and transcriptomic data from 38 species of ladybird beetles, we identified a set of bacterial cell wall hydrolase (cwh) genes acquired by this group of beetles. Infection with Bacillus subtilis led to upregulated expression of these ladybird cwh genes, and their recombinantly produced proteins limited bacterial proliferation. Moreover, RNAi-mediated cwh knockdown led to downregulation of other antibacterial genes, indicating a role in antibacterial immune defense. cwh genes are rare in eukaryotes, but have been maintained in all tested Coccinellinae species, suggesting that this putative immune-related HGT event played a role in the evolution of this speciose subfamily of predominant predatory ladybirds. CONCLUSION: Our work demonstrates that, in a manner analogous to HGT-facilitated plant feeding, enhanced immunity through HGT might have played a key role in the prey adaptation and niche expansion that promoted the diversification of carnivorous beetle lineages. We believe that this represents the first example of immune-related HGT in carnivorous insects with an association with a subsequent successful species radiation.


Assuntos
Antibiose/genética , Evolução Biológica , Besouros/genética , Transferência Genética Horizontal , Genes Bacterianos , Genes de Insetos , Adaptação Biológica , Animais , Parede Celular/química , Parede Celular/enzimologia , Besouros/enzimologia , Interações Hospedeiro-Patógeno , Hidrolases/genética
12.
Mol Genet Genomics ; 296(1): 131-140, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33052533

RESUMO

Aegerolysins are small secreted pore-forming proteins that are found in both prokaryotes and eukaryotes. The role of aegerolysins in sporulation, fruit body formation, and in lysis of cellular membrane is suggested in fungi. The aim of the present study was to characterize the biological function of the aegerolysin gene agl1 in the mycoparasitic fungus Trichoderma atroviride, used for biological control of plant diseases. Gene expression analysis showed higher expression of agl1 during conidiation and during growth in medium supplemented with cell wall material from the plant pathogenic fungus Rhizoctonia solani as the sole carbon source. Expression of agl1 was supressed under iron-limiting condition, while agl1 transcript was not detected during T. atroviride interactions with the prey fungi Botrytis cinerea or R. solani. Phenotypic analysis of agl1 deletion strains (Δagl1) showed reduced conidiation compared to T. atroviride wild type, thus suggesting the involvement of AGL1 in conidiation. Furthermore, the Δagl1 strains display reduced antagonism towards B. cinerea and R. solani based on a secretion assay, although no difference was detected during direct interactions. These data demonstrate the role of AGL1 in conidiation and antagonism in the mycoparasitic fungus T. atroviride.


Assuntos
Antibiose/genética , Carpóforos/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Proteínas Hemolisinas/genética , Hypocreales/genética , Esporos Fúngicos/genética , Botrytis/efeitos dos fármacos , Botrytis/crescimento & desenvolvimento , Parede Celular/química , Misturas Complexas/farmacologia , Carpóforos/efeitos dos fármacos , Carpóforos/metabolismo , Carpóforos/patogenicidade , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/toxicidade , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/toxicidade , Hypocreales/efeitos dos fármacos , Hypocreales/metabolismo , Hypocreales/patogenicidade , Deficiências de Ferro , Filogenia , Doenças das Plantas/microbiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Rhizoctonia/efeitos dos fármacos , Rhizoctonia/crescimento & desenvolvimento , Solanum tuberosum/microbiologia , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/metabolismo , Esporos Fúngicos/patogenicidade
13.
RNA Biol ; 18(8): 1099-1110, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33103565

RESUMO

As part of the ongoing renaissance of phage biology, more phage genomes are becoming available through DNA sequencing. However, our understanding of the transcriptome architecture that allows these genomes to be expressed during host infection is generally poor. Transcription start sites (TSSs) and operons have been mapped for very few phages, and an annotated global RNA map of a phage - alone or together with its infected host - is not available at all. Here, we applied differential RNA-seq (dRNA-seq) to study the early, host takeover phase of infection by assessing the transcriptome structure of Pseudomonas aeruginosa jumbo phage ɸKZ, a model phage for viral genetics and structural research. This map substantially expands the number of early expressed viral genes, defining TSSs that are active ten minutes after ɸKZ infection. Simultaneously, we record gene expression changes in the host transcriptome during this critical metabolism conversion. In addition to previously reported upregulation of genes associated with amino acid metabolism, we observe strong activation of genes with functions in biofilm formation (cdrAB) and iron storage (bfrB), as well as an activation of the antitoxin ParD. Conversely, ɸKZ infection rapidly down-regulates complexes IV and V of oxidative phosphorylation (atpCDGHF and cyoABCDE). Taken together, our data provide new insights into the transcriptional organization and infection process of the giant bacteriophage ɸKZ and adds a framework for the genome-wide transcriptomic analysis of phage-host interactions.


Assuntos
Antibiose/genética , Regulação Bacteriana da Expressão Gênica , Regulação Viral da Expressão Gênica , Genoma Viral , Fagos de Pseudomonas/genética , Pseudomonas aeruginosa/genética , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Mapeamento Cromossômico , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Ontologia Genética , Anotação de Sequência Molecular , Fagos de Pseudomonas/crescimento & desenvolvimento , Fagos de Pseudomonas/metabolismo , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/virologia , RNA Viral/genética , RNA Viral/metabolismo , Análise de Sequência de RNA , Sítio de Iniciação de Transcrição , Transcriptoma
14.
FEBS J ; 288(10): 3300-3316, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33244868

RESUMO

The bacteriophage ΦX174 causes large pore formation in Escherichia coli and related bacteria. Lysis is mediated by the small membrane-bound toxin ΦX174-E, which is composed of a transmembrane domain and a soluble domain. The toxin requires activation by the bacterial chaperone SlyD and inhibits the cell wall precursor forming enzyme MraY. Bacterial cell wall biosynthesis is an important target for antibiotics; therefore, knowledge of molecular details in the ΦX174-E lysis pathway could help to identify new mechanisms and sites of action. In this study, cell-free expression and nanoparticle technology were combined to avoid toxic effects upon ΦX174-E synthesis, resulting in the efficient production of a functional full-length toxin and engineered derivatives. Pre-assembled nanodiscs were used to study ΦX174-E function in defined lipid environments and to analyze its membrane insertion mechanisms. The conformation of the soluble domain of ΦX174-E was identified as a central trigger for membrane insertion, as well as for the oligomeric assembly of the toxin. Stable complex formation of the soluble domain with SlyD is essential to keep nascent ΦX174-E in a conformation competent for membrane insertion. Once inserted into the membrane, ΦX174-E assembles into high-order complexes via its transmembrane domain and oligomerization depends on the presence of an essential proline residue at position 21. The data presented here support a model where an initial contact of the nascent ΦX174-E transmembrane domain with the peptidyl-prolyl isomerase domain of SlyD is essential to allow a subsequent stable interaction of SlyD with the ΦX174-E soluble domain for the generation of a membrane insertion competent toxin.


Assuntos
Antibiose/genética , Bacteriófago phi X 174/genética , Proteínas de Escherichia coli/genética , Escherichia coli/virologia , Lisogenia/genética , Peptidilprolil Isomerase/genética , Toxinas Biológicas/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteriófago phi X 174/metabolismo , Bacteriófago phi X 174/patogenicidade , Sítios de Ligação , Parede Celular/genética , Parede Celular/metabolismo , Parede Celular/virologia , Dimiristoilfosfatidilcolina/química , Dimiristoilfosfatidilcolina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Nanopartículas/química , Peptidilprolil Isomerase/metabolismo , Fosfatidilgliceróis/química , Fosfatidilgliceróis/metabolismo , Ligação Proteica , Conformação Proteica , Engenharia de Proteínas/métodos , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Solubilidade , Toxinas Biológicas/genética , Toxinas Biológicas/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo
15.
Curr Opin Insect Sci ; 45: 21-27, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33249178

RESUMO

Wheat curl mite (WCM) is the only known arthropod vector of four wheat viruses, the most important of which is Wheat streak mosaic virus (WSMV). Host resistance to WCM and WSMV is limited to a small number of loci, most of which are introgressed from wild relatives and are often associated with linkage drag and temperature sensitivity. Reports of virulent WCM populations and potential resistance-breaking WSMV isolates highlight the need for more diverse sources of resistance. Genome sequencing will be critical to fully characterize the genetic diversity in WCM and WSMV populations to better understand the incidence of WCM-transmitted viruses and to evaluate the potential stability of resistance genes. Characterizing host resistance genes will help build a mechanistic understanding of wheat-WCM-WSMV interactions and inform strategies to identify and engineer more durable resistance sources.


Assuntos
Antibiose/genética , Ácaros/fisiologia , Defesa das Plantas contra Herbivoria/genética , Doenças das Plantas/virologia , Potyviridae/fisiologia , Triticum/fisiologia , Animais , Triticum/genética
16.
Nat Chem Biol ; 17(1): 10-19, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33328654

RESUMO

Many bacterial and archaeal organisms use clustered regularly interspaced short palindromic repeats-CRISPR associated (CRISPR-Cas) systems to defend themselves from mobile genetic elements. These CRISPR-Cas systems are classified into six types based on their composition and mechanism. CRISPR-Cas enzymes are widely used for genome editing and offer immense therapeutic opportunity to treat genetic diseases. To realize their full potential, it is important to control the timing, duration, efficiency and specificity of CRISPR-Cas enzyme activities. In this Review we discuss the mechanisms of natural CRISPR-Cas regulatory biomolecules and engineering strategies that enhance or inhibit CRISPR-Cas immunity by altering enzyme function. We also discuss the potential applications of these CRISPR regulators and highlight unanswered questions about their evolution and purpose in nature.


Assuntos
Archaea/genética , Bactérias/genética , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Regulação da Expressão Gênica em Archaea , Regulação Bacteriana da Expressão Gênica , Antibiose/genética , Archaea/metabolismo , Archaea/virologia , Bactérias/metabolismo , Bactérias/virologia , Bacteriófagos/genética , Bacteriófagos/crescimento & desenvolvimento , Bacteriófagos/metabolismo , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Edição de Genes/métodos , Engenharia Genética/métodos , Humanos , Sequências Repetitivas Dispersas , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo
17.
Curr Biol ; 30(19): R1203-R1214, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-33022265

RESUMO

The study of bacteria interacting with their environment has historically centered on strategies for obtaining nutrients and resisting abiotic stresses. We argue this focus has deemphasized a third facet of bacterial life that is equally central to their existence: namely, the threat to survival posed by antagonizing bacteria. The diversity and ubiquity of interbacterial antagonism pathways is becoming increasingly apparent, and the insidious manner by which interbacterial toxins disarm their targets emphasizes the highly evolved nature of these processes. Studies examining the role of antagonism in natural communities reveal it can serve many functions, from facilitating colonization of naïve habitats to maintaining bacterial community stability. The pervasiveness of antagonistic pathways is necessarily matched by an equally extensive array of defense strategies. These overlap with well characterized, central stress response pathways, highlighting the contribution of bacterial interactions to shaping cell physiology. In this review, we build the case for the ubiquity and importance of interbacterial antagonism.


Assuntos
Antibiose/fisiologia , Bactérias/metabolismo , Interações Microbianas/fisiologia , Antibiose/genética , Bactérias/crescimento & desenvolvimento , Meio Ambiente , Microbiologia Ambiental , Interações Microbianas/genética
18.
Insect Biochem Mol Biol ; 127: 103487, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33068728

RESUMO

Antimicrobial peptides (AMPs) are effective molecules produced by the innate immune system of most organisms to fend off invading microbes and regarded as promising alternatives to conventional antibiotics due to their potent antimicrobial activities. The larvae of black soldier fly (BSF), Hermetia illucens, inhabit microbe-rich environments and its insect genome encodes a broad repertoire of AMPs. In the present study, three AMPs encoded by BSF Hidefensin-1, Hidiptericin-1 and HiCG13551 were cloned, expressed and purified in a recombinant Escherichia coli expression system. In vitro, both Hidefensin-1 and Hidiptericin-1 inhibited the growth of Streptococcus pneumoniae and Escherichia coli, while HiCG13551 inhibited the growth of Staphylococcus aureus and E. coli. Transmission electron microscopy showed that Hidiptericin-1 inhibited bacterial growth through bacterial membrane lysis. We also constructed a transgenic silkworm line constitutively expressing an AMP cassette HiAMP4516 encoding all the three AMPs, and the silkworms showed an increased resistance to both gram-positive and gram-negative entomopathogenic bacteria. These results provide insights into the antibacterial activities of BSF AMPs both in vitro and in vivo and suggest a great potential of exploiting insect-derived AMPs in silkworm disease resistance breeding.


Assuntos
Antibiose/genética , Bombyx/genética , Dípteros/genética , Proteínas de Insetos/genética , Proteínas Citotóxicas Formadoras de Poros/genética , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/metabolismo , Bombyx/metabolismo , Dípteros/metabolismo , Escherichia coli/fisiologia , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Alinhamento de Sequência , Staphylococcus aureus/fisiologia , Streptococcus pneumoniae/fisiologia
19.
mBio ; 11(5)2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32900811

RESUMO

Fungal-bacterial symbioses range from antagonisms to mutualisms and remain one of the least understood interdomain interactions despite their ubiquity as well as ecological and medical importance. To build a predictive conceptual framework for understanding interactions between fungi and bacteria in different types of symbioses, we surveyed fungal and bacterial transcriptional responses in the mutualism between Rhizopus microsporus (Rm) (ATCC 52813, host) and its Mycetohabitans (formerly Burkholderia) endobacteria versus the antagonism between a nonhost Rm (ATCC 11559) and Mycetohabitans isolated from the host, at two time points, before and after partner physical contact. We found that bacteria and fungi sensed each other before contact and altered gene expression patterns accordingly. Mycetohabitans did not discriminate between the host and nonhost and engaged a common set of genes encoding known as well as novel symbiosis factors. In contrast, responses of the host versus nonhost to endobacteria were dramatically different, converging on the altered expression of genes involved in cell wall biosynthesis and reactive oxygen species (ROS) metabolism. On the basis of the observed patterns, we formulated a set of hypotheses describing fungal-bacterial interactions and tested some of them. By conducting ROS measurements, we confirmed that nonhost fungi increased production of ROS in response to endobacteria, whereas host fungi quenched their ROS output, suggesting that ROS metabolism contributes to the nonhost resistance to bacterial infection and the host ability to form a mutualism. Overall, our study offers a testable framework of predictions describing interactions of early divergent Mucoromycotina fungi with bacteria.IMPORTANCE Animals and plants interact with microbes by engaging specific surveillance systems, regulatory networks, and response modules that allow for accommodation of mutualists and defense against antagonists. Antimicrobial defense responses are mediated in both animals and plants by innate immunity systems that owe their functional similarities to convergent evolution. Like animals and plants, fungi interact with bacteria. However, the principles governing these relations are only now being discovered. In a study system of host and nonhost fungi interacting with a bacterium isolated from the host, we found that bacteria used a common gene repertoire to engage both partners. In contrast, fungal responses to bacteria differed dramatically between the host and nonhost. These findings suggest that as in animals and plants, the genetic makeup of the fungus determines whether bacterial partners are perceived as mutualists or antagonists and what specific regulatory networks and response modules are initiated during each encounter.


Assuntos
Antibiose/genética , Bactérias/genética , Bactérias/metabolismo , Fungos/genética , Fungos/metabolismo , Simbiose/genética , Bactérias/classificação , Burkholderia/genética , Burkholderia/metabolismo , Fungos/classificação , Perfilação da Expressão Gênica , Rhizopus/genética , Rhizopus/metabolismo , Transdução de Sinais
20.
Probiotics Antimicrob Proteins ; 12(4): 1310-1320, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32844362

RESUMO

The over-prescription of antibiotics for treatment of infections is primarily to blame for the increase in bacterial resistance. Added to the problem is the slow rate at which novel antibiotics are discovered and the many processes that need to be followed to classify antimicrobials safe for medical use. Xenorhabdus spp. of the family Enterobacteriaceae, mutualistically associated with entomopathogenic nematodes of the genus Steinernema, produce a variety of antibacterial peptides, including bacteriocins, depsipeptides, xenocoumacins and PAX (peptide antimicrobial-Xenorhabdus) peptides, plus additional secondary metabolites with antibacterial and antifungal activity. The secondary metabolites of some strains are active against protozoa and a few have anti-carcinogenic properties. It is thus not surprising that nematodes invaded by a single strain of a Xenorhabdus species are not infected by other microorganisms. In this review, the antimicrobial compounds produced by Xenorhabdus spp. are listed and the gene clusters involved in synthesis of these secondary metabolites are discussed. We also review growth conditions required for increased production of antimicrobial compounds.


Assuntos
Anti-Infecciosos/metabolismo , Peptídeos Catiônicos Antimicrobianos/biossíntese , Regulação Bacteriana da Expressão Gênica , Metabolismo Secundário/genética , Strongyloidea/microbiologia , Xenorhabdus/metabolismo , Animais , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antibiose/genética , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteriocinas/biossíntese , Bacteriocinas/química , Bacteriocinas/genética , Bacteriocinas/farmacologia , Benzopiranos/química , Benzopiranos/metabolismo , Benzopiranos/farmacologia , Depsipeptídeos/biossíntese , Depsipeptídeos/química , Depsipeptídeos/genética , Depsipeptídeos/farmacologia , Humanos , Insetos/parasitologia , Família Multigênica , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Simbiose/fisiologia , Xenorhabdus/química , Xenorhabdus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA