Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.078
Filtrar
1.
MAbs ; 16(1): 2324485, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38700511

RESUMO

Model-informed drug discovery advocates the use of mathematical modeling and simulation for improved efficacy in drug discovery. In the case of monoclonal antibodies (mAbs) against cell membrane antigens, this requires quantitative insight into the target tissue concentration levels. Protein mass spectrometry data are often available but the values are expressed in relative, rather than in molar concentration units that are easier to incorporate into pharmacokinetic models. Here, we present an empirical correlation that converts the parts per million (ppm) concentrations in the PaxDb database to their molar equivalents that are more suitable for pharmacokinetic modeling. We evaluate the insight afforded to target tissue distribution by analyzing the likely tumor-targeting accuracy of mAbs recognizing either epidermal growth factor receptor or its homolog HER2. Surprisingly, the predicted tissue concentrations of both these targets exceed the Kd values of their respective therapeutic mAbs. Physiologically based pharmacokinetic (PBPK) modeling indicates that in these conditions only about 0.05% of the dosed mAb is likely to reach the solid tumor target cells. The rest of the dose is eliminated in healthy tissues via both nonspecific and target-mediated processes. The presented approach allows evaluation of the interplay between the target expression level in different tissues that determines the overall pharmacokinetic properties of the drug and the fraction that reaches the cells of interest. This methodology can help to evaluate the efficacy and safety properties of novel drugs, especially if the off-target cell degradation has cytotoxic outcomes, as in the case of antibody-drug conjugates.


Assuntos
Anticorpos Monoclonais , Espectrometria de Massas , Humanos , Anticorpos Monoclonais/farmacocinética , Anticorpos Monoclonais/imunologia , Espectrometria de Massas/métodos , Receptor ErbB-2/imunologia , Receptor ErbB-2/metabolismo , Receptores ErbB/imunologia , Receptores ErbB/antagonistas & inibidores , Distribuição Tecidual , Neoplasias/tratamento farmacológico , Neoplasias/imunologia
2.
MAbs ; 16(1): 2352887, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38745390

RESUMO

Subcutaneous injections are an increasingly prevalent route of administration for delivering biological therapies including monoclonal antibodies (mAbs). Compared with intravenous delivery, subcutaneous injections reduce administration costs, shorten the administration time, and are strongly preferred from a patient experience point of view. An understanding of the absorption process of a mAb from the injection site to the systemic circulation is critical to the process of subcutaneous mAb formulation development. In this study, we built a model to predict the absorption rate constant (ka), which denotes how fast a mAb is absorbed from the site of administration. Once trained, our model (enabled by the XGBoost algorithm in machine learning) can predict the ka of a mAb following a subcutaneous injection using in silico molecular properties alone (generated from the primary sequence). Our model does not need clinically observed plasma concentration-time data; this is a novel capability not previously achieved in predictive pharmacokinetic models. The model also showed improved performance when benchmarked against a recently reported mechanistic model that relied on clinical data to predict subcutaneous absorption of mAbs. We further interpreted the model to understand which molecular properties affect the absorption rate and showed that our findings are consistent with previous studies evaluating subcutaneous absorption through direct experimentation. Taken altogether, this study reports the development, validation, benchmarking, and interpretation of a model that can predict the clinical ka of a mAb using its primary sequence as the only input.


Assuntos
Anticorpos Monoclonais , Aprendizado de Máquina , Anticorpos Monoclonais/farmacocinética , Humanos , Injeções Subcutâneas , Absorção Subcutânea , Modelos Biológicos
3.
Regul Toxicol Pharmacol ; 149: 105616, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38561147

RESUMO

Pharmacokinetic (PK) models are increasingly submitted to the FDA to support first-in-human (FIH) dose selection of immune-oncology products. To examine whether a simple PK modeling (SPM) using clearance for scaling was acceptable for dose estimation, FIH(SPM) doses were computed and compared to doses that were safely administered to patients. We concluded that the SPM approach is acceptable in FIH dose estimation, but the variables should be carefully selected for CD3 constructs. For CD3 constructs, use of 60 kg BWh, a clearance exponent of 0.75, and a targeted plasma concentration based on relevant and/or sensitive activity assays was an acceptable approach for FIH dose selection; use of 0.85 as the scaling factor is questionable at this time as it resulted in a FIH dose that was too close to the AHD for one product (7%). Immune activating mAbs were not sensitive to changes in the clearance exponent (0.75-0.85) or body weight (60-70 kg). For PD-1/PD-L1 mAbs, using products' in vitro EC50 in the model resulted in suboptimal FIH doses and clinical data of closely related products informed FIH dose selection. PK models submitted by sponsors were diverse in methods, assumptions, and variables, and the resulting FIH doses were not always optimal.


Assuntos
Modelos Biológicos , Humanos , Relação Dose-Resposta a Droga , Antígeno B7-H1/imunologia , Antineoplásicos Imunológicos/farmacocinética , Antineoplásicos Imunológicos/administração & dosagem , Receptor de Morte Celular Programada 1/imunologia , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Complexo CD3/imunologia , Anticorpos Monoclonais/farmacocinética , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/sangue
4.
Clin Pharmacokinet ; 63(4): 423-438, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38609704

RESUMO

Enfortumab vedotin is an antibody-drug conjugate comprised of a human monoclonal antibody directed to Nectin-4 and monomethyl auristatin E (MMAE), a microtubule-disrupting agent. The objectives of this review are to summarize the clinical pharmacology of enfortumab vedotin monotherapy and demonstrate that the appropriate dose has been selected for clinical use. Pharmacokinetics (PK) of enfortumab vedotin (antibody-drug conjugate and total antibody) and free MMAE were evaluated in five clinical trials of patients with locally advanced or metastatic urothelial carcinoma (n = 748). Intravenous enfortumab vedotin 0.5-1.25 mg/kg on days 1, 8, and 15 of a 28-day cycle showed linear, dose-proportional PK. No significant differences in exposure or safety of enfortumab vedotin and free MMAE were observed in mild, moderate, or severe renal impairment versus normal renal function. Patients with mildly impaired versus normal hepatic function had a 37% increase in area under the concentration-time curve (0-28 days), a 31% increase in maximum concentration of free MMAE, and a similar adverse event profile. No clinically significant PK differences were observed based on race/ethnicity with weight-based dosing, and no clinically meaningful QT prolongation was observed. Concomitant use with dual P-glycoprotein and strong cytochrome P450 3A4 inhibitors may increase MMAE exposure and the risk of adverse events. Approximately 3% of patients developed antitherapeutic antibodies against enfortumab vedotin 1.25 mg/kg. These findings support enfortumab vedotin 1.25 mg/kg monotherapy on days 1, 8, and 15 of a 28-day cycle. No dose adjustments are required for patients with renal impairment or mild hepatic impairment, or by race/ethnicity.


Assuntos
Anticorpos Monoclonais , Imunoconjugados , Nectinas , Humanos , Anticorpos Monoclonais/farmacocinética , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Imunoconjugados/farmacocinética , Imunoconjugados/administração & dosagem , Imunoconjugados/farmacologia , Imunoconjugados/efeitos adversos , Imunoconjugados/uso terapêutico , Oligopeptídeos/farmacocinética , Oligopeptídeos/administração & dosagem , Oligopeptídeos/uso terapêutico , Oligopeptídeos/farmacologia , Oligopeptídeos/efeitos adversos , Neoplasias Urológicas/tratamento farmacológico , Neoplasias Urológicas/patologia , Relação Dose-Resposta a Droga , Carcinoma de Células de Transição/tratamento farmacológico , Antineoplásicos/farmacocinética , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia
5.
Clin Pharmacokinet ; 63(5): 589-622, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583128

RESUMO

BACKGROUND AND OBJECTIVE: Although little information is available on the pharmacokinetics (PK) of monoclonal antibodies (mAbs) during pregnancy, multiple mAbs are being used during pregnancy for various indications. The aim of this systematic literature review was to characterize the PK of mAbs throughout pregnancy. METHODS: A systematic literature search was carried out in PubMed and Embase on 21 April 2023. Articles were included when information on PK or exposure parameters of mAbs in pregnant women was available. RESULTS: A total of 42 relevant articles were included, of which eight discussed adalimumab, three certolizumab pegol, five eculizumab, one golimumab, 12 infliximab (IFX), two natalizumab, one canakinumab, one omalizumab, five tocilizumab, eight ustekinumab, and five vedolizumab. One of the 42 studies reported information on clearance (CL) and volume of distribution (VD) of IFX; all other studies only reported on serum concentrations in the pre-pregnancy state, different trimesters, and the postpartum period. For all of the assessed mAbs except IFX, serum concentrations were similar to concentrations in the pre-pregnancy state or modestly decreased. In contrast, IFX trough concentrations generally increased in the second and third trimesters in comparison to the non-pregnant state. CONCLUSION: Available information suggests that the anatomical and physiological changes throughout pregnancy may have meaningful effects on the PK of mAbs. For most mAbs (not IFX), modestly higher dosing (per mg) maybe needed during pregnancy to sustain a similar serum exposure compared to pre-pregnancy.


Assuntos
Anticorpos Monoclonais , Humanos , Gravidez , Feminino , Anticorpos Monoclonais/farmacocinética , Anticorpos Monoclonais/administração & dosagem , Complicações na Gravidez/tratamento farmacológico , Complicações na Gravidez/imunologia
6.
Acta Biomater ; 179: 272-283, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38460931

RESUMO

Anticancer drugs used for systemic chemotherapy often exhibit off-target toxicity and uncontrolled drug release due to their lack of targeting. To improve the bioavailability of drugs and reduce side effects, we have developed a mixed micelle of nanomedicine composed of two prodrugs with surface modified monoclonal antibody for cancer therapy. In this system, Nimotuzumab was used as targeting ligands of the mixed micelles (named as DCMMs) that is composed of polymer-doxorubicin prodrug (abbreviated as PEG-b-P(GMA-ss-DOX)) and maleimide polyethylene glycol-chlorin e6 (abbreviated as Mal-PEG-Ce6). The mixed micelles modified with Nimotuzumab (named as NTZ-DCMMs) bind to overexpressed EGFR receptors on Hepatoma-22 (H22) cells. Disulfide bonds in PEG-b-P(GMA-ss-DOX) are disrupted in tumor microenvironment, inducing the reduction-responsive release of DOX and leading to tumor cell apoptosis. Simultaneously, Chlorin e6 (Ce6) produced plenty of singlet oxygen (1O2) under laser irradiation to kill tumor cells. In vivo biological distribution and antineoplastic effect experiments demonstrate that NTZ-DCMMs enhanced drug enrichment at tumor sites through targeting function of antibody, dramatically suppressing tumor growth and mitigating cardiotoxicity of drugs. All results prove that NTZ-DCMMs have the ability to actively target H22 cells and quickly respond to tumor microenvironment, which is expected to become an intelligent and multifunctional drug delivery carrier for efficient chemotherapy and photodynamic therapy of hepatoma. STATEMENT OF SIGNIFICANCE: Anticancer drugs used for systemic chemotherapy often exhibit off-target toxicity due to their lack of targeting. Therefore, it's necessary to develop effective, targeted, and collaborative treatment strategies. We construct a mixed micelle of nanomedicine based on two polymer prodrugs and modified with monoclonal antibody on surface for cancer therapy. Under the tumor cell microenvironment, the disulfide bonds of polymer-ss-DOX were broken, effectively triggering DOX release. The photosensitizer Ce6 could generate a large amount of ROS under light, which synergistically promotes tumor cell apoptosis. By coupling antibodies to the hydrophilic segments of polymer micelles, drugs can be specifically delivered. Compared with monotherapy, the combination of chemotherapy and photodynamic therapy can significantly enhance the therapeutic effect of liver cancer.


Assuntos
Clorofilídeos , Doxorrubicina , Micelas , Nanomedicina , Fotoquimioterapia , Porfirinas , Pró-Fármacos , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Pró-Fármacos/farmacocinética , Doxorrubicina/farmacologia , Doxorrubicina/química , Animais , Fotoquimioterapia/métodos , Linhagem Celular Tumoral , Nanomedicina/métodos , Porfirinas/química , Porfirinas/farmacologia , Porfirinas/farmacocinética , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/química , Anticorpos Monoclonais/farmacocinética , Camundongos , Polímeros/química , Polímeros/farmacologia , Camundongos Endogâmicos BALB C , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Apoptose/efeitos dos fármacos
7.
Eur J Drug Metab Pharmacokinet ; 49(3): 263-275, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38457093

RESUMO

Calcitonin gene-related peptide neurotransmission was the target for recent development of monoclonal antibodies that effectively prevent attacks of both episodic and chronic migraine. The aim of this narrative review was to offer deeper insight into drug-drug, drug-food and drug-disease interactions of monoclonal antibodies approved for prevention of migraine attacks. For this narrative review, relevant literature was searched for in MEDLINE and Google Scholar databases, covering the 1966-2023 and 2006-2023 periods, respectively. The ClinicalTrials.gov database was also searched for relevant clinical studies whose results had not been published previously in medical journals, covering 2000-2023. Monoclonal antibodies (erenumab, fremanezumab, galcanezumab and eptinezumab) augment prophylactic action of gepants and onabotulinumtoxin A and somewhat increase efficacy of triptans used to abort migraine attacks; however, their adverse reactions may also be augmented. Pharmacokinetic interactions and interactions in general with drugs used for other indications except migraine are negligible, as are drug-food interactions. However, monoclonal antibodies may worsen diseases with already weakened CGRP neurotransmission, Raynaud phenomenon and constipation. Monoclonal antibodies used for prevention of migraine do not engage in significant pharmacokinetic interactions with other drugs; however, they do engage in pharmacodynamic interactions with other anti-migraine drugs, additively augmenting their prophylactic action, but also increasing frequency and severity of adverse reactions, which are a consequence of the CGRP neurotransmission interruption.


Assuntos
Anticorpos Monoclonais , Peptídeo Relacionado com Gene de Calcitonina , Interações Medicamentosas , Transtornos de Enxaqueca , Transtornos de Enxaqueca/tratamento farmacológico , Humanos , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/farmacocinética , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/efeitos adversos , Peptídeo Relacionado com Gene de Calcitonina/imunologia , Peptídeo Relacionado com Gene de Calcitonina/antagonistas & inibidores , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina/farmacologia , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina/uso terapêutico , Interações Alimento-Droga , Animais
8.
Eur J Drug Metab Pharmacokinet ; 49(3): 277-293, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38461486

RESUMO

The calcitonin gene-related peptide transmission was the target for recent development of drugs that effectively prevent attacks of both episodic and chronic migraine. The aim of this narrative review was to offer deeper insight into pharmacokinetics of monoclonal antibodies approved for prevention of migraine attacks. For this narrative review, relevant literature was searched for in MEDLINE and Google Scholar databases, covering periods 1966-2023 and 2006-2023, respectively. The ClinicalTrials.gov database was also searched for relevant clinical studies whose results had not been published previously in medical journals, covering the period 2000-2023. The monoclonal antibodies from this group are distributed mainly in the plasma and part of the extracellular space; they are neither metabolized in the liver nor excreted via the kidneys. The elimination of galcanezumab, eptinezumab and fremanezumab takes place only by a non-specific linear process via the reticuloendothelial system in the liver, while erenumab is eliminated by a non-specific process and by a specific, saturable process because of binding to receptors located on the cell membrane. Since the elimination processes do not have a large capacity, the half-life is about 2 weeks for erenumab and about 4 weeks for other monoclonal antibodies. Variability in the pharmacokinetics of these monoclonal antibodies is small in different subpopulations, and body weight is the only parameter to consider when choosing the dose of these drugs.


Assuntos
Anticorpos Monoclonais , Peptídeo Relacionado com Gene de Calcitonina , Transtornos de Enxaqueca , Humanos , Transtornos de Enxaqueca/tratamento farmacológico , Anticorpos Monoclonais/farmacocinética , Anticorpos Monoclonais/uso terapêutico , Peptídeo Relacionado com Gene de Calcitonina/imunologia , Anticorpos Monoclonais Humanizados/farmacocinética , Anticorpos Monoclonais Humanizados/uso terapêutico , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina/farmacocinética , Animais
9.
Clin Pharmacol Ther ; 115(6): 1418-1427, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38488354

RESUMO

A proof-of-concept study with the combination of guselkumab and golimumab in patients with ulcerative colitis (UC) has shown that the combination therapy resulted in greater efficacy than the individual monotherapies. The current analysis evaluated the pharmacokinetics (PK) and immunogenicity of guselkumab and golimumab in both the combination therapy and individual monotherapies. Blood samples were collected to evaluate serum concentrations and immunogenicity of guselkumab and golimumab. Population PK (PopPK) models were developed to assess the effects of combination therapy and other potential covariates on the PK of guselkumab and golimumab. The guselkumab PK was comparable between monotherapy and combination therapy, whereas golimumab concentrations were slightly higher with combination therapy. The anti-guselkumab antibody incidence was low with both monotherapy and combination therapy, and guselkumab immunogenicity did not impact the clearance. Conversely, the anti-golimumab antibody incidence with combination therapy was lower than that for monotherapy. PopPK analysis suggested that the slightly higher golimumab concentrations with combination therapy were partially due to lower immunogenicity and thus lower clearance with combination therapy. C-reactive protein (CRP) was also a significant covariate on golimumab clearance. The greater improvement of inflammation with combination therapy, as shown by reductions in CRP, may have also contributed to the higher golimumab concentrations. Combination therapy slightly decreased the clearance of golimumab, but not guselkumab clearance, in patients with UC. Lower immunogenicity and greater improvement of inflammation with combination therapy were potential mechanisms for slightly increased golimumab concentrations with combination therapy as compared with golimumab monotherapy.


Assuntos
Anticorpos Monoclonais Humanizados , Anticorpos Monoclonais , Colite Ulcerativa , Interações Medicamentosas , Quimioterapia Combinada , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Anticorpos Monoclonais/farmacocinética , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais Humanizados/farmacocinética , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/administração & dosagem , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/imunologia , Fármacos Gastrointestinais/farmacocinética , Fármacos Gastrointestinais/administração & dosagem , Fármacos Gastrointestinais/uso terapêutico , Fármacos Gastrointestinais/imunologia , Modelos Biológicos , Estudo de Prova de Conceito , Índice de Gravidade de Doença , Resultado do Tratamento
10.
Clin Pharmacol Ther ; 115(3): 404-407, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38167787

RESUMO

Comparative pharmacokinetics (PK) studies have efficiently served as the bridge between autoinjectors and prefilled syringes given the underlying principles that comparable exposure could translate to comparable efficacy and safety. This article discusses approaches used to address uncertainties associated with the observation of noncomparable PK leading to the successful introduction of new autoinjector devices for monoclonal antibody and Fc-fusion protein products. Information from seven case examples suggests a knowledge gap that warrants attention in autoinjector development.


Assuntos
Anticorpos Monoclonais , Seringas , Humanos , Injeções Subcutâneas , Anticorpos Monoclonais/farmacocinética , Área Sob a Curva
11.
Proteomics ; 24(3-4): e2300069, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37480175

RESUMO

Monoclonal antibodies (mAbs) have established themselves as the leading biopharmaceutical therapeutic modality. Once the developability of a mAb drug candidate has been assessed, an important step is to check its in vivo stability through pharmacokinetics (PK) studies. The gold standard is ligand-binding assay (LBA) and liquid chromatography-mass spectrometry (LC-MS) performed at the peptide level (bottom-up approach). However, these analytical techniques do not allow to address the different mAb proteoforms that can arise from biotransformation. In recent years, top-down and middle-down mass spectrometry approaches have gained popularity to characterize proteins at the proteoform level but are not yet widely used for PK studies. We propose here a workflow based on an automated immunocapture followed by top-down and middle-down liquid chromatography-tandem mass spectrometry (LC-MS/MS) approaches to characterize mAb proteoforms spiked in mouse plasma. We demonstrate the applicability of our workflow on a large concentration range using pembrolizumab as a model. We also compare the performance of two state-of-the-art Orbitrap platforms (Tribrid Eclipse and Exploris 480) for these studies. The added value of our workflow for an accurate and sensitive characterization of mAb proteoforms in mouse plasma is highlighted.


Assuntos
Peptídeos , Espectrometria de Massas em Tandem , Animais , Camundongos , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Plasma , Anticorpos Monoclonais/química , Anticorpos Monoclonais/farmacocinética
12.
J Pharm Sci ; 113(1): 72-84, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37844759

RESUMO

Therapeutic antibodies have shown little efficacy in the treatment of pancreatic ductal adenocarcinomas (PDAC). Tumor desmoplasia, hypovascularity, and poor perfusion result in insufficient tumor cell exposure, contributing to treatment failure. Smoothened inhibitors of hedgehog signaling (sHHi) increase PDAC tumor permeability, perfusion, and drug delivery, and provide a tool to develop a quantitative, mechanistic understanding as to how the temporal dynamics of tumor priming can impact intratumor distribution of monoclonal antibodies (mAb). A linked pharmacokinetic (PK)/pharmacodynamic (PD) model was developed to integrate the plasma and tumor PK of a sHHi priming agent with its effects upon downstream stromal biomarkers Gli1, hyaluronic acid, and interstitial fluid pressure in PDAC patient-derived xenograft (PDX) tumors. In parallel, in situ tumor concentrations of cetuximab (CTX: anti-epidermal growth factor receptor; EGFR) were quantified as a marker for tumor delivery of mAb or antibody-drug conjugates. A minimal, physiologically-based pharmacokinetic (mPBPK) model was constructed to link sHHi effects upon mechanistic effectors of tumor barrier compromise with the intratumor distribution of CTX, and CTX occupancy of EGFR in tumors. Integration of the mPBPK model of mAb deposition and intratumor distribution with the PK/PD model of tumor responses to priming not only identified physiological parameters that are critical for tumor antibody distribution, but also provides insight into dosing regimens that could achieve maximal tumor disposition of therapeutic antibodies under conditions of transient PDAC tumor permeability barrier compromise that mechanistically-diverse tumor priming strategies may achieve.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Cetuximab/uso terapêutico , Proteínas Hedgehog/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Sistemas de Liberação de Medicamentos , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Anticorpos Monoclonais/farmacocinética , Receptores ErbB
13.
J Clin Pharmacol ; 64(4): 418-427, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37909264

RESUMO

Ozoralizumab is a bispecific NANOBODY compound that binds tumor necrosis factor alpha (TNFα) and human serum albumin. Ozoralizumab inhibits the TNFα physiological activity while maintaining long-term plasma retention owing to its human serum albumin-binding ability. A population pharmacokinetic (PK) model was developed using data from 494 Japanese patients with rheumatoid arthritis in Phase II/III and Phase III trials to assess the effects of potential PK covariates. The ozoralizumab PK after subcutaneous administration was described using a 1-compartment model with first-order absorption and first-order elimination processes. A proportional error model was used for inter- and intra-individual variabilities, with covariance set between inter-individual variabilities of the apparent clearance and apparent distribution volume. Body weight, sex, antidrug antibody status, estimated glomerular filtration rate, and concomitant methotrexate use were identified as covariates for apparent clearance, while body weight and sex were covariates for apparent distribution volume in the final model. Body weight had the greatest effect on the PK of ozoralizumab, while the other covariates had minor effects. When administered at 30 mg every 4 weeks, the predicted steady-state plasma trough concentration in a patient weighing 83.2 kg exceeded the trough concentration required to maintain efficacy of ozoralizumab, and the estimated exposure in a patient weighing 42.5 kg did not exceed the mean exposure at 80 mg, a well-tolerated dose, throughout 52 weeks. We developed a population PK model that adequately described the ozoralizumab PK in Japanese patients with rheumatoid arthritis, and none of the evaluated covariates showed clinically relevant effects on the PK of ozoralizumab.


Assuntos
Artrite Reumatoide , Fator de Necrose Tumoral alfa , Humanos , Anticorpos Monoclonais/farmacocinética , Peso Corporal , Albumina Sérica Humana , Modelos Biológicos
14.
BioDrugs ; 38(2): 313-321, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38148466

RESUMO

BACKGROUND AND OBJECTIVE: QX006N is a novel, humanized, IgG4κ monoclonal antibody targeting IFNAR1, developed for the treatment of systemic lupus erythematosus. This study aims to investigate the pharmacokinetics, safety, tolerability, and immunogenicity of QX006N when administered intravenously to healthy Chinese individuals. METHODS: A double-blind, randomized, placebo-controlled, single-ascending-dose, phase I clinical trial was conducted comprising five cohorts (n = 10 per cohort, except n = 5 for the first cohort). Subjects in each cohort were randomly assigned in a 4:1 ratio to receive a single intravenous infusion of QX006N (0.3 mg/kg, 1.0 mg/kg, 3.0 mg/kg, 6.0 mg/kg, or 10.0 mg/kg) or placebo for 30 minutes. Tolerability assessments included adverse events, vital signs, 12-lead electrocardiogram, physical examination, and clinical laboratory tests. The serum concentration of QX006N was measured using the enzyme-linked immunosorbent assay method, and the anti-drug antibodies were detected using the electrochemiluminescence assay method. RESULTS: QX006N demonstrated a favorable safety and tolerability profile throughout the study. All treatment-emergent adverse events were of Grade 1-2 (CTCAE Version 5.0), and no serious adverse events, deaths, or drug discontinuations because of treatment-emergent adverse events were observed. All drug-related treatment-emergent adverse events showed no clear dose-related trends. Following an intravenous infusion of QX006N at doses that ranged from 0.3 mg/kg to 10 mg/kg, the half-life increased from 24.7 to 208 hours in a dose-dependent manner, while clearance decreased from 0.0828 to 0.0065 L/h. The maximum concentration exhibited nearly dose-proportional increases, and the area under the curve displayed a more than dose-proportional increment with non-linear pharmacokinetic characteristics. The incidence of anti-drug antibodies was observed to increase over time for doses that ranged from 1.0 mg/kg to 10.0 mg/kg of QX006N, reaching its peak at day 57 (range 62.50-87.50%). Conversely, the incidence of anti-drug antibodies in the QX006N 0.3-mg/kg and placebo cohorts remained low. CONCLUSIONS: QX006N demonstrated acceptable safety, tolerability, and pharmacokinetic characteristics in healthy subjects when administered as a single intravenous infusion at doses that ranged from 0.3 mg/kg to 10.0 mg/kg. Based on the pharmacokinetic and safety outcomes, a recommended effective dose of 300 mg is proposed for future phase Ib studies. CLINICAL TRIAL REGISTRATION: This study has been registered at http://www.chinadrugtrials.org.cn/ under identifier CTR20212834.


Assuntos
Anticorpos Monoclonais , Receptor de Interferon alfa e beta , Humanos , Voluntários Saudáveis , Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais/farmacocinética , Infusões Intravenosas , Área Sob a Curva , Método Duplo-Cego , China , Relação Dose-Resposta a Droga
15.
Drug Metab Dispos ; 52(3): 228-235, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38135505

RESUMO

The development of therapeutic fusion protein drugs is often impeded by the unintended consequences that occur from fusing together domains from independent naturally occurring proteins, consequences such as altered biodistribution, tissue uptake, or rapid clearance and potential immunogenicity. For therapeutic fusion proteins containing globular domains, we hypothesized that aberrant in vivo behavior could be related to low kinetic stability of these domains leading to local unfolding and susceptibility to partial proteolysis and/or salvage and uptake. Herein we describe an assay to measure kinetic stability of therapeutic fusion proteins by way of their sensitivity to the protease thermolysin. The results indicate that in vivo pharmacokinetics of a panel of anti-programmed cell death protein 1 monocolonal antibody:interleukin 21 immunocytokines in both mice and nonhuman primates are highly correlated with their in vitro susceptibility to thermolysin-mediated proteolysis. This assay can be used as a tool to quickly identify in vivo liabilities of globular domains of therapeutic proteins, thus aiding in the optimization and development of new multispecific drug candidates. SIGNIFICANCE STATEMENT: This work describes a novel assay utilizing protein kinetic stability to identify preclinical in vivo pharmacokinetic liabilities of multispecific therapeutic fusion proteins. This provides an efficient, inexpensive method to ascertain inherent protein stability in vitro before conducting in vivo studies, which can rapidly increase the speed of preclinical drug development.


Assuntos
Anticorpos Monoclonais , Interleucinas , Camundongos , Animais , Distribuição Tecidual , Termolisina , Anticorpos Monoclonais/farmacocinética
16.
CPT Pharmacometrics Syst Pharmacol ; 13(3): 476-493, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38115545

RESUMO

Body size has historically been considered the primary source of difference in the pharmacokinetics (PKs) of monoclonal antibodies (mAbs) between children aged greater than or equal to 2 years and adults. The contribution of age-associated differences (e.g., ontogeny) beyond body-size differences in the pediatric PKs of mAbs has not been comprehensively evaluated. In this study, the population PK of two mAbs (nivolumab and ipilimumab) in pediatric oncology patients were characterized. The effects of age-related covariates on nivolumab or ipilimumab PKs were assessed using data from 13 and 10 clinical studies, respectively, across multiple tumor types, including melanoma, lymphoma, central nervous system tumors (CNSTs), and other solid tumors. Clearance was lower in pediatric patients (aged 1-17 years) with solid tumors or CNST than in adults after adjusting for other covariates, including the effect of body size. In contrast, clearance was similar in pediatric patients with lymphoma to that in adults with lymphoma. The pediatric effects characterized have increased the accuracy of the predictions of the model, facilitating its use in subsequent exposure comparisons between pediatric and adult patients, as well as for exposure-response analyses to inform pediatric dosing. This study approach may be applicable to the optimization of pediatric dosing of other mAbs and possibly other biologics.


Assuntos
Linfoma , Melanoma , Adulto , Humanos , Criança , Nivolumabe , Ipilimumab , Melanoma/tratamento farmacológico , Anticorpos Monoclonais/farmacocinética , Tamanho Corporal , Protocolos de Quimioterapia Combinada Antineoplásica
17.
Adv Mater ; 36(13): e2308738, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38105299

RESUMO

Subcutaneous (SC) administration of monoclonal antibodies (mAbs) is a proven strategy for improving therapeutic outcomes and patient compliance. The current FDA-/EMA-approved enzymatic approach, utilizing recombinant human hyaluronidase (rHuPH20) to enhance mAbs SC delivery, involves degrading the extracellular matrix's hyaluronate to increase tissue permeability. However, this method lacks tunable release properties, requiring individual optimization for each mAb. Seeking alternatives, physical polysaccharide hydrogels emerge as promising candidates due to their tunable physicochemical and biodegradability features. Unfortunately, none have demonstrated simultaneous biocompatibility, biodegradability, and controlled release properties for large proteins (≥150 kDa) after SC delivery in clinical settings. Here, a novel two-component hydrogel comprising chitosan and chitosan@DOTAGA is introduced that can be seamlessly mixed with sterile mAbs formulations initially designed for intravenous (IV) administration, repurposing them as novel tunable SC formulations. Validated in mice and nonhuman primates (NHPs) with various mAbs, including trastuzumab and rituximab, the hydrogel exhibited biodegradability and biocompatibility features. Pharmacokinetic studies in both species demonstrated tunable controlled release, surpassing the capabilities of rHuPH20, with comparable parameters to the rHuPH20+mAbs formulation. These findings signify the potential for rapid translation to human applications, opening avenues for the clinical development of this novel SC biosimilar formulation.


Assuntos
Anticorpos Monoclonais , Quitosana , Humanos , Camundongos , Animais , Anticorpos Monoclonais/farmacocinética , Hidrogéis , Preparações de Ação Retardada , Injeções Subcutâneas
18.
Drug Metab Pharmacokinet ; 53: 100506, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38029470

RESUMO

We previously reported that monoclonal antibodies (mAbs) with a high isoelectric point (pI) value tended to exhibit fast plasma clearance (CL) and large steady-state volume of distribution (Vdss) in mice. However, the positive correlation between pI, CL, and Vdss cannot be described by the reported physiologically based pharmacokinetic (PBPK) models, in which FcRn-mediated transcytosis of mAbs is set to be minimal compared to convection-mediated transport. To address this issue, physiological parameters (lymph flow rate, reflection coefficient, endothelial uptake clearance, and FcRn concentration) were optimized based on the pharmacokinetic profiles of mAbs with various pI values in wild type and FcRn-deficient (beta-2-microglobulin knockout [KO]) mice. Simulations using the PBPK model developed in this study showed a positive correlation between pI, CL and Vdss observed in wild-type mice. Therefore, this model successfully characterized our hypothetical mechanism that an electrostatic positive interaction between mAbs and the endothelial membrane enhances FcRn-mediated transcytosis of mAbs, resulting in large Vdss. We sought to determine the right contribution of the two pathways of antibody distribution to the interstitial space and established a new model that could effectively capture the effect of pI on FcRn-mediated distribution of mAbs in the body.


Assuntos
Anticorpos Monoclonais , Modelos Biológicos , Camundongos , Animais , Anticorpos Monoclonais/farmacocinética , Transporte Biológico , Cinética , Camundongos Knockout , Receptores Fc/genética , Receptores Fc/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo
19.
Clin Transl Sci ; 16(12): 2744-2755, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37864313

RESUMO

This ethnic sensitivity analysis used data from the phase III POLARIX study (NCT03274492) to assess polatuzumab vedotin pharmacokinetics (PKs) in Asian versus non-Asian patients with previously untreated diffuse large B-cell lymphoma and examined the appropriateness of extrapolating global study findings to Asian patients. PK and population PK (PopPK) analyses assessed polatuzumab vedotin analyte exposures by ethnicity (Asian [n = 84] vs. non-Asian [n = 345] patients) and region (patients enrolled from Asia [n = 80] vs. outside Asia [n = 349]). In patients from Asia versus outside Asia, observed mean antibody-conjugated monomethyl auristatin E (acMMAE) concentrations were comparable (1.2% lower at cycle [C]1 postdose, 4.4% higher at C4 predose; and 6.8% lower at C4 postdose in patients from Asia). Observed mean unconjugated MMAE was lower in patients from Asia by 6.5% (C1 postdose), 20.0% (C4 predose), and 15.3% (C4 postdose). In the PopPK analysis, C6 area under the curve and peak plasma concentrations were also comparable for acMMAE (6.3% and 3.0% lower in Asian vs. non-Asian patients, respectively) and lower for unconjugated MMAE by 19.1% and 16.7%, respectively. By region, C6 mean acMMAE concentrations were similar, and C6 mean unconjugated MMAE concentrations were lower, in patients enrolled from Asia versus outside Asia, by 3.9%-7.0% and 17.3%-19.7%, respectively. In conclusion, polatuzumab vedotin PKs were similar between Asian and non-Asian patients by ethnicity and region, suggesting PKs are not sensitive to Asian ethnicity and dose adjustments are not required in Asian patients to maintain efficacy and safety.


Assuntos
Imunoconjugados , Linfoma Difuso de Grandes Células B , Humanos , Anticorpos Monoclonais/farmacocinética , Ásia , Imunoconjugados/farmacocinética , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/patologia , Ensaios Clínicos Fase III como Assunto
20.
Pharm Res ; 40(11): 2687-2697, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37821769

RESUMO

BACKGROUND: Dosing regimens of trastuzumab administered by intracerebroventricular (icv) route to patients with HER2-positive brain localizations remain empirical. The objectives of this study were to describe pharmacokinetics (PK) of trastuzumab in human plasma and cerebrospinal fluid (CSF) after simultaneous icv and intravenous (iv) administration using a minimal physiologically-based pharmacokinetic model (mPBPK) and to perform simulations of alternative dosing regimens to achieve therapeutic concentrations in CSF. METHODS: Plasma and CSF PK data were collected in two patients with HER2-positive brain localizations. A mPBPK model for mAbs consisting of four compartments (tight and leaky tissues, plasma and lymph) was enriched by an additional compartment for ventricular CSF. The comparison between observed and model-predicted concentrations was evaluated using prediction error (PE). RESULTS: The developed mPBPK model described plasma and CSF trastuzumab concentrations reasonably well with mean PE for plasma and CSF data of 41.8% [interquartile range, IQR = -9.48; 40.6] and 18.3% [-36.7; 60.6], respectively, for patient 1 and 11.4% [-10.8; 28.7] and 22.5% [-27.7; 77.9], respectively, for patient 2. Trastuzumab showed fast clearance from CSF to plasma with Cmin,ss of 0.56 and 0.85 mg/L for 100 and 150 mg q1wk, respectively. Repeated dosing of 100 and 150 mg q3day resulted in Cmin,ss of 10.3 and 15.4 mg/L, respectively. Trastuzumab CSF target concentrations are achieved rapidly and maintained above 60 mg/L from 7 days after a continuous perfusion at 1.0 mg/h. CONCLUSION: Continuous icv infusion of trastuzumab at 1.0 mg/h could be an alternative dosing regimen to rapidly achieve intraventricular CSF therapeutic concentrations.


Assuntos
Anticorpos Monoclonais , Encéfalo , Humanos , Trastuzumab , Anticorpos Monoclonais/farmacocinética , Administração Intravenosa , Infusões Intravenosas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA