Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 659
Filtrar
1.
MAbs ; 16(1): 2410316, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39402718

RESUMO

Human CD200R1 (hCD200R1), an immune inhibitory receptor expressed predominantly on T cells and myeloid cells, was identified as a promising immuno-oncology target by the 23andMe database. Blockade of CD200R1-dependent signaling enhances T cell-mediated antitumor activity in vitro and in vivo. 23ME-00610 is a potential first-in-class, humanized IgG1 investigational antibody that binds hCD200R1 with high affinity. We have previously shown that 23ME-00610 inhibits the hCD200R1 immune checkpoint function. Herein, we dissect the molecular mechanism of 23ME-00610 blockade of hCD200R1 by solving the crystal structure of 23ME-00610 Fab in complex with hCD200R1 and performing mutational studies, which show 23ME-00610 blocks the interaction between hCD200 and hCD200R1 through steric hindrance. However, 23ME-00610 does not bind CD200R1 of preclinical species such as cynomolgus monkey MfCD200R1. To enable preclinical toxicology studies of CD200R1 blockade in a pharmacologically relevant non-clinical species, we engineered a surrogate antibody with high affinity toward MfCD200R1. We used phage display libraries of 23ME-00610 variants with individual CDR residues randomized to all 20 amino acids, from which we identified mutations that switched on MfCD200R1 binding. Structural analysis suggests how the surrogate, named 23ME-00611, acquires the ortholog binding ability at the equivalent epitope of 23ME-00610. This engineering approach does not require a priori knowledge of structural and functional mapping of antibody-antigen interaction and thus is generally applicable for therapeutic antibody development when desired ortholog binding is lacking. These findings provide foundational insights as 23ME-00610 advances in clinical studies to gain understanding of the hCD200R1 immune checkpoint as a target in immuno-oncology.


Assuntos
Inibidores de Checkpoint Imunológico , Macaca fascicularis , Receptores de Orexina , Humanos , Receptores de Orexina/imunologia , Receptores de Orexina/genética , Receptores de Orexina/química , Animais , Inibidores de Checkpoint Imunológico/imunologia , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/química , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/genética , Engenharia de Proteínas/métodos
2.
Anal Chem ; 96(42): 16525-16533, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39392424

RESUMO

What happens to macromolecules in vivo? What drives the structure-activity relationship and in vivo stability for antibody-drug conjugates (ADCs)? These interrelated questions are increasingly relevant due to the re-emerging importance of ADCs as an impactful therapeutic modality and the gaps that exist in our understanding of ADC structural determinants that underlie ADC in vivo stability. Complex macromolecules, such as ADCs, may undergo changes in vivo due to their intricate structure as biotransformations may occur on the linker, the payload, and/or at the modified conjugation site. Furthermore, the dissection of ADC metabolism presents a substantial analytical challenge due to the difficulty in the identification or quantification of minor changes on a large macromolecule. We employed immunocapture-LCMS methods to evaluate in vivo changes in the drug-antibody ratio (DAR) profile in four different lead ADCs. This comprehensive characterization revealed that a critical structural determinant contributing to the ADC design was the linker, and competition of the thio-succinimide hydrolysis reaction over retro-Michael deconjugation can result in superb conjugation stability in vivo. These data, in conjunction with additional factors, informed the selection of AZD8205, puxitatug samrotecan, a B7-H4-directed cysteine-conjugated ADC bearing a novel topoisomerase I inhibitor payload, with durable DAR, currently being studied in the clinic for the potential treatment of solid malignancies (NCT05123482). These results highlight the relevance of studying macromolecule biotransformation and elucidating the ADC structure-in vivo stability relationship. The comprehensive nature of this work increases our confidence in the understanding of these processes. We hope this analytical approach can inform future development of bioconjugate drug candidates.


Assuntos
Biotransformação , Imunoconjugados , Imunoconjugados/metabolismo , Imunoconjugados/química , Animais , Camundongos , Humanos , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/metabolismo , Estabilidade de Medicamentos , Feminino , Camptotecina/análogos & derivados
3.
Mol Pharm ; 21(10): 5326-5334, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39251364

RESUMO

Parkinson's disease (PD) is an idiopathic neurodegenerative disorder with the second-highest prevalence rate behind Alzheimer's disease. The pathophysiological hallmarks of PD are both degeneration of dopaminergic neurons in the substantia nigra pars compacta and the inclusion of misfolded α-synuclein (α-syn) aggregates known as Lewy bodies. Despite decades of research for potential PD treatments, none have been developed, and developing new therapeutic agents is a time-consuming and expensive process. Computational methods can be used to investigate the properties of drug candidates currently undergoing clinical trials to determine their theoretical efficiency at targeting α-syn. Monoclonal antibodies (mAbs) are biological drugs with high specificity, and Prasinezumab (PRX002) is an mAb currently in Phase II, which targets the C-terminus (AA 118-126) of α-syn. We utilized BioLuminate and PyMol for the structure prediction and preparation of the fragment antigen-binding (Fab) region of PRX002 and 34 different conformations of α-syn. Protein-protein docking simulations were performed using PIPER, and 3 of the docking poses were selected based on the best fit. Molecular dynamics simulations were conducted on the docked protein structures in triplicate for 1000 ns, and hydrogen bonds and electrostatic and hydrophobic interactions were analyzed using MDAnalysis to determine which residues were interacting and how often. Hydrogen bonds were shown to form frequently between the HCDR2 region of PRX002 and α-syn. Free energy was calculated to determine the binding affinity. The predicted binding affinity shows a strong antibody-antigen attraction between PRX002 and α-syn. RMSD was calculated to determine the conformational change of these regions throughout the simulation. The mAb's developability was determined using computational screening methods. Our results demonstrate the efficiency and developability of this therapeutic agent.


Assuntos
Simulação de Acoplamento Molecular , Doença de Parkinson , alfa-Sinucleína , alfa-Sinucleína/imunologia , alfa-Sinucleína/metabolismo , alfa-Sinucleína/química , Doença de Parkinson/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/imunologia , Humanos , Anticorpos Monoclonais/química , Simulação de Dinâmica Molecular , Ligação Proteica , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/uso terapêutico
4.
Mol Pharm ; 21(10): 5205-5216, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39322604

RESUMO

B7-H3 has emerged as a promising target and potential biomarker for diagnosing tumors, evaluating treatment efficacy, and determining patient prognosis. Hu4G4 is a recombinant humanized antibody that selectively targets the extracellular domain of human B7-H3. In this study, we describe the radiolabeling of hu4G4 with the positron emission tomography (PET) emitter radionuclide zirconium 89 (89Zr) and evaluate its potency as an immuno-PET tracer for B7-H3-targeted imaging by comparing it in vitro and in vivo to [89Zr]Zr-DFO-DS-5573a using various models. The radiolabeled compound, [89Zr]Zr-desferrioxamine-hu4G4 ([89Zr]Zr-DFO-hu4G4), demonstrated a high radiochemical purity (RCP) of greater than 99% and a specific activity of 74 MBq/mg following purification. Additionally, it maintained stability in human serum albumin (HSA) and acetate buffer, preserving over 90% of its RCP after 7 days. Three cell lines targeting human B7-H3(U87/CT26-CD276/GL261-CD276) were used. Flow cytometry analysis indicated that the B7-H3-positive cells (U87/CT26-CD276/GL261-CD276) had a higher B7-H3 protein level with no expression in the B7-H3-negative cells (CT26-wt/GL261-wt) (P < 0.001). Moreover, the cellular uptake was 45.71 ± 3.78% for [89Zr]Zr-DFO-hu4G4 in CT26-CD276 cells versus only 0.93 ± 0.47% in CT26-wt cells and 30.26 ± 0.70% when [89Zr]Zr-DFO-hu4G4 in CT26-CD276 cells were blocked with 100× 8H9. The cellular uptake of [89Zr]Zr-DFO-hu4G4 was akin to that observed with [89Zr]Zr-DFO-DS-5573a with no significant differences (45.71 ± 3.78 % vs 47.07 ± 0.86 %) in CT26-CD276 cells. Similarly, the CT26-CD276 mouse model demonstrated markedly low organ uptake and elevated tumor uptake 48 h after [89Zr]Zr-DFO-hu4G4 injection. PET/CT analysis showed that the tumor-to-muscle (T/M) ratios were substantially higher compared to other imaging groups: 27.65 ± 3.17 in CT26-CD276 mice versus 11.68 ± 4.19 in CT26-wt mice (P < 0.001) and 16.40 ± 0.78 when 100× 8H9 was used to block [89Zr]Zr-DFO-hu4G4 in CT26-CD276 mice (P < 0.01) at 48 h post-injection. Additionally, the tracer showed markedly high accumulation in the tumor region (22.57 ± 3.03% ID/g), comparable to the uptake of [89Zr]Zr-DFO-DS-5573a (24.76 ± 5.36% ID/g). A dosimetry estimation study revealed that the effective dose for [89Zr]Zr-DFO-hu4G4 was 2.96 × 10-01 mSv/MBq, which falls within the acceptable range for further research in nuclear medicine. Collectively, these results indicated that [89Zr]Zr-DFO-hu4G4 was successfully fabricated and applied in B7-H3-targeted tumor PET/CT imaging, which showed excellent imaging quality and tumor detection efficacy in tumor-bearing mice. It is a promising imaging agent for identifying tumors that overexpress B7-H3 for future clinical applications.


Assuntos
Antígenos B7 , Tomografia por Emissão de Pósitrons , Radioisótopos , Zircônio , Zircônio/química , Animais , Humanos , Antígenos B7/metabolismo , Camundongos , Radioisótopos/química , Linhagem Celular Tumoral , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacocinética , Anticorpos Monoclonais Humanizados/química , Distribuição Tecidual , Feminino , Desferroxamina/química , Neoplasias/diagnóstico por imagem , Camundongos Endogâmicos BALB C , Camundongos Nus
5.
Mol Imaging Biol ; 26(5): 823-834, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39093482

RESUMO

PURPOSE: In the emerging field of antibody treatments for neurodegenerative diseases, reliable tools are needed to evaluate new therapeutics, diagnose and select patients, monitor disease progression, and assess therapy response. Immuno-PET combines the high affinity and exceptional specificity of monoclonal antibodies with the non-invasive imaging technique positron emission tomography (PET). Its application in neurodegenerative disease brain imaging has been limited due to the marginal uptake across the blood-brain barrier (BBB). The emergence of BBB-shuttle antibodies with enhanced uptake across the BBB extended immuno-PET to brain imaging. We recently reported about specific brain uptake of a bispecific aducanumab mTfR antibody in APP/PS1 TG mice using 89Zr-immuno-PET. However, a sufficient target-to-background ratio was reached at a relatively late scanning time point of 7 days post-injection. To investigate if a better target-to-background ratio could be achieved earlier, an aducanumab BBB-shuttle with a mutated Fc region for reduced FcRn affinity was evaluated. PROCEDURES: AduH310A-8D3 and Adu-8D3 were modified with DFO*-NCS and subsequently radiolabeled with 89Zr. The potential influence of the H310A mutation, modification with DFO*-NCS, and subsequent radiolabeling on the in vitro binding to amyloid-beta and mTfR1 was investigated via amyloid-beta peptide ELISA and FACS analysis using mTfR1 transfected CHO-S cells. Blood kinetics, brain uptake, in vivo PET imaging and target engagement of radiolabeled AduH310A-8D3 were evaluated and compared to non-mutated Adu-8D3 in APP/PS1 TG mice and wild-type animals as controls. RESULTS: Radiolabeling was performed with sufficient radiochemical yields and radiochemical purity. In vitro binding to amyloid-beta and mTfR1 showed no impairment. [89Zr]Zr-AduH310A-8D3 showed faster blood clearance and earlier differentiation of amyloid-beta-related brain uptake compared to [89Zr]Zr-Adu-8D3. However, only half of the brain uptake was observed for [89Zr]Zr-AduH310A-8D3. CONCLUSIONS: Although a faster blood clearance of AduH310A-8D3 was observed, it was concluded that no beneficial effects for 89Zr-immuno-PET imaging of brain uptake were obtained.


Assuntos
Peptídeos beta-Amiloides , Barreira Hematoencefálica , Encéfalo , Mutação , Tomografia por Emissão de Pósitrons , Radioisótopos , Zircônio , Animais , Zircônio/química , Barreira Hematoencefálica/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Radioisótopos/química , Peptídeos beta-Amiloides/metabolismo , Receptores Fc/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Distribuição Tecidual , Camundongos Transgênicos , Camundongos , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/farmacocinética , Células CHO , Cricetulus , Anticorpos Monoclonais/farmacocinética , Anticorpos Monoclonais/química , Humanos
6.
J Pharm Biomed Anal ; 251: 116410, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39173499

RESUMO

Pressurized intraperitoneal aerosol chemotherapy (PIPAC) is a new therapeutic approach for patients with peritoneal cancer. So far, most published studies investigated the administration of established cytostatic agents through PIPAC. This study aimed to evaluate the effect of PIPAC on two breakthrough anti-cancer agents, specifically anti-PD1 pembrolizumab, and anti-HER2 antibody-drug conjugate (ADC) - trastuzumab-deruxtecan. We conducted systematic analyses on samples of pembrolizumab and trastuzumab-deruxtecan at clinically relevant concentrations before and after PIPAC administration using an experimental setup of a hermetic container system, mimicking the abdominal cavity and using identical features as in clinical use. We utilized a range of chromatographic and spectroscopic techniques to explore potential alterations in the primary, secondary, and tertiary structures of the drugs, focusing on post-translational modifications resulting from the aerosolization. Our findings indicate that PIPAC did not compromise the integrity of tested biopharmaceuticals. The size variants of both drugs, assessed by size exclusion chromatography (SEC), remained unchanged. Reversed-phase liquid chromatography (RPLC) and hydrophobic interaction chromatography (HIC) revealed no significant differences in hydrophobicity variants, the average drug-to-antibody ratio (DAR), or DAR distribution before and after PIPAC treatment. Circular dichroism (CD) spectroscopy confirmed that the secondary and tertiary structures were preserved. While pembrolizumab showed no change in charge variants post-PIPAC, trastuzumab-deruxtecan exhibited a non-negligible change in the quantity of charge variants on the monoclonal antibody itself, while the payload remained unchanged. This shift could possibly be related to the metallic composition of the CapnoPen® device (made of nickel and chromium) used in PIPAC and for these experiments. Together, our results suggest that PIPAC does not alter the structure of pembrolizumab and trastuzumab-deruxtecan, paving the way for future clinical trials.


Assuntos
Aerossóis , Anticorpos Monoclonais Humanizados , Estabilidade de Medicamentos , Imunoconjugados , Trastuzumab , Aerossóis/química , Trastuzumab/química , Imunoconjugados/química , Imunoconjugados/análise , Imunoconjugados/administração & dosagem , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/análise , Anticorpos Monoclonais Humanizados/administração & dosagem , Humanos , Neoplasias Peritoneais/tratamento farmacológico , Anticorpos Monoclonais/química , Anticorpos Monoclonais/administração & dosagem , Receptor ErbB-2/antagonistas & inibidores , Pressão
7.
Structure ; 32(10): 1705-1710.e3, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39059382

RESUMO

Activated FXII (FXIIa) is the principal initiator of the plasma contact system and can activate both procoagulant and proinflammatory pathways. Its activity is important in the pathophysiology of hereditary angioedema (HAE). Here, we describe a high-resolution cryoelectron microscopy (cryo-EM) structure of the beta-chain from FXIIa (ßFXIIa) complexed with the Fab fragment of garadacimab. Garadacimab binds to ßFXIIa through an unusually long CDR-H3 that inserts into the S1 pocket in a non-canonical way. This structural mechanism is likely the primary contributor to the inhibition of activated FXIIa proteolytic activity in HAE. Garadacimab Fab-ßFXIIa structure also reveals critical determinants of high-affinity binding of garadacimab to activated FXIIa. Structural analysis with other bona fide FXIIa inhibitors, such as benzamidine and C1-INH, reveals a surprisingly similar mechanism of ßFXIIa inhibition by garadacimab. In summary, the garadacimab Fab-ßFXIIa structure provides crucial insights into its mechanism of action and delineates primary and auxiliary paratopes/epitopes.


Assuntos
Microscopia Crioeletrônica , Fragmentos Fab das Imunoglobulinas , Modelos Moleculares , Humanos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/metabolismo , Ligação Proteica , Fator XIIa/metabolismo , Fator XIIa/química , Fator XIIa/antagonistas & inibidores , Sítios de Ligação , Proteína Inibidora do Complemento C1/química , Proteína Inibidora do Complemento C1/metabolismo , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/metabolismo , Benzamidinas/química , Benzamidinas/farmacologia , Benzamidinas/metabolismo
8.
J Biochem Mol Toxicol ; 38(8): e23787, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39072816

RESUMO

Lung cancer is known as the most common cancer. Although the Ramucirumab antibody is a second-line treatment for lung cancer, the high interstitial fluid pressure limits the antibody's performance. In this way, Imatinib is a chemotherapeutic drug to reduce the interstitial fluid pressure. Up to now, unfortunately, both Ramucirumab and imatinib have not been reported in one nanosystem for cancer therapy. To fulfill this shortcoming, this paper aims to design a chitosan nanocarrier that loads imatinib and attaches to Ramucirumab for selective bonding to A549. Therefore, this paper aims to develop a polymeric nanosystem for non-small cell lung cancer (NSCLC) treatment. In first, the chitosan polyethylene glycol nanoparticle is synthesized, loaded with imatinib, and then targeted using Ramucirumab. Afterwards, the CS-PEG-Ab-Im by FTIR, TEM, DLS, zeta potential, and TGA techniques are characterized. The size of CS-PEG-Ab-Im was 25-30 nm, its surface charge was 13.1 mV, and the shape of CS-PEG-Ab-Im was nearly spherical and cylindrical. The therapeutic potential of CS-PEG-Ab-Im was assessed using the A549 cell line. According to the obtained results, the cell viability was 48% after 48 h of treatment of A549 cells using the IC50 concentration of CS-PEG-Ab-Im (100 nanomolar). Moreover, the apoptosis and cell cycle arrest percentages were increased by 3 and 6 times, respectively, as compared to free imatinib. Furthermore, the release rate of imatinib from CS-PEG-Ab-Im in an acidic medium was 17% during 1 h, indicating five times the imatinib release in the natural medium. Eventually, the result of flow cytometry indicates the more apoptotic effect of nanosystem to free imatinib and CS-PEG-Ab. Besides, cell arresting result exhibits the CS-PEG-Ab-Im and causes cell arrested at G1 by %8.17. Thus, it can be concluded that CS-PEG-Ab-Im can be an ideal nanosystem in NSCLC treatment.


Assuntos
Quitosana , Mesilato de Imatinib , Neoplasias Pulmonares , Polietilenoglicóis , Humanos , Mesilato de Imatinib/farmacologia , Quitosana/química , Polietilenoglicóis/química , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Células A549 , Apoptose/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/química , Portadores de Fármacos/química , Linhagem Celular Tumoral , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo
9.
Bioorg Med Chem ; 110: 117828, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38981219

RESUMO

The approval of Trodelvy® validates TROP2 as a druggable but challenging target for antibody-drug conjugates (ADCs) to treat metastatic triple-negative breast cancer (mTNBC). Here, based on the TROP2-targeted antibody sacituzumab, we designed and developed several site-specific ADC candidates, which employ MMAE (monomethyl auristatin E) as the toxin, via IgG glycoengineering or affinity-directed traceless conjugation. Systematic evaluation of these site-specific ADCs in homogeneity, hydrophilicity, stability, and antitumor efficiency was conducted. The results indicate that the site-specific ADCs gsADC 3b made from one-step glycoengineering exhibit good aggregation stability and in vivo efficacy, providing a new format of ADCs that target TROP2.


Assuntos
Antígenos de Neoplasias , Antineoplásicos , Moléculas de Adesão Celular , Desenho de Fármacos , Imunoconjugados , Humanos , Imunoconjugados/química , Imunoconjugados/farmacologia , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/metabolismo , Moléculas de Adesão Celular/antagonistas & inibidores , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/imunologia , Animais , Antineoplásicos/química , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Camundongos , Feminino , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Relação Estrutura-Atividade , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Linhagem Celular Tumoral , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/farmacologia , Oligopeptídeos
10.
Mol Imaging ; 23: 15353508241261473, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952401

RESUMO

Background: Labeled antibodies are excellent imaging agents in oncology to non-invasively visualize cancer-related antigens expression levels. However, tumor tracer uptake (TTU) of specific antibodies in-vivo may be inferior to non-specific IgG in some cases. Objectives: To explore factors affecting labeled antibody visualization by PD-L1 specific and non-specific imaging of nude mouse tumors. Methods: TTU was observed in RKO model on Cerenkov luminescence (CL) and near-infrared fluorescence (NIRF) imaging of radionuclide 131I or NIRF dyes labeled Atezolizumab and IgG. A mixture of NIRF dyes labeled Atezolizumab and 131I-labeled IgG was injected, and TTU was observed in the RKO and HCT8 model by NIRF/CL dual-modality in-situ imaging. TTU were observed by 131I-labeled Atezolizumab and IgG in-vitro distribution. Results: Labeled IgG concentrated more in tumors than Atezolizumab. NIRF/CL imaging in 24 to 168 h showed that TTU gradually decreased over time, which decreased more slowly on CL imaging compared to NIRF imaging. The distribution data in-vitro showed that TTU of 131I-labeled IgG was higher than that of 131I-labeled Atezolizumab at any time point. Conclusion: Non-specific IgG may not be suitable as a control for Atezolizumab in comparing tumor PD-L1 expression in nude mice via labeled antibody optical imaging under certain circumstances.


Assuntos
Antígeno B7-H1 , Camundongos Nus , Animais , Antígeno B7-H1/metabolismo , Humanos , Camundongos , Linhagem Celular Tumoral , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/farmacocinética , Imagem Óptica/métodos , Radioisótopos do Iodo/química , Neoplasias/diagnóstico por imagem , Imunoglobulina G/química , Imunoglobulina G/metabolismo , Feminino , Luminescência
11.
J Mol Med (Berl) ; 102(9): 1151-1161, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39052065

RESUMO

The optimal efficacy of xenogeneically generated proteins intended for application in humans requires that their own antigenicity be minimized. This necessary adaptation of antibodies to a humanized version poses challenges since modifications even distant from the binding sites can greatly influence antigen recognition and this is the primary feature that must be maintained during all modifications. Current strategies often rely on grafting and/or randomization/selection to arrive at a humanized variant retaining the binding properties of the original molecule. However, in terms of speed and efficiency, rationally directed approaches can be superior, provided the requisite structural information is available. We present here a humanization procedure based on the high-resolution X-ray structure of a chimaeric IgG against a marker for multiple myeloma. Based on in silico modelling of humanizing amino acid substitutions identified from sequence alignments, we devised a straightforward cloning procedure to rapidly evaluate the proposed sequence changes. Careful inspection of the structure allowed the identification of a potentially problematic amino acid change that indeed disrupted antigen binding. Subsequent optimization of the antigen binding loop sequences resulted in substantial recovery of binding affinity lost in the completely humanized antibody. X-ray structures of the humanized and optimized variants demonstrate that the antigen binding mode is preserved, with surprisingly few direct contacts to antibody atoms. These results underline the importance of structural information for the efficient optimization of protein therapeutics. KEY MESSAGES: Structure-based humanization of an IgG against BCMA, a marker for Multiple Myeloma. Identification of problematic mutations and unexpected modification sites. Structures of the modified IgG-antigen complexes verified predictions. Provision of humanized high-affinity IgGs against BCMA for therapeutic applications.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/terapia , Mieloma Múltiplo/imunologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/química , Imunoglobulina G/imunologia , Imunoglobulina G/química , Modelos Moleculares , Cristalografia por Raios X , Sequência de Aminoácidos , Conformação Proteica , Ligação Proteica
12.
Artigo em Inglês | MEDLINE | ID: mdl-38843708

RESUMO

Non-small cell lung cancer (NSCLC) is a significant subtype of lung cancer, and poses a dangerous global threat. One of the current approaches of NSCLC treatment is a combination therapy of adagrasib and pembrolizumab. Accurate monitoring of these drug concentrations in biological fluids is critical for treatment efficacy. Since no method was reported for simultaneous estimation of these drugs, this study focuses on the development of a validated LC-MS/MS bioanalytical method for simultaneous quantification of Adagrasib and Pembrolizumab in rat plasma. The analytes were extracted from the biological matrix through liquid-liquid extraction techniques using acetonitrile as extraction solvent. The analytes were separated on a Waters X-bridge phenyl C18 column, with a mixture of acetonitrile: 0.1 % TFA in water (50: 50 v/v) as mobile phase at an isocratic flow rate of 1.0 mL/min with a runtime of about 5 min. Adagrasib (m/z 605.12 → 201.62), Pembrolizumab (m/z 146.32 → 85.15), and Sotorasib (m/z 561.59 → 218.92) were determined by recording the mass spectra through multiple reaction monitoring in positive mode. The method was validated according to USFDA guidelines. The results demonstrate satisfactory linearity with an r2 value of 0.9998 in the ranges of 40-800 and 10-200 ng/mL, accuracy with mean percentage recovery of 95.22-98.59 % and 96.98-98.57 %, precision indicated with %RSD ranged between 0.39-1.91 % and 0.85-9.03 % for Adagrasib and Pembrolizumab respectively, and other key parameters. The developed method can determine the pharmacokinetic parameters to indicate the efficacy and safety of the drugs, and also can quantify selected drugs simultaneously in biological samples.


Assuntos
Anticorpos Monoclonais Humanizados , Espectrometria de Massa com Cromatografia Líquida , Animais , Masculino , Ratos , Anticorpos Monoclonais Humanizados/farmacocinética , Anticorpos Monoclonais Humanizados/sangue , Anticorpos Monoclonais Humanizados/química , Limite de Detecção , Modelos Lineares , Extração Líquido-Líquido , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem
13.
BioDrugs ; 38(4): 571-588, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38890199

RESUMO

BACKGROUND AND OBJECTIVE: Tocilizumab is an immunoglobulin G1 monoclonal antibody targeting the interleukin-6 receptor (IL-6R). BAT1806/BIIB800 (tocilizumab-bavi) has been developed as a biosimilar to the reference product tocilizumab (TCZ). The objective of this study was to demonstrate physicochemical and functional similarity between BAT1806/BIIB800 and TCZ in a comprehensive comparability exercise. METHODS: A comprehensive panel of over 20 methods was used to generate datasets comparing critical and non-critical product quality attributes for 10 BAT1806/BIIB800 lots and 44 TCZ lots (16 sourced from China, 16 from the EU, and 12 from the US). Primary structure, higher-order structure, and physicochemical properties were assessed using liquid chromatography, mass spectrometry, various spectroscopy techniques/methods, capillary electrophoresis, and thermoanalytical techniques. Fragment antigen-binding (Fab)- and fragment crystallizable (Fc)-mediated biological properties were assessed using cell-based assays, immunoassays, flow cytometry, and kinetic binding assays. RESULTS: BAT1806/BIIB800 and TCZ (irrespective of source) were shown to be similar in terms of structural and functional properties. No differences were observed in terms of the most critical quality attributes, that is, soluble-IL-6R binding and inhibition of IL-6-mediated cell proliferation. BAT1806/BIIB800 and TCZ demonstrated similarity in terms of Fab- and Fc-mediated binding and biological activity. Minor differences were observed in glycosylation (afucosylation and sialylation), glycation, aggregation, and charge variants, which were demonstrated to be not clinically relevant. CONCLUSION: BAT1806/BIIB800 and TCZ were highly similar for all critical quality attributes. Where differences were observed in less critical quality attributes, additional analytical assessments and clinical study results determined these to be not clinically meaningful.


Assuntos
Anticorpos Monoclonais Humanizados , Medicamentos Biossimilares , Receptores de Interleucina-6 , Medicamentos Biossimilares/química , Medicamentos Biossimilares/farmacologia , Humanos , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/farmacologia , China
14.
Protein Sci ; 33(6): e5008, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723181

RESUMO

One of the most important attributes of anti-amyloid antibodies is their selective binding to oligomeric and amyloid aggregates. However, current methods of examining the binding specificities of anti-amyloid ß (Aß) antibodies have limited ability to differentiate between complexes that form between antibodies and monomeric or oligomeric Aß species during the dynamic Aß aggregation process. Here, we present a high-resolution native ion-mobility mass spectrometry (nIM-MS) method to investigate complexes formed between a variety of Aß oligomers and three Aß-specific IgGs, namely two antibodies with relatively high conformational specificity (aducanumab and A34) and one antibody with low conformational specificity (crenezumab). We found that crenezumab primarily binds Aß monomers, while aducanumab preferentially binds Aß monomers and dimers and A34 preferentially binds Aß dimers, trimers, and tetrameters. Through collision induced unfolding (CIU) analysis, our data indicate that antibody stability is increased upon Aß binding and, surprisingly, this stabilization involves the Fc region. Together, we conclude that nIM-MS and CIU enable the identification of Aß antibody binding stoichiometries and provide important details regarding antibody binding mechanisms.


Assuntos
Peptídeos beta-Amiloides , Anticorpos Monoclonais Humanizados , Espectrometria de Mobilidade Iônica , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/imunologia , Peptídeos beta-Amiloides/metabolismo , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/metabolismo , Espectrometria de Mobilidade Iônica/métodos , Humanos , Espectrometria de Massas/métodos , Ligação Proteica , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Multimerização Proteica
15.
Luminescence ; 39(5): e4747, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38716575

RESUMO

Atezolizumab (ATZ) is a human monoclonal antibody, which has been granted multiple approvals from the US Food and Drug Administration (FDA) for the immunotherapy of different types of cancer. This study describes the prototype of a time-resolved fluoroimmunoassay (TRFIA) for the quantitation of ATZ in plasma. The assay involved the non-competitive binding of ATZ to its specific antigen [programmed death-ligand 1 (PD-L1) protein]. The immune complex formed on the inner surface of the assay plate wells was quantified by anti-human secondary antibody labeled with a chelate of europium-ethylenediaminetetraacetic acid. The enhanced fluorescence signal was generated by an enhanced fluorescence solution composed of thenoyltrifluoroacetone, trioctylphosphine oxide, and Triton X-100. The conditions of the TRFIA were refined, and its optimum procedures were established. The assay was validated in accordance with the immunoassay validation guidelines, and all the validation parameters were acceptable. The working range of the assay was 20-1000 pg mL-1, and its limit of quantitation was 20 pg mL-1. The assay was applied to the quantitation of ATZ in plasma samples with satisfactory accuracy and precision. The proposed TRFIA has significant benefits over the existing methodologies for the quantitation of ATZ in clinical settings.


Assuntos
Anticorpos Monoclonais Humanizados , Fluorimunoensaio , Fluorimunoensaio/métodos , Humanos , Anticorpos Monoclonais Humanizados/sangue , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/imunologia , Fluorescência , Fatores de Tempo
16.
J Struct Biol ; 216(2): 108095, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723875

RESUMO

Single particle analysis from cryogenic transmission electron microscopy (cryo-EM) is particularly attractive for complexes for which structure prediction remains intractable, such as antibody-antigen complexes. Here we obtain the detailed structure of a particularly difficult complex between human epidermal growth factor receptor 2 (HER2) and the antigen-binding fragments from two distinct therapeutic antibodies binding to distant parts of the flexible HER2, pertuzumab and trastuzumab (HTP). We highlight the strengths and limitations of current data processing software in dealing with various kinds of heterogeneities, particularly continuous conformational heterogeneity, and in describing the motions that can be extracted from our dataset. Our HTP structure provides a more detailed view than the one previously available for this ternary complex. This allowed us to pinpoint a previously overlooked loop in domain IV that may be involved both in binding of trastuzumab and in HER2 dimerization. This finding may contribute to explain the synergistic anticancer effect of the two antibodies. We further propose that the flexibility of the HTP complex, beyond the difficulties it causes for cryo-EM analysis, actually reflects regulation of HER2 signaling and its inhibition by therapeutic antibodies. Notably we obtain our best data with ultra-thin continuous carbon grids, showing that with current cameras their use to alleviate particle misdistribution is compatible with a protein complex of only 162 kDa. Perhaps most importantly, we provide here a dataset for such a smallish protein complex for further development of software accounting for continuous conformational heterogeneity in cryo-EM images.


Assuntos
Anticorpos Monoclonais Humanizados , Microscopia Crioeletrônica , Receptor ErbB-2 , Trastuzumab , Trastuzumab/química , Receptor ErbB-2/química , Receptor ErbB-2/metabolismo , Humanos , Anticorpos Monoclonais Humanizados/química , Microscopia Crioeletrônica/métodos , Conformação Proteica , Ligação Proteica , Modelos Moleculares , Complexo Antígeno-Anticorpo/química
17.
Int J Biol Macromol ; 270(Pt 1): 132208, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723835

RESUMO

Monoclonal antibodies (mAbs) have revolutionised the biopharmaceutical market. Being proteinaceous, mAbs are prone to chemical and physical instabilities. Various approaches were attempted to stabilise proteins against degradation factors. Ionic liquids (ILs) and deep eutectic solvents (DESs) have been established as green solvents for ever-increasing pharmaceutical and biopharmaceutical applications. Hence, amino acid (AA)-based ILs, were used for the first time, for mAb stabilisation. Choline (Ch)-based DESs were also utilised for comparison purposes. The prepared ILs and DESs were utilised to stabilise Atezolizumab (Amab, anti-PDL-1 mAb). The formulations of Amab in ILs and DESs were incubated at room temperature, 45 or 55 °C. Following this, the structural stability of Amab was appraised. Interestingly, Ch-Valine retained favourable structural stability of Amab with minimal detected aggregation or degradation as confirmed by UV-visible spectroscopy and protein Mass Spectroscopy. The measured hydrodynamic diameter of Amab in Ch-Valine ranged from 10.40 to 11.65 nm. More interestingly, the anticancer activity of Amab was evaluated, and Ch-Valine was found to be optimum in retaining the activity of Amab when compared to other formulations, including the control Amab sample. Collectively, this study has spotlighted the advantages of adopting the Ch-AA ILs for the structural and functional stabilising of mAbs.


Assuntos
Aminoácidos , Anticorpos Monoclonais Humanizados , Antineoplásicos , Líquidos Iônicos , Líquidos Iônicos/química , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/farmacologia , Humanos , Antineoplásicos/química , Antineoplásicos/farmacologia , Aminoácidos/química , Coloides/química , Estabilidade de Medicamentos , Anticorpos Monoclonais/química , Anticorpos Monoclonais/farmacologia , Estabilidade Proteica , Temperatura , Linhagem Celular Tumoral , Solventes/química
18.
Biochem Biophys Res Commun ; 714: 149969, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38657446

RESUMO

CD40 is a member of the tumor necrosis factor receptor superfamily, and it is widely expressed on immune and non-immune cell types. The interaction between CD40 and the CD40 ligand (CD40L) plays an essential function in signaling, and the CD40/CD40L complex works as an immune checkpoint molecule. CD40 has become a therapeutic target, and a variety of agonistic/antagonistic anti-CD40 monoclonal antibodies (mAbs) have been developed. To better understand the mode of action of anti-CD40 mAbs, we determined the X-ray crystal structures of dacetuzumab (agonist) and bleselumab (antagonist) in complex with the extracellular domain of human CD40, respectively. The structure reveals that dacetuzumab binds to CD40 on the top of cysteine-rich domain 1 (CRD1), which is the domain most distant from the cell surface, and it does not compete with CD40L binding. The binding interface of bleselumab spread between CRD2 and CRD1, overlapping with the binding surface of the ligand. Our results offer important insights for future structural and functional studies of CD40 and provide clues to understanding the mechanism of biological response. These data can be applied to developing new strategies for designing antibodies with more therapeutic efficacy.


Assuntos
Anticorpos Monoclonais Humanizados , Antígenos CD40 , Humanos , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/imunologia , Sítios de Ligação , Antígenos CD40/química , Antígenos CD40/imunologia , Antígenos CD40/metabolismo , Ligante de CD40/química , Ligante de CD40/metabolismo , Ligante de CD40/imunologia , Cristalografia por Raios X , Modelos Moleculares , Ligação Proteica , Conformação Proteica
19.
Int J Biol Macromol ; 268(Pt 2): 131721, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38649079

RESUMO

Interferon (IFN) alpha/beta receptor 1 (IFNAR1) is indispensable for antiviral responses and the immune regulation. Dysregulation of the IFNAR1-mediaetd signaling pathways leads to deleterious autoimmune diseases such as systemic lupus erythematosus (SLE). QX006N, a humanized therapeutic monoclonal antibody, specifically targets human IFNAR1 and is in the clinical trial phase for treating SLE, but the molecular mechanism underlying the QX006N-mediated recognition of IFNAR1 remains unclear. Here, we report the high neutralization activities of QX006N against IFNAR1-mediated signal transduction. Meanwhile, we determine the structures of the fragment antigen-binding domain (Fab) of QX006N (QX006N-Fab) and QX006N-Fab in complex with the subdomains 1-3 of IFNAR1 (IFNAR1-SD123) at 2.87 Å and 2.68 Å resolutions, respectively. In the structure of the QX006N-Fab/IFNAR1-SD123 complex, QX006N-Fab only recognizes the SD3 subdomain of IFNAR1 by the hydrophobic, hydrogen-bonding and electrostatic interactions. Compared with the structure of the IFN/IFNAR1/IFNAR2 complex, the binding of QX006N-Fab to IFNAR1-SD3 blocks its association with IFN due to steric hindrance, which inhibits the IFN/IFNAR1/IFNAR2 complex formation for signal transduction. The results of this study provide the structural evidence for the specific targeting of IFNAR1 by the therapeutic antibody QX006N and pave the way for the rational design of antibody drugs to combat IFNAR1-related autoimmune diseases.


Assuntos
Anticorpos Monoclonais Humanizados , Lúpus Eritematoso Sistêmico , Receptor de Interferon alfa e beta , Receptor de Interferon alfa e beta/metabolismo , Receptor de Interferon alfa e beta/química , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Lúpus Eritematoso Sistêmico/imunologia , Humanos , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/farmacologia , Ligação Proteica , Modelos Moleculares , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
20.
Structure ; 32(5): 550-561.e5, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38460520

RESUMO

TIGIT is mainly expressed on T cells and is an inhibitory checkpoint receptor that binds to its ligand PVR in the tumor microenvironment. Anti-TIGIT monoclonal antibodies (mAbs) such as Ociperlimab and Tiragolumab block the TIGIT-PVR interaction and are in clinical development. However, the molecular blockade mechanism of these mAbs remains elusive. Here, we report the crystal structures of TIGIT in complex with Ociperlimab_Fab and Tiragolumab_Fab revealing that both mAbs bind TIGIT with a large steric clash with PVR. Furthermore, several critical epitopic residues are identified. Interestingly, the binding affinity of Ociperlimab toward TIGIT increases approximately 17-fold when lowering the pH from 7.4 to 6.0. Our structure shows a strong electrostatic interaction between ASP103HCDR3 and HIS76TIGIT explaining the pH-responsive mechanism of Ociperlimab. In contrast, Tiragolumab does not show an acidic pH-dependent binding enhancement. Our results provide valuable information that could help to improve the efficacy of therapeutic antibodies for cancer treatment.


Assuntos
Modelos Moleculares , Ligação Proteica , Receptores Imunológicos , Concentração de Íons de Hidrogênio , Humanos , Receptores Imunológicos/metabolismo , Receptores Imunológicos/química , Cristalografia por Raios X , Anticorpos Monoclonais/química , Sítios de Ligação , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA